首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The mechanism of iron uptake and the changes which occur during cellular development of muscle cells were investigated using primary cultures of chick embryo breast muscle. Replicating presumptive myoblasts were examined in exponential growth and after growth had plateaued. These were compared to the terminally differentiated cell type, the myotube. All cells, regardless of the state of growth or differentiation, had specific receptors for transferrin. Presumptive myoblasts in exponential growth had more transferrin receptors (3.78 +/- 0.24 X 10(10) receptors/micrograms DNA) than when division had ceased (1.70 +/- 0.14 X 10(10) receptors/micrograms DNA), while myotubes had 3.80 +/- 0.26 X 10(10) receptors/micrograms DNA. Iron uptake occurred by receptor-mediated endocytosis of transferrin. While iron was accumulated by the cells, apotransferrin was released in an undegraded form. There was a close correlation between the molar rates of endocytosis of transferrin and iron. Maximum rates of iron uptake were significantly higher in myotubes than in presumptive myoblasts in either exponential growth or after growth had plateaued. There were two rates of exocytosis of transferrin, implying the existence of two intracellular pathways for transferrin. These experiments demonstrate that iron uptake by muscle cells in culture occurs by receptor-mediated endocytosis of transferrin and that transferrin receptor numbers and the kinetics of transferrin and iron uptake vary with development of the cells.  相似文献   

2.
Several aspects of iron metabolism were studied in cultured Friend erythroleukemia cells before and after induction of hemoglobin synthesis by dimethyl sulfoxide. The maximal rate of iron uptake from 59Fe-labeled transferrin, 1.5 X 10(6) atoms of Fe/cell per 30 min in uninduced cells, increased to 3 X 10(6) atoms/cell after 5 days of induction. The increase in iron uptake was not accompanied by a proportional increase in the number of transferrin receptors detected by 125I-labeled transferrin binding, suggesting a more efficient iron uptake by transferrin receptors in induced cells, with the rate of about 26 iron atoms per receptor per hour, compared to 15 atoms in uninduced cells. In agreement with this conclusion are results of the study of cellular 125I or 59Fe labeled transferrin kinetics. In the induced cells transferrin endocytosis and release proceeded with identical rates and all the endocytosed iron was retained inside the cell. On the other hand, transferrin release by uninduced cells was significantly slower and a substantial part of internalized 59Fe was released. On the basis of these results, different efficiency of iron release from internalized transferrin, accompanied by changes in cellular transferrin kinetics, is proposed as one of the factors determining the rate of iron uptake by developing erythroid cells.  相似文献   

3.
Transferrin receptors have been previously found on human macrophages and it has also been shown that transferrin iron is taken up by these cells. It has therefore been inferred that the uptake is receptor mediated and involves an endocytic pathway. The subject was addressed directly in the present study in which the transferrin-iron-receptor interaction was characterized in cultured human blood monocytes. Specific, saturable diferric transferrin binding was demonstrated, with a kDa of 3.6 X 10(-8) M and a calculated receptor density of 1.25-2.5 X 10(5) receptors per cell. Incubation at 4 degrees C markedly reduced transferrin binding and completely inhibited iron uptake. Chase experiments confirmed progressive cellular loading of iron, with concomitant loss of transferrin. Inhibitors of endocytic vesicle acidification (ammonium chloride and 2,4-dinitrophenol) inhibited iron unloading from endocytosed diferric transferrin, while microtubular inhibitors (colchicine and vindesine) and a microfilament inhibitor (cytochalasin B) reduced diferric transferrin uptake but had little effect on the iron unloading pathway. A similar effect was noted with a calcium ion antagonist (verapamil) and with 2 calmodulin antagonists (chlorpromazine and imipramine). These latter findings suggest the importance of cytoskeleton-membrane interactions via a calcium, calmodulin and protein kinase C mediated system. Endocytosed iron accumulated progressively as ferritin within the cultured monocytes.  相似文献   

4.
Uptake of iron from transferrin by isolated hepatocytes   总被引:3,自引:0,他引:3  
Isolated rat hepatocytes containing 0.56-1.79 micrograms iron/10(6) cells and with an intracellular ATP concentration of 3-4 mM, accumulate iron from transferrin linearly with time for at least 3 h. At 37 degrees C the rate of uptake amounts to 0.3-0.7 pmol/mg cell protein per min. The uptake reaches a saturation level of 21-40 pmol/mg cell protein per h at 2.2 microM iron. At 5 degrees C the uptake does not increase over the time of incubation. Uptake of iron, but not binding of transferrin is increased 4-5-fold at oxygen concentrations 10-20 microM. At oxygen concentrations beyond these limits iron uptake is decreased. Iron taken up at low oxygen concentrations can be chelated by bathophenanthroline and bathophenanthroline disulphonate , but only if the chelators are present during the uptake experiments. The results suggest that iron uptake from transferrin by hepatocytes in suspension involves reductive removal of iron.  相似文献   

5.
At 4 degrees C transferrin bound to receptors on the reticulocyte plasma membrane, and at 37 degrees C receptor-mediated endocytosis of transferrin occurred. Uptake at 37 degrees C exceeded binding at 4 degrees C by 2.5-fold and saturated after 20-30 min. During uptake at 37 degrees C, bound transferrin was internalized into a trypsin- resistant space. Trypsinization at 4 degrees C destroyed surface receptors, but with subsequent incubation at 37 degrees C, surface receptors rapidly appeared (albeit in reduced numbers), and uptake occurred at a decreased level. After endocytosis, transferrin was released, apparently intact, into the extracellular space. At 37 degrees C colloidal gold-transferrin (AuTf) clustered in coated pits and then appeared inside various intracellular membrane-bounded compartments. Small vesicles and tubules were labeled after short (5-10 min) incubations at 37 degrees C. Larger multivesicular endosomes became heavily labeled after longer (20-35 min) incubations. Multivesicular endosomes apparently fused with the plasma membrane and released their contents by exocytosis. None of these organelles appeared to be lysosomal in nature, and 98% of intracellular AuTf was localized in acid phosphatase-negative compartments. AuTf, like transferrin, was released with subsequent incubation at 37 degrees C. Freeze-dried and freeze-fractured reticulocytes confirmed the distribution of AuTf in reticulocytes and revealed the presence of clathrin-coated patches amidst the spectrin coating the inner surface of the plasma membrane. These data suggest that transferrin is internalized via coated pits and vesicles and demonstrate that transferrin and its receptor are recycled back to the plasma membrane after endocytosis.  相似文献   

6.
The ability of human-derived cells in culture to bind, remove iron from, and grow in the presence of transferrins (Tf) isolated from the sera of species commonly included in tissue culture medium was investigated. Kinetic studies on HeLa cells reveal apparent first-order association rate constants of 0.43 min-1 for human Tf and 0.15 min-1 for equine Tf. Labeled chicken ovo-Tf and fetal bovine Tf were not recognized by the HeLa cells. Competition experiments with HeLa cells that use either isolated Tf or parent serum confirm these findings. Equilibrium binding experiments performed on HeLa cells at 37 degrees C in the presence of 2,4-dinitrophenol to prevent iron removal indicate 1 X 10(6) Tf bound/cell with a dissociation constant (K'D) of 28 nM for human Tf and 182 nM for equine Tf. Equilibrium binding performed at 0 degrees C to prevent endocytosis reveals 4.1-6.7 X 10(5) Tf binding sites/cell with a K'D of 8.3 nM for human Tf and 41.5 nM for equine Tf. Parallel experiments in normal human diploid fibroblast-like MRC-5 cells indicate expression of 0.82-2.78 X 10(5) Tf binding sites/cell with a K'D of 8.2 nM for human and 39.1 nM for equine Tf. Thus, the results of equilibrium binding studies of a more differentiated cell type are consistent with those found for HeLa cells. Fetal bovine Tf was found to compete weakly with labeled human Tf for human receptor on HeLa cells in a soluble receptor assay, with an approximately 500-fold excess needed to reduce binding to half maximal. Iron uptake experiments show an iron donating hierarchy where human greater than horse greater than calf, suggesting that the rate of iron uptake depends on the affinity of receptor for transferrin. Growth experiments involving HeLa cells in chemically defined serum-free medium demonstrate that bovine Tf will support growth as well as human Tf, but at concentrations much higher than are required of human Tf.  相似文献   

7.
The binding and uptake of rat and human transferrin by isolated rat seminiferous tubules was studied. During the isolation and incubation of the tubules, the blood-testis barrier remained intact. Iron-saturated and iron-free (apo-) transferrin use the same binding sites on the surface of the tubules, but the dissociation constant is about two times higher for apotransferrin than for iron-saturated transferrin. The affinity of the receptors is equal for rat and human transferrin, but human transferrin binds to more surface binding sites (2.6 X 10(10) per 10 cm tubule length) than rat transferrin (1.1 X 10(10) per 10 cm tubule length) at 0 degrees C. At 33 degrees C equal numbers of human and rat transferrin molecules are taken up (about 8 X 10(10)) per 10 cm tubule length. The quantitative difference between 0 degrees C and 33 degrees C is caused by the fact that at 33 degrees C receptor-mediated endocytosis and recycling occur. As a consequence, both surface and intracellular transferrin receptors are detected at 33 degrees C. The dissociation constants are not temperature-dependent.  相似文献   

8.
Summary The mechanism of iron uptake by avian erythroid cells was investigated using cells from 7 and 15-day chicken embryos, and chicken serum transferrin and conalbumin (ovotransferrin) labelled with125I and59Fe. Endocytosis of the protein was determined by incubation of the cells with Pronase at 4°C to distinguish internalized from surface-bound protein.Iron was taken up by the cells by receptor-mediated endocytosis of transferrin or conalbumin. The receptors had the same affinity for serum transferrin and conalbumin. Endocytosis of diferric transferrin and conalbumin and exocytosis of apo-protein occurred at the same rates, indicating that iron donation to the cells occurred during the process of intracellular cycling of the protein. The recycling time was approximately 4 min. The rate of endocytosis of diferric protein varied with incubation temperature and at each temperature the rate of endocytosis was sufficient to account for the iron accumulated by the cells. These results and experiments with a variety of inhibitors confirmed the role of endocytosis in iron uptake.The mean cell volumes, receptor numbers and iron uptake rates of 7-day embryo cells were approximately twice those of 15-day embryo cells but the protein recycling times were approximately the same. Hence, the level of transferrin receptors is probably the main determinant of the rate of iron uptake during development of chicken erythroid cells.Transferrins from a variety of mammalian species were unable to donate iron to the chicken cells, but toad (Bufo marinus) transferrin could do so at a slow rate. The mechanism of iron uptake by developing chicken erythroid cells appears to be similar to that described for mammalian cells, although receptor numbers and iron uptake rates are lower than those reported for mammalian cells at a similar stage of development.Abbreviations BSS Hanks balanced salt solution - PBS phosphate buffered saline - MCV mean corpuscular volume - CCCP carbonyl cyanide-M-chlorophenyl hydrazone  相似文献   

9.
Polyacrylamide-gel electrophoresis in urea was used to prepare the four molecular species of transferrin:diferric transferrin, apotransferrin and the two monoferric transferrins with either the C-terminal or the N-terminal metal-binding site occupied. The interaction of these 125I-labelled proteins with rabbit reticulocytes was investigated. At 4 degrees C the average value for the association constant for the binding of transferrin to reticulocytes was found to increase with increasing iron content of the protein. The association constant for apotransferrin binding was 4.6 X 10(6)M-1, for monoferric (C-terminal iron) 2.5 X 10(7)M-1, for monoferric (N-terminal iron) 2.8 X 10(7)M-1 and for diferric transferrin, 1.1 X 10(8)M-1. These differences in the association constants did not affect the processing of the transferrin species by the cells at 37 degrees C. Accessibility of the proteins to extracellular proteinase indicated that the transferrin was internalized by the cells regardless of the iron content of the protein, since in each case 70% was inaccessible. Cycling of the cellular receptors may also occur in the absence of bound transferrin.  相似文献   

10.
Calcium stimulates hepatocyte iron uptake from transferrin, ferric-iron-pyrophosphate and ferrous-iron-ascorbate. Maximal stimulation of iron uptake is observed at 1-1.5 mM of extra-cellular calcium and the effect is reversible and immediate. Neither the receptor affinity for transferrin, nor the total amounts of transferrin associated with the cells or the rate of transferrin endocytosis are significantly affected by calcium. In the presence of calcium the rate of iron uptake of non-transferrin bound iron increases abruptly at approximate 17 degrees C and 27 degrees C and as assessed by Arrhenius plots, the activation energy is reduced in a calcium dependent manner at approx. 27 degrees C. At a similar temperature, i.e., between 25 degrees C and 28 degrees C, calcium increases the rates of cellular iron uptake from transferrin in a way that is not reflected in the rate of transferrin endocytosis. By the results of this study it is concluded that calcium increases iron transport across the plasma membrane by a mechanism dependent on membrane fluidity.  相似文献   

11.
Receptor-mediated endocytosis of transferrin in K562 cells   总被引:53,自引:0,他引:53  
Human diferric transferrin binds to the surface of K562 cells, a human leukemic cell line. There are about 1.6 X 10(5) binding sites per cell surface, exhibiting a KD of about 10(-9) M. Upon warming cells to 37 degrees C there is a rapid increase in uptake to a steady state level of twice that obtained at 0 degree C. This is accounted for by internalization of the ligand as shown by the development of resistance to either acid wash or protease treatment of the ligand-cell association. After a minimum residency time of 4-5 min, undegraded transferrin is released from the cell. Internalization is rapid but is dependent upon cell surface occupancy; at occupancies of 20% or greater the rate coefficient is maximal at about 0.1-0.2 min-1. In the absence of externally added ligand only 50% of the internalized transferrin completes the cycle and is released to the medium with a rate coefficient of 0.05 min-1. The remaining transferrin can be released from the cell only by the addition of ligand, suggesting a tight coupling between cell surface binding, internalization, and release of internalized ligand. There is a loss of cell surface-binding capacity that accompanies transferrin internalization. At low (less than 50%) occupancy this loss is monotonic with the extent of internalization. Even at saturating levels of transferrin, the loss of surface receptors upon internalization never exceeds 60-70% of the initial binding capacity. This suggests that receptors enter the cell with ligand but are replaced so as to maintain a constant, albeit reduced, receptor number on the cell surface. In the absence of ligand, the cell surface receptor number returns at 37 degrees C. Neither sodium azide nor NH4Cl blocks internalization of ligand. However, they both prevent the release of transferrin from the cell thus halting the transferrin cycle. Excess ligand can overcome the block due to NH4Cl but not azide although the cycle is markedly slower. Iron is delivered to these cells by transferrin at 37 degrees C with a rate coefficient of 0.15 to 0.2 min-1. The iron is released from the transferrin and the majority is found in intracellular ferritin. There is a large internal receptor pool comprising 70 to 80% of the total cell receptors and this may be involved in maintaining the steady state iron uptake.  相似文献   

12.
Erythropoietin (EP) responsive Friend virus-infected erythroid cells had 200,000 steady-state binding sites for transferrin at 37 degrees C when isolated from the spleens of Friend virus-infected mice. Upon culture of these cells with EP, the synthesis of transferrin receptors increased 4- to 7-fold and the number of transferrin-binding sites per cell doubled after 24 h. However, the rate of uptake of 59Fe from transferrin remained constant at approximately 35,000 atoms of 59Fe per minute per cell during this period in culture. The amount of 125I-transferrin internalized during the steady-state binding did not change during this culture period while the transferrin bound to the surface increased 3-fold. At all stages of erythroid maturation, the maximum rate of endocytosis was determined to be 18,000 molecules of transferrin per minute per cell, and the interval that 125I-transferrin remains in the interior of the cell was calculated to be 6.9 min. After 48 h of culture with EP, the number of steady-state transferrin-binding sites was reduced in part due to the sequestration of surface receptors within the cell. The uptake of iron from transferrin was limited by the level of endocytosis of transferrin during the initial phase of culture and the number of transferrin receptors at the cell surface during the latter stages of erythroid maturation of these cells.  相似文献   

13.
The mechanism of iron uptake from transferrin by the rat placenta in culture has been studied. Transferrin endocytosis preceded iron accumulation by the cells. Both transferrin internalisation and iron uptake were inhibited by low temperature. Transferrin endocytosis was less susceptible to the effects of metabolic inhibitors such as sodium fluoroacetate, potassium cyanide, 2,4, dinitrophenol or carbonylcyanide M-chlorophenyl hydrazone (CCCP) than was iron uptake. Iron accumulation was decreased if the cells were incubated in the presence of weak bases such as chloroquine or ammonium chloride. These results suggest that, following internalisation, the vesicles containing the transferrin and iron became acidified, and that this acidification was a necessary prerequisite for the accumulation of iron by the cell. Further, the results indicate that the intravesicular pH was maintained at the expense of metabolic energy, suggesting that a pump may be involved. The importance of the permeability properties of the vesicle membrane in the iron uptake process was investigated by incubating the cells with labelled transferrin and iron in the presence of different cation and anion ionophores. Irrespective of the normal cation that the ionophores carried, all inhibited iron uptake without altering transferrin levels. In contrast, phloridzin, a Cl- transport inhibitor, did not affect either the levels of transferrin within the cells or the amount of iron accumulated.  相似文献   

14.
The experiments described in this study were designed to investigate receptor-mediated endocytosis of transferrin and its role in iron uptake by cultured chick presumptive myoblasts (dividing and non-dividing) and myotubes. The effects of a variety of inhibitors on the internalization of transferrin and iron were investigated and three main effects were found: (i) sulphydryl reagents and microtubular inhibitors reduced the rate of transferrin and iron internalization to similar degrees, (ii) metabolic inhibitors reduced the rate of iron uptake more than that of transferrin endocytosis, and (iii) lysosomotrophic agents almost completely abolished iron accumulation by the cells without any effect on the rate of transferrin internalization. The results suggest that metabolic energy is required not only for the endocytosis of transferrin but also for subsequent steps in the iron uptake process, and that iron release from transferrin occurs in acidified endosomes. Overall, these experiments show that all or virtually all of the iron taken up by developing muscle cells from transferrin occurs as a consequence of receptor-mediated endocytosis of the protein.  相似文献   

15.
Kinetic analysis of transferrin receptor properties in 6-8 day rat reticulocytes showed the existence of a single class of high-affinity receptors (Kd 3-10 nM), of which 20-25% were located at the cell surface and the remainder within an intracellular pool. Total transferrin receptor cycling time was 3.9 min. These studies examined the effects of various inhibitors on receptor-mediated transferrin iron delivery in order to define critical steps and events necessary to maintain the functional integrity of the pathway. Dansylcadaverine inhibited iron uptake by blocking exocytic release of transferrin and return of receptors to the cell surface, but did not affect transferrin endocytosis; this action served to deplete the surface pool of transferrin receptors, leading to shutdown of iron uptake. Calmidazolium and other putative calmodulin antagonists exerted an identical action on iron uptake and receptor recycling. The inhibitory effects of these agents on receptor recycling were overcome by the timely addition of Ca2+/ionomycin. From correlative analyses of the effects of these and other inhibitors, it was concluded that: (1) dansylcadaverine and calmodulin antagonists inhibit iron uptake by suppression of receptor recycling and exocytic transferrin release, (2) protein kinase C, transglutaminase, protein synthesis and release of transferrin-bound iron are not necessary for the functional integrity of the iron delivery pathway, (3) exocytic transferrin release and concomitant receptor recycling in rat reticulocytes is dependent upon Ca2+/calmodulin, (4) dansylcadaverine, dimethyldansylcadaverine and calmidazolium act on iron uptake by interfering with calmodulin function, and (5) the endocytotic and exocytotic arms of the iron delivery pathway are under separate regulatory control.  相似文献   

16.
Hepatocellular carcinoma cells of the PLC/PRF/5 cell line had 1.9 x 10(5) transferrin receptors per tumor cell with a Kd of 1.5 x 10(-8) M. At high concentrations of transferrin the binding was not saturable. Transferrin internalization by hepatoma cells was shown by time and temperature-dependent binding studies and by pronase experiments. Transferrin recycling was confirmed by the demonstration of a progressive increase in the cellular molar ratios of iron to transferrin and by chase experiments. Ammonium chloride interfered with iron unloading. The vinca alkaloid vincristine inhibited iron and transferrin uptake. The hepatocarcinoma cells appeared to lack asialoglycoprotein receptors and therefore internalized partially desialated transferrin by the regular route. Iron uptake from transferrin was markedly inhibited by the hydrophobic ferrous chelator 2,2' bipyridine but was relatively unaffected by the hydrophilic ferric chelator desferroxamine. The implication that ferrous iron was involved in postendocytic transvesicular membrane iron transport was supported by a study in which hepatoma cells were shown to take up large amounts of ferrous iron suspended in 270 mM sucrose at pH 5.5. The interaction at this pH between surface labeled hepatoma cell extracts and ferrous iron on a Sephacryl S-300 column suggested that the postendocytic transvesicular transport of iron through the membrane was in part protein mediated. The endocytosed iron in hepatoma cells was found in association with ferritin (33%), transferrin (31%) and a low molecular weight fraction (21%).  相似文献   

17.
Methods were developed for obtaining highly viable mouse hepatocytes in single cell suspension and for maintaining the hepatocytes in adherent static culture. The characteristics of transferrin binding and iron uptake into these hepatocytes was investigated. (1) After attachment to culture dishes for 18–24 h hepatocytes displayed an accelerating rate of iron uptake with time. Immediately after isolation mouse hepatocytes in suspension exhibited a linear iron uptake rate of 1.14·105molecules/cell per min in 5 μM transferrin. Iron uptake also increased with increasing transferrin concentration both in suspension and adherent culture. Pinocytosis measured in isolated hepatocytes could account only for 10–20% of the total iron uptake. Iron uptake was completely inhibited at 4°C. (2) A transferrin binding component which saturated at 0.5 μM diferric transferrin was detected. The number of specific, saturable diferric transferrin binding sites on mouse hepatocytes was 4.4·104±1.9·104 for cells in suspension and 6.6·104±2.3·104 for adherent cultured cells. The apparent association constants were 1.23·107 1·mol?1 and 3.4·106 1·mol?1 for suspension and cultured cells respectively. (3) Mouse hepatocytes also displayed a large component of non-saturable transferrin binding sites. This binding increased linearly with transferrin concentration and appeared to contribute to iron uptake in mouse hepatocytes. Assuming that only saturable transferrin binding sites donate iron, the rate of iron uptake is about 2.5 molecules iron/receptor per min at 5 μM transferrin in both suspension and adherent cells and increases to 4 molecules iron/receptor per min at 10 μM transferrin in adherent cultured cells. These rates are considerably greater than the 0.5 molcules/receptor per min observed at 0.5 μM transferrin, the concentration at which the specific transferrin binding sites are fully occupied. The data suggest that either the non-saturable binding component donates some iron or that this component stimulates the saturable component to increase the rate of iron uptake. (4) During incubations at 4°C the majority of the transferrin bound to both saturable and nonsaturable binding sites lost one or more iron atoms. Incubations including 2 mM α,α′-dipyridyl (an Fe11 chelator) decreased the cell associated 59Fe at both 4 and 37°C while completely inhibiting iron uptake within 2–3 min of exposure at 37°C. These observations suggest that most if not all iron is loosened from transferrin upon interaction of transferrin with the hepatocyte membrane. There is also greater sensitivity of 59Fe uptake compared to transferrin binding to pronase digestion, suggesting that an iron acceptor moiety on the cell surface is available to proteolysis.  相似文献   

18.
Release of iron from endosomes is an early step in the transferrin cycle   总被引:1,自引:0,他引:1  
Transferrin bound to K 562 cells at 4 degrees C was internalized quickly on temperature shift to 37 degrees C. Endosomes were isolated according to two different procedures. The endosome fraction was shown to be heterogeneous and consisted of two vesicle populations, differing in density properties and iron content. Iron was partially released from endosomes to the supernatant after 3 and 5 min endocytosis. Isolated endosomes, still capable of internal acidification, did not release iron on incubation with ATP. However, endosomes did release iron on incubation with the iron chelator pyridoxal-isonicotinoyl hydrazone. Gel-filtration of solubilized endosomes demonstrated the presence of the transferrin-transferrin receptor complexes, free transferrin and free low molecular weight iron.  相似文献   

19.
The role of high-affinity specific transferrin receptors and low-affinity, non-saturable processes in the uptake of transferrin and iron by hepatocytes was investigated using fetal and adult rat hepatocytes in primary monolayer culture, rat transferrin, rat serum albumin and a rabbit anti-rat transferrin receptor antibody. The intracellular uptake of transferrin and iron occurred by saturable and non-saturable mechanisms. Treatment of the cells with the antibody almost completely eliminated the saturable uptake of iron but had little effect on the non-saturable process. Addition of albumin to the incubation medium reduced the endocytosis of transferrin by the cells but had no significant effect on the intracellular accumulation of iron. The maximum effect of rat serum albumin was observed at concentrations of 3 mg/ml and above. At a low incubation concentration of transferrin (0.5 microM), the presence of both rat albumin and the antibody decreased the rate of iron uptake by the cells to about 15% of the value found in their absence, but to only 40% when the diferric transferrin concentration was 5 microM. These results confirm that the uptake of transferrin-bound iron by both fetal and adult rat hepatocytes in culture occurs by a specific, receptor-mediated process and a low-affinity, non-saturable process. The low-affinity process increases in relative importance as the iron-transferrin concentration is raised.  相似文献   

20.
The mechanism of transferrin uptake by reticulocytes was investigated using rabbit transferrin labelled with 125I and 59Fe and rabbit reticulocytes which had been treated with trypsin, Pronase or neuraminidase. Low concentrations of the proteolytic enzymes produced a small increase in transferrin and iron uptake by the cells. However, higher concentrations or incubation of the cells with the enzymes for longer periods caused a marked fall in transferrin and iron uptake. This fall was associated with a reduction in the proportion of cellular transferrin which was bound to a cell membrane component solubilized with the non-ionic detergent, Teric 12A9. The effect of trypsin and Pronase on transferrin release from the cells was investigated in the absence and in the presence of N-ethylmaleimide which inhibits the normal process of transferrin release. It was found that only a small proportion of transferrin which had been taken up by reticulocytes at 37 degrees C but nearly all that taken up 4 degrees C was released when the cells were subsequently incubated with trypsin plus N-ethylmaleimide, despite the fact that about 80% of the 59Fe in the cells was released in both instances. Neuraminidase produced no change in transferrin and iron uptake by the cells. These experiments provide evidence that transferrin uptake by reticulocytes requires interaction with a receptor which is protein in nature and that following uptake at 37 degrees C, most of the transferrin is located at a site unavailable to the action of proteolytic enzymes. The results support the hypothesis that transferrin enters reticulocytes by endocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号