首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An enzyme with both inorganic polyphosphate [poly(P)]- and ATP-dependent NAD kinase activities was isolated from Micrococcus flavus. The enzyme was a dimer consisting of 34 kDa subunits, and was named poly(P)/ATP-NAD kinase. Internal amino acid sequences of the enzyme showed homologies with some function-unknown proteins released on the GenBank database. Among such proteins, hypothetical Rv1695 protein (Accession No. Z98268-16), which was encoded by a gene named "Rv1695" on genomic DNA of Mycobacterium tuberculosis H37Rv, was proposed to be poly(P)-dependent NAD kinase. By cloning and expression in Escherichia coli, Rv1695 was shown to encode poly(P)/ATP-NAD kinase and named ppnk. The ppnk product, recombinant-poly(P)/ATP-NAD kinase (Ppnk) was purified and characterized. The enzyme was a tetramaer consisting of 35 kDa subunits when expressed in E. coli. Poly(P)/ATP-NAD kinases of M. flavus and Ppnk of M. tuberculosis H37Rv specifically and completely phosphorylated NAD by utilizing commercially available poly(P)s and nucleoside triphosphates as phosphoryl donors.  相似文献   

2.
NAD kinase was purified to homogeneity from Escherichia coli MG1655. The enzyme was a hexamer consisting of 30 kDa subunits and utilized ATP or other nucleoside triphosphates as phosphoryl donors for the phosphorylation of NAD, most efficiently at pH 7.5 and 60 degrees C. The enzyme could not use inorganic polyphosphates as phosphoryl donors and was designated as ATP-NAD kinase. The N-terminal amino-acid sequence of the purified enzyme was encoded by yfjB, which had been deposited as a gene of unknown function in the E. coli whole genomic DNA sequence database. yfjB was cloned and expressed in E. coli BL21(DE3)pLysS. The purified product (YfjB) showed NAD kinase activity, and was identical to ATP-NAD kinase purified from E. coli MG1655 in molecular structure and other enzymatic properties. The deduced amino-acid sequence of YfjB exhibited homology with that of Mycobacterium tuberculosis inorganic polyphosphate/ATP-NAD kinase [Kawai, S., Mori, S., Mukai, T., Suzuki, S., Hashimoto, W., Takeshi, Y. & Murata, K. (2000) Biochem. Biophys. Res. Commun. 276, 57-63], and those of many hypothetical proteins for which functions have not yet been revealed. The YfjB homologues were considered to be NAD kinases and alignment of their sequences revealed highly conserved regions, XXX-XGGDG-XL and DGXXX-TPTGSTAY, where X represents a hydrophobic amino-acid residue.  相似文献   

3.
RNase E and its complex with other proteins ('degradosome') play an important role in RNA processing and decay in Escherichia coli and in many other bacteria. To identify the proteins which can potentially interact with this enzyme in mycobacteria, Mycobacterium tuberculosis H37Rv RNase E was cloned and expressed as a 6HisFLAG-tagged fusion protein. Analysis of the mycobacterial RNase E overexpressed and purified from M. bovis BCG revealed the presence of GroEL and two other copurified proteins, products of the Mb1721 (inorganic polyphosphate/ATP-NAD kinase) and Mb0825c (acetyltransferase) genes. Identical copies of these two genes can be found in M. tuberculosis H37Rv.  相似文献   

4.
5.
Aim: Inorganic polyphosphate exists as chains of phosphate molecules and is distributed in osteoblasts, and regulates osteoblastic cell differentiation and bone matrix calcification. The purpose of this study was to clarify the effects of inorganic polyphosphate on periodontitis. Material and methods: Subgingival local irrigation with inorganic polyphosphate was studied in a randomised double‐blind study of 33 patients with periodontitis. Scaling and root planing were performed 1 week after the initial examination. Results: No significant differences between the inorganic polyphosphate group and control were detected in each item except IL‐1β. Patients in whom both the bleeding on probing and gingival index at 1 week had improved were significantly older in the inorganic polyphosphate group than in the control group (p < 0.05). Bone regeneration was seen in one case of the inorganic polyphosphate group. Conclusions: Inorganic polyphosphate was useful in the treatment of periodontitis in the elderly, indicating a probable effect of anti‐ageing, with similar bone regenerations occurring in both groups.  相似文献   

6.
7.
BackgroundCalcium signaling plays a key role in the regulation of multiple processes in mammalian mitochondria, from cellular bioenergetics to the induction of stress-induced cell death. While the total concentration of calcium inside the mitochondria can increase by several orders of magnitude, the concentration of bioavailable free calcium in mitochondria is maintained within the micromolar range by the mitochondrial calcium buffering system. This calcium buffering system involves the participation of inorganic phosphate. However, the mechanisms of its function are not yet understood. Specifically, it is not clear how calcium-orthophosphate interactions, which normally lead to formation of insoluble precipitates, are capable to dynamically regulate free calcium concentration. Here we test the hypothesis that inorganic polyphosphate, which is a polymerized form of orthophosphate, is capable to from soluble complexes with calcium, playing a significant role in the regulation of the mitochondrial free calcium concentration.MethodsWe used confocal fluorescence microscopy to measure the relative levels of mitochondrial free calcium in cultured hepatoma cells (HepG2) with variable levels of inorganic polyphosphate (polyP).ResultsThe depletion of polyP leads to the significantly lower levels of mitochondrial free calcium concentration under conditions of pathological calcium overload. These results are coherent with previous observations showing that inorganic polyphosphate (polyP) can inhibit calcium-phosphate precipitation and, thus, increase the amount of free calcium.ConclusionsInorganic polyphosphate plays an important role in the regulation of mitochondrial free calcium, leading to its significant increase.General significanceInorganic polyphosphate is a previously unrecognized integral component of the mitochondrial calcium buffering system.  相似文献   

8.
Polyphosphates, linear polymers of inorganic phosphates linked by phosphoanhydride bonds, are widely present among organisms and play diverse roles in biology, including functioning as potent natural modulators of the human blood clotting system. However, studies of protein-polyphosphate interactions are hampered by a dearth of methods for derivatizing polyphosphate or immobilizing it onto solid supports. We now report that EDAC (1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide) efficiently promotes the covalent attachment of a variety of primary amine-containing labels and probes to the terminal phosphates of polyphosphates via stable phosphoramidate linkages. Using (31)P NMR, we confirmed that EDAC-mediated reactions between primary amines and polyphosphate result in phosphoramidate linkages with the terminal phosphate groups. We show that polyphosphate can be biotinylated, labeled with fluorophores, and immobilized onto solid supports, that immobilized polyphosphate can be readily used to quantify protein binding affinities, that covalently derivatized or immobilized polyphosphate retains its ability to trigger blood clotting, and that derivatizing the ends of polyphosphate with spermidine protects it from exopolyphosphatase degradation. Our findings open up essentially the entire armamentarium of protein chemistry to modifying polyphosphate, which should greatly facilitate studies of its biological roles.  相似文献   

9.
Polyphosphate kinase (ATP:polyphosphate phosphotransferase; EC 2.7.4.1), partially purified from Escherichia coli, has been immobilized on glutaraldehyde-activated aminoethyl cellulose with a 10% retention of enzymatic activity. The immobilized enzyme can carry out the synthesis of ATP from ADP, using long-chain inorganic polyphosphate as a phosphoryl donor. Chromatographic analyses of the product mixture produced from ADP and [32P]polyphosphate demonstrated that 98% of the 32P was incorporated into ATP, indicating that the immobilized polyphosphate kinase is substantially free from contaminating polyphosphate phosphohydrolase (EC 3.6.1.11), adenosine triphosphatase (EC 3.6.1.4), and adenylate kinase (EC 2.7.4.3). Immobilized polyphosphate kinase loses no activity when stored in an aqueous suspension for 2 months at 5 degrees C or for 1-2 weeks at 25 degrees C. It may be stored indefinitely as a lyophilized powder at -10 degrees C. Michaelis constants for ADP and polyphosphate were determined to be 160 and 120 microM, respectively, for the immobilized enzyme. A small-batch reactor was found to produce ATP linearly with time up to 65% conversion of polyphosphate into ATP and to attain greater than 85% conversion to ATP at equilibrium. The ease of purification and immobilization of E. coli polyphosphate kinase, its storage stability, the purity and yield of its ATP product, and the low values of the Michaelis constants for its substrates make it a highly promising enzyme for ATP regeneration.  相似文献   

10.
The Escherichia coli mutant (ppk) lacking the enzyme polyphosphate kinase, which makes long chains of inorganic polyphosphate (poly P), is deficient in functions expressed in the stationary phase of growth. After 2 days of growth in a medium limited in carbon sources, only 7% of the mutants survived compared with nearly 100% of the wild type; the loss in viability of the mutant was even more pronounced in a rich medium. The mutant showed a greater sensitivity to heat, to an oxidant (H2O2), to a redox-cycling agent (menadione), and to an osmotic challenge with 2.5 M NaCl. After a week or so in the stationary phase, mutant survivors were far fewer in number and were replaced by an outgrowth of a small-colony-size variant with a stable genotype and with improved viability and resistance to heat and H2O2; neither polyphosphate kinase nor long-chain poly P was restored. Suppression of the ppk feature of heat sensitivity by extra copies of rpoS, the gene encoding the RNA polymerase sigma factor that regulates some 50 stationary-phase genes, further implicates poly P in promoting survival in the stationary phase.  相似文献   

11.
Reusch RN 《Biochemistry》1999,38(47):15666-15672
The Streptomyces lividans KcsA potassium channel, a homotetramer of 17.6 kDa subunits, was found to contain two nonproteinaceous polymers, namely, poly-(R)-3-hydroxybutyrate (PHB) and inorganic polyphosphate (polyP). PHB and polyP are ubiquitous cellular constituents with a demonstrated capacity for cation selection and transport. PHB was detected in both tetramer and monomer species of KcsA by reaction to anti-PHB IgG on Western blots, and estimated as 28 monomer units of PHB per KcsA tetramer by a chemical assay in which PHB is converted to its unique degradation product, crotonic acid. PolyP was detected in KcsA tetramers, but not in monomers, by metachromatic reaction to o-toluidine blue stain on SDS-PAGE gels. A band of free polyP was also visible, suggesting that polyP is released when tetramers dissociate. The exopolyphosphatase of Saccharomyces cerevisiae degraded the free polyP, but tetramer-associated polyP was not affected, indicating it was inaccessible to the enzyme. PolyP in KcsA was estimated as 15 monomer units per tetramer by an enzymatic assay in which polyphosphate kinase is used to transfer phosphates from polyP to [(14)C]ADP, yielding [(14)C]ATP. The experimentally determined isoelectric point of KcsA tetramer was 6.5-7.5, substantially more acidic than the theoretical pI of 10.3, and consistent with the inclusion of a polyanion. The results suggest that PHB is covalently bound to KcsA subunits while polyP is held within tetramers by ionic forces. It is posited that KcsA protein creates an environment in which PHB/polyP is selective for K(+). The basic amino acids attenuate the negative charge density of polyP, thereby transforming the cation binding preference from multivalent to monovalent, and discrimination between K(+) and Na(+) is accomplished by adjusting the ligand geometry in cation binding cavities formed by PHB and polyP.  相似文献   

12.
Inorganic polyphosphate (poly(P)) is a biological high energy compound presumed to be an ancient energy carrier preceding ATP. Several poly(P)-dependent kinases that use poly(P) as a phosphoryl donor are known to function in bacteria, but crystal structures of these kinases have not been solved. Here we present the crystal structure of bacterial poly(P)/ATP-glucomannokinase, belonging to Gram-positive bacterial glucokinase, complexed with 1 glucose molecule and 2 phosphate molecules at 1.8 A resolution, being the first among poly(P)-dependent kinases and bacterial glucokinases. The poly(P)/ATP-glucomannokinase structure enabled us to understand the structural relationship of bacterial glucokinase to eucaryotic hexokinase and ADP-glucokinase, which has remained a matter of debate. These comparisons also enabled us to propose putative binding sites for phosphoryl groups for ATP and especially for poly(P) and to obtain insights into the evolution of kinase, particularly from primordial poly(P)-specific to ubiquitous ATP-specific proteins.  相似文献   

13.
Polyphosphate metabolism plays an important role in the bioremediation of phosphate contamination in municipal wastewater, and may play a key role in heavy metal tolerance and bioremediation. However, little is known about the regulation of polyphosphate metabolism in microorganisms and its role in heavy metal toxicity. We have manipulated polyphosphate metabolism in Escherichia coli by overexpressing the genes for polyphosphate kinase (ppk) and for polyphosphatase (ppx) under control of their native promoters and inducible promoters. Overexpression of ppk results in high levels of intracellular polyphosphate, improved phosphate uptake, but no increase in tolerance to heavy metals. Overexpression of both ppk and ppx results in lower levels of intracellular polyphosphate, secretion of phosphate from the cell, and increased tolerance to heavy metals. Metabolic flux analysis indicates that the cell responds to increased flux through the PPK-PPX pathway by altering flux through the TCA cycle.  相似文献   

14.
Abstract Cadmium is accumulated in Acinetobacter lwoffi by an active transport process. Growth in synthetic medium is not affected until cadmium concentrations exceed 0.5 μM. Cd uptake is accompanied by release of inorganic phosphate to the medium. 31P-NMR spectra show that the surface polyphosphate pool disappears preferentially in response to Cd.  相似文献   

15.
The ppk gene encodes polyphosphate kinase (PPK), the principal enzyme in many bacteria responsible for the synthesis of inorganic polyphosphate (polyP) from ATP. A null mutation in the ppk gene of six bacterial pathogens renders them greatly impaired in motility on semisolid agar plates; this defect can be corrected by the introduction of ppk gene in trans. In view of the fact that the motility of pathogens is essential to invade and establish systemic infections in host cells, this impairment in motility suggests a crucial and essential role of PPK or polyP in bacterial pathogenesis.  相似文献   

16.
The mechanism of synthesis of inorganic polyphosphate by polyphosphate kinase (EC 2.7.4.1) from Propionibacterium shermanii is shown to be processive. Analysis of the synthesized polyphosphate on polyacrylamide gels, which resolve on the basis of molecular weight, proves that the elongation reaction occurs without dissociation of intermediate sizes of the polymer from the enzyme. As a consequence, only high molecular weight polyphosphates are synthesized. The mechanism is processive both in the presence and absence of basic protein. It has been shown previously that basic proteins stimulate the synthesis of polyphosphate (Robinson, N.A., Goss, N.H., and Wood, H.G. (1984) Biochem. Int. 8, 757-769). In addition, using a similar method, it is shown that the reverse reaction, the utilization of polyphosphate to phosphorylate ADP, occurs by a processive mechanism. Accordingly, polyphosphates formed by polyphosphate kinase in the cell would be entirely high molecular weight.  相似文献   

17.
Polyphosphates and phosphomonoesters are dominant components of marine dissolved organic phosphorus (DOP). Collectively, DOP represents an important nutritional phosphorus (P) source for phytoplankton growth in the ocean, but the contribution of specific DOP sources to microbial community P demand is not fully understood. In a prior study, it was reported that inorganic polyphosphate was not bioavailable to the model diatoms Thalassiosira weissflogii and Thalassiosira pseudonana. However, in this study, we show that the previous finding was a misinterpretation based on a technical artefact of media preparation and that inorganic polyphosphate is actually widely bioavailable to Thalassiosira spp. In fact, orthophosphate, inorganic tripolyphosphate (3polyP), adenosine triphosphate (ATP) and adenosine monophosphate supported equivalent growth rates and final growth yields within each of four strains of Thalassiosira spp. However, enzyme activity assays revealed in all cultures that cell-associated hydrolysis rates of 3polyP were typically more than ~10-fold higher than degradation of ATP and the model phosphomonoester compound 4-methylumbelliferyl phosphate. These results build on prior work, which showed the preferential utilization of polyphosphates in the cell-free exudates of Thalassiosira spp., and suggest that inorganic polyphosphates may be a key bioavailable source of P for marine phytoplankton.  相似文献   

18.
NAD kinase is a key enzyme in NADP biosynthesis. We solved the crystal structure of polyphosphate/ATP-NAD kinase from Mycobacterium tuberculosis (Ppnk) complexed with NAD (Ppnk-NAD) at 2.6A resolution using apo-Ppnk structure solved in this work, and revealed the details of the structure and NAD-binding site. Superimposition of tertiary structures of apo-Ppnk and Ppnk-NAD demonstrated a substantial conformational difference in a loop (Ppnk-flexible loop). As a quaternary structure, these Ppnk structures exhibited tetramer as in solution condition. Notably, the Ppnk-flexible loop was involved in the intersubunit contact and probably related to the NAD-binding of the other subunit. Furthermore, the two residues (Asp189, His226) substantially contributed to creating NAD-binding site on the other subunit. The two residues and the residues involved in NAD-binding were conserved. However, residues corresponding to the Ppnk-flexible loop were not conserved, making us to speculate that the Ppnk-flexible loop may be Ppnk-specific.  相似文献   

19.
Polyphosphate is ubiquitous and has a variety of biochemical functions. Among polyphosphate quantification methods, an enzymatic assay using Escherichia coli polyphosphate kinase (PPK), in which polyphosphate is converted to adenosine 5'-triphosphate and quantified by luciferase assay, is the most specific and most sensitive. However, chain-length specificity of the assay has not been analyzed in detail so far. Ion chromatography equipped with an on-line hydroxide eluent generator enabled us to analyze polyphosphate up to 50 inorganic phosphate (P(i)) residues, and we employed this method to investigate the chain-length specificity of PPK in this study. Several fractions of short-chain polyphosphate were prepared by electrophoresis, and the chain-length distribution was analyzed before and after 1-6 h PPK reaction by ion chromatography. Polyphosphates longer than 23 P(i) residues were processed by PPK completely after 1 h incubation, but complete processing of those between 11 and 22 P(i) residues required 6h incubation. Limited processing of polyphosphates of 10 P(i) residues or shorter were observed even after 6h incubation. Metachromasy of Toluidine blue O, an alternative method for polyphosphate quantification, showed broader chain-length specificity although it was not as sensitive as the enzymatic assay. Combination of these two methods would be practically applicable to analysis of polyphosphate dynamics in living organisms.  相似文献   

20.
The effect of inorganic phosphate on biosynthesis of the polyene antibiotic levorin by Streptomyces levoris was studied. At phosphate concentration of 4.0 mM levorin biosynthesis is repressed by 90%, resulting in an increase of ATP and a condensed inorganic polyphosphates content in the producer cells. At phosphate concentration optimal for levorin production (0.04 mM) the level of intracellular ATP sharply falls by the beginning of the steady-state phase of the producer growth and that of polyphosphates decreases 3-6-fold. The inorganic phosphate exerts different effects on polyphosphate metabolism enzymes, such as polyphosphate: D-glucose-6-phosphotransferase, polyphosphate phosphohydrolase, tripolyphosphate phosphohydrolase, pyrophosphate phosphohydrolase, alkaline and acid phosphatase. The strongest effect of phosphate excess is observed in the case of polyphosphate: D-glucose-6-phosphotransferase, whose activity decreases 2-5-fold. The activity of this enzyme was shown to be correlated with the antibiotic accumulation. The data obtained are indicative of interrelationship between the polyphosphate metabolism and levorin biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号