首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The dense vacuoles, considered to be the classic Golgi apparatus in the root meristem ofFagopyrum, were studied by the following methods: 1. Impregnation methods for the demonstration of the Golgi apparatus, 2. cytochemical methods, 3. electron microscopic methods in the light microscope and 4. the electron microscope. A comparison was made with the classic Golgi apparatus in animal cells in the light and electron microscope. Dense vacuoles inFagopyrum and also evidently in other plants, were taken for the classic Golgi apparatus on account of their morphological similarity to the Golgi apparatus in animal cells on impregnation with silver and osmium and their staining preperties with lipoid methods. Dense vacuoles differ from the classic Golgi apparatus in other chemical properties, such as content of phenol substances, etc. No formations were found in animal cells which were similar to dense vacuoles on investigating by electron microscopy. In the electron microscope dense vacuoles have the appearance of derivatives of the normal light vacuoles known in plant cells. They therefore belong to vacuome of plant cell and cannot be analogous to the classic Golgi apparatus in animal cells. Thus the use of the term Golgi apparatus for dense vacuoles is not well founded. A comparison was made of fixation and impregnation used in the light microscope with fixation in the electron microscope. After fixation with permanganate, dense vacuoles have the same shape as after impregnation. After fixation with permanganate, they stain an intense black in the same way as after impregnation with silver and osmium. The form of the vacuoles is dependent on the fixation used. The comparison was made in the light microscope.  相似文献   

2.
Comparison with the findings in the cells of other plants and animals showed that the endoplasmic reticulum in the root apex ofFagopyrum has the same general character and function as in other biological objects, i.e. in secretory processes and especially in this case in the transport of the substances produced. Detailed studies of the morphology and activity of the endoplasmic reticulum showed some functional differences which are characteristic for this object. The endoplasmic reticulum participates apparently in the transport of the mass of known but functionally and nomenclatorically controversial formations which here are called dense bodies. Dense bodies exist inFagopyrum in a considerable amount as compared to other objects. Frequent contact of the dense bodies with the ends of the endoplasmic reticulum, contact with the endoplasmic retieulum passing through the plasmodesm, accumulation of the dense bodies along the cell wall and in proximal distance of the plasmodesms and intensive staining of some plasmodesms was observed. The dense vacuoles in this object represent dilated spaces of the endoplasmic reticulum which apparently have the function of reservoirs of the dense mass. The endoplasmic reticulum in the calyptra cells appears to participate in the formation of the cell walls. This object differs hereby from others, where the participation of the Golgi apparatus has been observed in this function.  相似文献   

3.
The polymorphism of the dictyosomes in the root meristeme ofFagopyrum is connected with their various functions in secretory processes and cell differentiation. The dictyosomes containing vesicular dilatations of the cisternae, which in this object occur more frequently than in others, probably participate in a similar way as the Golgi apparatus of the animal cell in the formation of lysozomes, in the formation of elements belonging to the group of dense bodies analogical lysozomes. These bodies are present in large numbers in the cytoplasm of cells, containing dictyosomes with vesicular dilatations. The other forms of the dictyosomes reveal indications of their participation in the production of the carbohydrate material of the cell walls, like most dictyosomes of other plant objects. However, no fusion of the Golgi vesicles with the plasmalemma was observed. According to their morphological appearance the typical forms of dictyosomes were classified on the basis of their relationship to secretory processes. Simultaneously the morphology and function of the Golgi apparatus was compared in the animal and plant cell. Several morphological varieties of the dictyosomes of plant cells, observed after the action of pathogenic factors and the effect of the fixation procedures, were also noticed in small quantities in the cells of the investigated objects.  相似文献   

4.
The rat ganglion nodosum was used to study chromatolysis following axon section. After fixation by aldehyde perfusion, frozen sections were incubated for enzyme activities used as markers for cytoplasmic organelles as follows: acid phosphatase for lysosomes and GERL (a Golgi-related region of smooth endoplasmic reticulum from which lysosomes appear to develop) (31–33); inosine diphosphatase for endoplasmic reticulum and Golgi apparatus; thiamine pyrophosphatase for Golgi apparatus; acetycholinesterase for Nissl substance (endoplasmic reticulum); NADH-tetra-Nitro BT reductase for mitochondria. All but the mitochondrial enzyme were studied by electron microscopy as well as light microscopy. In chromatolytic perikarya there occur disruption of the rough endoplasmic reticulum in the center of the cell and segregation of the remainder to the cell periphery. Golgi apparatus, GERL, mitochondria and lysosomes accumulate in the central region of the cell. GERL is prominent in both normal and operated perikarya. Electron microscopic images suggest that its smooth endoplasmic reticulum produces a variety of lysosomes in several ways: (a) coated vesicles that separate from the reticulum; (b) dense bodies that arise from focal areas dilated with granular or membranous material; (c) "multivesicular bodies" in which vesicles and other material are sequestered; (d) autophagic vacuoles containing endoplasmic reticulum and ribosomes, presumably derived from the Nissl material, and mitochondria. The number of autophagic vacuoles increases following operation.  相似文献   

5.
Summary The intracellular location of a variety of enzymes was studied in Amoeba proteus with the use of electron microscopic cytochemical methods, in an attempt to assess the relationships between different membranous organelles. One group of enzymes, including nucleoside diphosphatases (IDPase, UDPase, GDPase, ADPase), carbamoyl phosphatase, alkaline phosphatase, and BAXD oxidase was localized mainly in the rough endoplasmic reticulum, nuclear envelope, and convex side of the Golgi apparatus. Esterase activity had a similar localization except that the Golgi apparatus was "stained" throughout most of its extent. A second group of enzymes was found in Golgi cisternae and vesicles, and in some vacuoles. This group included acid phosphatase, thiamine pyrophosphatase, and aryl sulfatase. Some enzymes previously detected in cytoplasmic membranes of other cells, including glucose-6-phosphatase, showed little or no activity in amoebae. The results suggest that there are chemical similarities and probable functional relationships between the rough endoplasmic reticulum, the nuclear envelope, and the convex side of the Golgi apparatus. On the other hand, the concave pole of the Golgi apparatus, aggregates of smooth tubules and vesicles, and the cell surface appear more closely related to one another than to the endoplasmic reticulum and the convex side of the Golgi apparatus. The cytochemical similarity between the Golgi apparatus and certain vacuoles such as food vacuoles may reflect the role of the Golgi apparatus in the formation of lysosomes. The locations of reaction products of the various enzymes in amoebae are compared with observations reported for other cell types.Supported by a research grant (VC-169) from the American Cancer SocietyThe author is indebted for technical assistance to Mrs. Sue Thompson and Mrs. Christine Folsom-Kovarik  相似文献   

6.
R. Bergfeld  T. Kühnl  P. Schopfer 《Planta》1980,148(2):146-156
An electron microscopic investigation of fine structural changes in post-meristematic cotyledon mesophyll cells during the period of storage protein accumulation (16–32 d after pollination) showed that the rough ER, the Golgi apparatus and the developing vacuome are intimately involved in the formation of storage protein bodies (aleurone bodies). At the onset of storage protein accumulation (16–18 d after pollination) storage protein-like material appears within Golgi vesicles and preformed vacuoles. At a later stage (24 d after pollination) similar material can also be detected within vesicles formed directly by the rough endoplasmic reticulum (ER). It is concluded that there are two routes for storage protein transport from its site of synthesis at the ER to its site of accumulation in the vacuome. The first route involves the participation of dictyosomes while the second route bypasses the Golgi apparatus. It appears that the normal pathways of membrane flow in the development of central vacuoles in post-meristematic cells are used to deposit the storage protein within the protein bodies. Thus, the protein body can be regarded as a transient stage in the process of vacuome development of these storage cells.Abbreviation ER endoplasmic reticulum  相似文献   

7.
Investigation of a possibility of long-term storage of frozen (-196 degrees C) viable neurons and nervous tissue is one of the central present day problems. In this study ultrastructural changes in neurons of frozen-thawed snail brain were examined as a function of time. We studied the influence of cryopreservation, cryoprotectant (Me2SO), cooling to 4-6 degrees C, and a prolonged incubation in physiological solution at 4-6 degrees C on dictyosomes of Golgi apparatus, endoplasmic reticulum (ER) cisternae and mitochondria. It has been found that responses of these intracellular structures of cryopreserved neurons to the above influences are similar: dissociation of Golgi dictyosomes, swelling of endoplasmic reticulum cisternae and mitochondrial cristae. Both freezing-thawing and cryoprotectant were seen to cause an increase in the number of lysosomes, liposomes, myelin-like structures, and to form large vacuoles. The structural changes in molluscan neurons caused by cryopreservation with Me2SO (2 M) were reversible.  相似文献   

8.
Summary The cells comprising the neural gland in the ascidians Ciona, Styela, and Botryllus have been examined for their fine structural features and enzyme cytochemistry. The gland cells are either cuboidal or irregular in outline. They are full of small vesicles, of which some are pinocytotic, as well as larger vacuoles; they become increasingly vacuolated as their shape decreases in regularity. At the same time, glycogen deposits accumulate and the cisternae of the endoplasmic reticulum become distended. Some of the vacuoles contain an electron dense material or a fibrillar substance, but the cells contain no obvious electron opaque secretory granules associated with an extensive Golgi complex such as occur in the vertebrate adenohypophysis.Acid phosphatase is localized in some of the vesicles and vacuoles, indicating that they are a kind of lysosome, the latter possibly representing autophagic vacuoles. Thiamine pyrophosphatase is also found in many vacuoles as well as in the saccules of the Golgi apparatus which in these cells is in the form of dictyosomes.The results suggest a developmental cycle of increasing cytoplasmic vacuolation, ultimately leading to a breakdown and release of the vacuolar products. The significance of these observations is considered, particularly with respect to the hypothesis that the gland represents the ascidian equivalent of the vertebrate pituitary.I am grateful to Miss Yvonne R. Carter for technical assistance with the photography and to Mr. John Rodford for producing the diagram.  相似文献   

9.
Summary Endoplasmic reticulum-polyribosome-Golgi apparatus associations were a general feature of cells of suspension cultures of wild carrot (Daucus carota L.). Free polyribosomes occurred within the Golgi apparatus zone for all dictyosomes and with equal frequency at all levels within the stack including the most mature or trans face. When evaluated and quantified from electron micrographs, approximately 60% of the dictyosome profiles were characterized by a system of transition elements consisting of part smooth-part rough endoplasmic reticulum. These were encountered most frequently in the immediate vicinity of the immature, forming or cis face, usually toward the periphery of the stacked cisternae. Analysis of serial sections showed that those dictyosome profiles not exhibiting this characteristic did so primarily because of an unfavorable plane of sectioning. All dictyosomes examined in 5 or more serial sections revealed some type of close association with endoplasmic reticulum. Some of the associations were so close that direct connections between Golgi apparatus and endoplasmic reticulum tubules could not be excluded. Also present, especially at the forming or cis face, were small 600 nm transition vesicles with nap-like surface coats on nearly 90% of the dictyosomes examined. More than 50% exhibited spiny (clathrin-)coated vesicles at the mature or trans face.  相似文献   

10.
K. Hausmann 《Protoplasma》1977,92(3-4):263-268
Summary During the logarithmic growth of the ciliatePseudomicrothorax dubius associations between mitochondria, rough endoplasmic reticulum and dictyosomes have been observed. The Golgi apparatus is very active and it is suggested that, as a consequence of cytotic activity, the contents of the Golgi vesicles become incorporated into large irregular vacuoles as globular material. The large vacuoles develop into trichocysts and the dictyosome derived globules consolidate to ultimately form the rod-like arms of the trichocysts of theMicrothoracidae.  相似文献   

11.
 In this study, megasporogenesis of the plant model Arabidopsis thaliana was investigated by electron microscopy for the first time. The data described here could constitute a reference for future investigations of Arabidopsis mutants. During the beginning of meiosis the megaspore mother cell shows a polarity created by unequal distribution of organelles in the cytoplasm. Plastids accumulate in the chalazal region and long parallel saccules of endoplasmic reticulum, small vacuoles and some dictyosomes are found in the micropylar region. Plasmodesmata are abundant in the chalazal cell wall. The nucleus is almost centrally localized and contains a prominent excentric nucleolus and numerous typical synaptonemal complexes. After the second division of meiosis the four megaspores are separated by thin cell walls crossed by numerous plasmodesmata and do not show significant cellular organization. The young functional megaspore is characterized by a large nucleus and a large granular nucleolus. The cytoplasm is very electron dense due to the abundance of free ribosomes and contains the following randomly distributed organelles: mitochondria, a few short saccules of endoplasmic reticulum, dictyosomes and undifferentiated plastids. However, there is no apparent polarity, except for the distribution of some small vacuoles which are more abundant in the micropylar region of the cell. The degenerating megaspores are extremely electron dense and do not show any substructure. Received: 30 July 1998 / Revision accepted: 3 February 1999  相似文献   

12.
Summary Electron microscopic observations have been made of the two epithelial cell types, light barrel-shaped and dark rod-shaped cells in the gall bladder of the mouse.The light cells have a voluminous cytoplasm of low electron opacity in which cell organelles such as mitochondria, elements of granular endoplasmic reticulum, and free ribosomes undergo more or less degenerative changes. However, there are a relatively abundant Golgi apparatus and numerous lysosomal dense bodies. The ultrastructural features of the light cells suggest that they are an aged, degenerative cell type with declining functional activity and a high degree of hydration.The dark cells are characterized by a high concentration of mitochondria and free ribosomes, more or less distinctive elements of granular endoplasmic reticulum, and well developed components of the Golgi apparatus. Such ultrastructural characteristics indicate that the dark cell type has a high synthetic activity.What has been observed in the present study can well be correlated with the results of previous studies on the same cells by methods of light microscopic histochemistry.  相似文献   

13.
The author of this paper has attempted to clarify some problems concerning the nomenclature of Golgi apparatus and Golgi zone. The actual aim of this paper is to summarize — while using the more safe nomenclature—the existing knowledge about the functional relations between nucleus and cytoplasm arising from the study of the juxtanuclear zone by electron microscopy. Some observations lead to the assumption that the juxtanuclear zone is the place where cell components are formed or transformed. Considering its temporary character in proliferating cells and taking into account the connections with endoplasmic reticulum and the presence of pores, the nuclear membrane remains apparently a barrier restraining the spontaneous movement of substances and of cell components respectively between cytoplasm and karyoplasm that can be seen e.g. in the grouping of cytoplasmic formations in the juxtanuclear zone. In plant cells, within the zone mentioned agglomerations of different cell formations have been found, either the Golgi apparatus or mitochondria, secretion granules, lipid inclusions, vacuoles or plastids. Such a gathering of cytoplasmic material has been observed especially in young embryonic cells or in cells with retarded or stopped metabolism. The older and/or intensively active cells would then absolve an expansion of the cytoplasmic material into the whole cell. Similar formative mechanisms, now available for study during some ontogenic phases or at definite functional states only, could be effective even in the course of phylogenesis. From this point of view some of the formations described could be regarded as a kind of atavisms.  相似文献   

14.
The Reuber hepatoma H-35 and Morris hepatoma 5123 have been studied by electron microscopy and by cytochemical staining methods for a number of phosphatases. These studies emphasize the resemblances of the two tumors to rat liver, but they also indicate distinctive features in each of the three tissues. Secretory product accumulates within the cisternae of the Golgi apparatus that dilate to form the Golgi vacuoles. The vacuoles apparently separate, and secretory material undergoes further condensation within them. These "secretory vacuoles" possess acid phosphatase activity and may thus be considered lysosomes. The membranes of the Golgi apparatus are without acid phosphatase activity but show high levels of thiaminepyrophosphatase activity. The endoplasmic reticulum also hydrolyzes thiaminepyrophosphate but at a lower rate; it hydrolyzes the diphosphates of uridine, guanosine, and inosine rapidly. These observations and the electron microscopic images are consistent with the view that the cytomembranes are in a dynamic state of flux, movement, and transformation in the living cell, and that smooth surfaced derivatives of the endoplasmic reticulum become refashioned into the Golgi membranes as the Golgi membranes are being refashioned into those that delimit secretory vacuoles. The variations encountered in the two hepatomas are described. The electron microscope literature dealing with the relations of the Golgi apparatus to secretory granules, on the one hand, and the endoplasmic reticulum, on the other, is reviewed briefly.  相似文献   

15.
Brefeldin A (BFA), a fungal fatty acid derivative, is a potentagent for disrupting the Golgi apparatus in plant and animalcells. We have examined its action using marker antibodies whichrecognize an epitope in the plant Golgi apparatus (JIM 84),and for proteins held in the endoplasmic reticulum by the HDELER-retention signal (2E7), in combination with double immunolabelling.In maize root cells, disruption of the ER occurs after breakdownof the Golgi apparatus is initiated. The redistribution of theGolgi is shown to be predominantly separate from that of theER, and as with the Golgi, the action of BFA on the ER is alsoreversible. The mode of action of BFA on the ER and Golgi ofplant cells is compared with that described for animal cells. Key words: Zea mays L, Brefeldin A, plant cells, endoplasmic reticulum, Golgi apparatus  相似文献   

16.
H. Lehmann  D. Schulz 《Planta》1969,85(4):313-325
Summary In meristematic cells of the gemma of Riella helicophylla and in young bud cells from the protonema of Funaria hygrometrica the cell plate is formed by fusion of small vesicles originating from the Golgi apparatus. These spherical vesicles of about 0.1 m diameter have an electron dense centre, probably consisting of pectic substances or their precursors. The endoplasmic reticulum producing multivesicular bodies participate in cell plate formation too. Another cytoplasmic component forming the cell plate are coated vesicles, the origin of which is the Golgi apparatus and perhaps also the endoplasmic reticulum. In view of these observations the question of whether the endoplasmic reticulum or the Golgi apparatus forms the cell plate must be answered in this way: both endoplasmic reticulum and Golgi apparatus supply material for growth of the cell plate. Multivesicular bodies, coated vesicles and other small vesicles of unknown nature participate in the formation of the primary wall.

Zum Teil finanziert mit Sondermitteln des Landes Niedersachsen an Prof. Dr. M. Bopp.  相似文献   

17.
Abstract. Endosperm tissue from developing grains of a line of wheat ( Triticum dicoccoides ) which accumulates up to 30% protein in the mature grain, was examined by electron microscopy to establish the ontogeny of the storage protein bodies. Ultrastructural evidence suggests that storage proteins of wheat may be transported from their site of synthesis on the rough endoplasmic reticulum (ER) to protein bodies by two different routes within the endomembrane system. The first route, which probably functions throughout protein deposition, involves the transport of protein from the cisternal rough ER to the protein vacuoles via the Golgi apparatus. The second route, observed 20 d after anthesis, appears to lead directly from dilated regions of the rough ER to protein vacuoles, bypassing the dictyosomes. Phytin inclusions are found in protein vacuoles of starchy endosperm cells adjacent to the aleurone layer of developing grain.  相似文献   

18.
Immunoreaction of alpha-fetoprotein (AFP) was detected not only in well-differentiated hepatocellular carcinoma but also in hepatocytes forming foci in livers with hyperplastic nodules during 3'-methyl-4-dimethylaminoazobenzene hepatocarcinogenesis. The subcellular location of AFP in hepatoma cells was in the rough endoplasmic reticulum, perinuclear space and well-developed Golgi apparatus around the nucleus. In livers with hyperplastic nodules it was also in some parts of the smooth endoplasmic reticulum and Golgi regions in hepatocytes in the vicinity of submembranous areas or bile canaliculi. These findings suggest that the Golgi apparatus in hepatoma cells acts mainly as an organelle for glycosylation of AFP and that the Golgi complexes in the hepatocytes in livers with hyperplastic nodules are organelles for secretion of AFP. Combined light microscopic immunoperoxidase study and autoradiography with 3H-thymidine revealed a higher cumulative labeling index in AFP-positive hepatoma cells than in non-tumorous areas. Combined electron microscopic immunoperoxidase study and autoradiography showed that hepatoma cells with AFP immunoreactivity only in the rough endoplasmic reticulum had a significantly higher labeling index than did cells with AFP immunoreactivity in both rough endoplasmic reticulum and Golgi apparatus. These findings suggest that AFP is synthesized in hepatoma cells before or during the stage of their DNA synthesis and is then transported to the Golgi apparatus.  相似文献   

19.
Electron microscopic studies showed that the trans-Golgi network (trans indicates the polarity of cisternae within the Golgi apparatus; it is opposite to the cis-face that is adjacent to the rough endoplasmic reticulum) was involved in the processing of the osmiophilic material present in the appendix of the inflorescence of Sauromatum guttatum. This material accumulated in the rough endoplasmic reticulum and in special pockets of the plasma membrane prior to heat production. Associations between the endoplasmic reticulum and trans-Golgi network were observed. The Golgi apparatus was composed of 5–6 dictyosomes on one side and one or two somewhat detached cisternae on the other side. Various nonosmiophilic Golgi-derived vesicles were observed: small ones covered with spike-like material, large ones with a smooth surface, and irregularly shaped ones. These electron-translucent vesicles seemed to accumulate in specific localities at the plasma membrane surface in the vicinity of the osmiophilic material; they were not found when the aroma was released. During heat production, the Golgi structures shrank and the activity of the trans-Golgi network seemed to be reduced. At the same time, coated pits were seen at the plasma membrane surface. In some cells, hypertrophic Golgi apparatuses were seen with only 2–3 dictyosomes that contained granulated material in their lumens. Finally, the osmiophilic material was also found in the plasmodesmata.  相似文献   

20.
SYNOPSIS. The distribution of acid phosphatase was investigated at the ultrastructural level in Paramecium caudatum. Acid phosphatase occurs in endoplasmic reticulum, Golgi apparatus, food vacuoles, autophagic vesicles, vacuolar and dense bodies. Some slight deposits are also seen in the mitochondria.
These observations point out that this hydrolase activity is related to digestive processes. The enzyme, originating from the endoplasmic reticulum and Golgi apparatus reaches the food vacuole or autophagic vesicle likely via the reticulum. The digestion of the bacteria or of the enclosed organelle gives rise to electronopaque material which is later found in dense bodies. These dense bodies are likely secondary lysosomes and it is possible that they may fuse with the young food vacuole or with autophagic vesicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号