首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previously 'frozen' Tulipa gesneriana L. bulbs cv. Apeldoorn, were planted and grown at higher temperatures to study the role of invertase (EC 3.2.1.26) in the cold-induced elongation of the flower stalk internodes. After planting, flower stalks were left intact, or, the leaves and flower bud were both removed to inhibit internode elongation. In intact flower stalks, elongation of the internodes was accompanied by an accumulation of glucose and an initial decrease in the sucrose content g,−1 dry weight. Insoluble invertase activity g,−1 dry weight hardly changed, but soluble invertase activity showed a peak pattern, that was related, at least for the greater part, to the changes in the sugar contents. Peak activities of soluble invertase were found during (lower- and uppermost internodes) or around the onset of the rapid phase of internode elongation (middle internodes). Internode elongation and glucose accumulation immediately ceased when the leaves and flower bud were removed. Insoluble invertase activity g,−1 dry weight remained at its initial level (lowermost internode) or increased more towards the upper internodes. Soluble invertase activity did not further increase (uppermost internode) or decreased abruptly to a low level. It is concluded that soluble invertase may be one of the factors contributing to glucose accumulation and internode elongation in the tulip flower stalk.  相似文献   

2.
Hartt CE 《Plant physiology》1970,46(3):419-422
Withholding nitrogen decreased the percentages of nitrogen and chlorophyll in the blades; reduced the total fixation of radioactive carbon dioxide at 15, 37, and 178 seconds; and changed the relative composition of fixation products. Translocation of radioactive photosynthate from the fed part down the attached blade and into the stalk was less in the plants deprived of nitrogen than in the control plants supplied with nitrogen. Both the percentage of total activity translocated and the velocity of transport were decreased by nitrogen deficiency. During a translocation period of 90 minutes the minus nitrogen blade retained more 14C-sucrose than the control in the fed part and the blade below the fed part, but it sent less 14C-sucrose to the sheath of the fed leaf. Thus translocation decreased with nitrogen deficiency not for lack of sucrose but for some other reason. Although withholding nitrogen decreased translocation of labeled carbon in and from attached blades, there was no effect upon transport in detached blades. The effect of nitrogen deficiency upon translocation may be indirect and secondary to the effect upon growth of the plant as a whole.  相似文献   

3.
EAGLES  C. F. 《Annals of botany》1974,38(1):53-62
Diurnal fluctuations in dry matter accumulation and leaf extensionof seedlings of Dactylis glomerata were followed through a 16-hlight period and a subsequent 8-h dark period at 20 °C.Themeasured increase in dry weight during the light period andthe decrease during the dark period showed a very good agreementwith calculated dry weight changes derived from the rates ofcarbon dioxide exchange of whole seedlings. Although dry weightof the leaf blades decreased during the dark period, leaf expansioncontinued throughout the 24-h period with associated changesin the ratio of fresh weight to dry weight of the leaf blades.  相似文献   

4.
The relationships between photosynthetic capacity and dry matter accumulation during the grain filling period have been studied in flag leaves of Triticum aestivum L., cv. Kolibri grown in Mediterranean field conditions. Particular importance has been given to assimilate accumulation in relation to the onset of senescence. During grain filling, the time course of specific dry weight (SDW) was similar in the blade and in the sheath. Variations in SDW were about six times larger in the sheath than in the blade. Minimum blade SDW values occurred during heading and at anthesis. Maximum blade SDW values were observed two weeks after anthesis. After this, SDW values decreased sharply. The dry matter increase per grain in the period from two weeks after anthesis to the end, was only about 25% of final grain dry weight. The importance of environmental constraints on maximum SDW values are discussed. Maximum SDW values occurred at the beginning of the period of rapid decline in blade net CO2 assimilation rate and leaf nitrogen content, that is, at the beginning of senescence. On the other hand, the stomatal resistance to CO2 and the development of senescence are not apparently related. The maximum blade dry weight increase (considering a value of zero at heading) was about 60 mg dry weight per g fresh weight. The possible relationships between dry matter accumulation and senescence onset are discussed.  相似文献   

5.
The Production and Distribution of Dry Matter in Maize after Flowering   总被引:3,自引:0,他引:3  
An experiment in which different groups of leaf laminae wereremoved, or ears shaded, shortly after silking showed that mostof the dry-matter increase after flowering was produced by upperleaves. The top five, the middle four, and the bottom six laminaeaccounted, respectively, for 26 per cent, 42 per cent, and 32per cent of the leaf area duration (D) of the laminae afterflowering; the estimated contributions of the three groups todry-matter production by the laminae after flowering were about40 per cent, 35–50 per cent, and 5–25 per cent,respectively. The sheaths provided about one-fifth of the totalleaf area and probably contributed about one-fifth, and laminaefour-fifths, of the total dry matter produced after flowering.The contribution from photosynthesis by the ear was negligible,presumably because its surface area was only 2 per cent of thatof the leaves. Leaf efficiency (dry matter produced per unitarea) decreased greatly from the top to the base of the shoot.When laminae were removed, the grain received a larger fractionof the dry matter accumulated after flowering, less dry matterremained in the stem, and the photosynthetic efficiency of theremaining leaves was apparently increased. When alternate laminae were removed at the time of silking (half-defoliation)D was decreased by 40 per cent, and the subsequent productionof dry matter decreased nearly proportionately, so that netassimilation rate (E) was not affected but grain dry weightwas decreased by only 32 per cent. At the final harvest, thegrain of half-defoliated plants constituted 80 per cent of thedry matter accumulated after flowering, compared with 65 percent for intact plants. Stem weight decreased from two weeksafter flowering in half-defoliated plants, but remained nearlyconstant in intact plants. When pollination was prevented andno grains formed, E during the first month after flowering wasunaffected; the dry matter that would have passed into the grainaccumulated in the stem and husks, not in the leaves. The decrease in stem weight caused by defoliation suggests thatpreviously stored dry matter was moved to the grain. That suchmovement is possible was shown by keeping prematurely harvestedshoots in the dark for two weeks with their cut ends in water;the dry weight of the grain increased and that of the stem,laminae, husks, and core decreased. Nevertheless, dry-matterproduction after flowering was more than sufficient for graingrowth, and previous photosynthesis probably contributed littleto the grain.  相似文献   

6.
The effect of a cold treatment on the carbohydrate status of the scales and flower stalk of Tulipa gesneriana L. cv Apeldoorn bulbs during growth after planting was studied and compared with bulbs not given cold treatment. Bulbs were stored dry for 12 weeks at 5[deg]C (precooled) or 17[deg]C (noncooled). Only the 5[deg]C treatment led to rapid flower stalk elongation and flowering following planting at higher temperatures. Precooling enhanced mobilization of starch, fructans, and sucrose in the scales. The cold-stimulated starch breakdown was initially accompanied by increased [alpha]-amylase activity per scale. In noncooled bulbs, [alpha]-amylase activity slightly decreased or remained more or less constant. Cold-induced flower stalk elongation was partially accompanied by a decrease in the sucrose content and an increase in the glucose content and invertase activity per g dry weight. The starch content in internodes initially decreased and subsequently increased; [alpha]-amylase activity per g dry weight of the lowermost internode showed a peak pattern during starch breakdown and increased thereafter. The internodes of noncooled bulbs, on the contrary, accumulated sucrose. Their glucose content and invertase activity per g dry weight remained low. Starch breakdown was not found and [alpha]-amylase activity per g dry weight of the lowermost internode remained at a low level. Precooling of tulip bulbs thus favors reserve mobilization in the scales and flower stalk and glucose accumulation in the elongating internodes.  相似文献   

7.
Silicon (Si) accumulation in organs and cells is one of the most prominent characteristics of plants of the family Poaceae. Many species from this family are used as forage plants for animal feeding. The present study investigates in Brachiaria brizantha (Hochst. ex A. Rich.) Stapf. cv. Marandu: (1) the dry matter production and Si content in shoot due to soil Si fertilizations; (2) the Si distribution among shoot parts; and (3) the silica deposition and localization in leaves. Plants of B. brizantha cv. Marandu were grown under contrasting Si supplies in soil and nutrient solution. Silica deposition and distribution in grass leaf blades were observed using light microscope and scanning electron microscope equipped with an energy dispersive X-ray spectrometer (SEM-EDXS). Silicon concentration in the B. brizantha shoot increased according to the Si supply. Silicon in grass leaves decreased following the order: mature leaf blades > recently expanded leaf blades > non-expanded leaf blades. Silicon accumulates mainly on the upper (adaxial) epidermis of the grass leaf blades and, especially, on the bulliform cells. The Si distribution on adaxial leaf blade surface is non uniform and reflects a silica deposition exclusively on the cell wall of bulliform cells.  相似文献   

8.
Resistance in sugarcane [Saccharum spec. (Poaceae)] to the spotted stalk borer, Chilo sacchariphagus (Bojer) (Lepidoptera: Pyralidae), was studied by comparing feeding behaviour on resistant cv. R570 and susceptible cv. R579. In a field survey, the feeding behaviour of C. sacchariphagus larvae was described to identify their feeding sites on the plant. In a greenhouse artificial infestation study, we compared the establishment of larvae on potted plants. In laboratory choice and no‐choice experiments, we studied the establishment of larvae on plant organs (stalk, sheath, leaf spindle). Study of the feeding behaviour showed that: (1) first to fourth instars are able to feed on stalk, sheath, and leaf spindle, (2) boring into the stalk occurs mostly in the four uppermost internodes, and (3) most young larvae bore through the abaxial surface of leaf sheaths to reach the stalk. In greenhouse experiments, we observed an early two‐fold reduction of the number of larvae on R570 plants within the first 48 h after infestation. In laboratory experiments, larval antixenosis was demonstrated at the abaxial surface of R570 leaf sheath, but was observed neither in the leaf spindle nor in the stalk. First, second, and third instars were susceptible to this antixenosis. We hypothesize that the main resistance mechanism in R570 is an early reduction of larval establishment on plants, due to antixenosis located at the abaxial surface of leaf sheaths.  相似文献   

9.
The objectives of this study were to determine the effect of light enhancement and hastened reproductive development on nitrogen and dry matter accumulation by field-grown soybean (Glycine max [L.] Merr.). The impacts of photosynthate supply and reproductive development on change in the season-long profiles of in vivo leaf nitrate reductase (NR) activity and root nodule acetylene reduction (AR) activity were evaluated.

Light enhancement resulted in significant increases in dry matter accumulation, root nodule fresh weight and AR activity. Seed yield was increased in both light enhanced treatments in 1978 and in one in 1979.

Hastened flowering and seed development was accomplished through photoperiod manipulation within a single genotype. Seasonal decline in leaf NR activity was most rapid in plants entering reproductive development early. An early increase in root nodule fresh weight and AR activity was also observed in response to this treatment and was followed similarly by early decline.

The addition of high levels of soil-applied nitrogen increased leaf NR activity and delayed late season decline in NR activity for both control and early reproductive plants. Nitrate supply was therefore implicated as limiting to leaf NR activity during the decline associated with flowering and early seed development. A limited additional increase in leaf NR activity was observed in response to light enhancement plus soil-applied nitrogen. As no significant increase in leaf NR activity was observed in response to light enhancement alone, leaf nitrate supply was further implicated as more limiting to leaf NR activity than was photosynthate supply during flowering and early seed development.

  相似文献   

10.
Abiotic stress is recurrent occurring problem for sugarcane crop in terms of hindrance in achieving good and high production. In India, drought coverage is 2.97 lakh ha while 2.5 lakh ha under coverage of waterlogging which is one of the reasons behind low cane production and productivity due to alteration in metabolism, growth and development of the plant either in direct or indirect way. Therefore, we investigated the comparison of morphological losses in drought and waterlogging sugarcanes. Morphological parameters assessed were leaf length, leaf width, leaf area, stalk diameter, cane height, cane weight, internodes number and average internodal length. Also, total root weight, dry matter production of stalk, leaves and roots were observed. Results showed that leaf length was marginally increased in drought canes but it was not so in case of waterlogged canes. Besides, there was decrease in total root weight of sugarcane affected by drought by 16.99% while there was increase by 10.06% in waterlogging affected canes in comparison to normal grown canes. In cane height and stalk diameter, decrease by 18.28%, 7.52%, respectively, in drought and 11.41%, marginal decrease, respectively, in waterlogged affected canes as compared to normally grown canes. Average internodal length was also found to increase in both drought as well as waterlogged canes by 39.02% and 36.60%, respectively, in comparison to normal grown canes. Number of internodes was decreased more in drought affected canes than in waterlogged canes. This study concluded that there are higher morphological losses in sugarcane in drought condition than in waterlogging conditions with respect to normal grown canes.  相似文献   

11.
In vitro responses can be influenced by the developmental status of the donor plant tissue. The effects of the donor plant photoperiod and the developmental stage of the plant on organogenesis of petiole explants of Begonia × hiemalis cv. Schwabenland Pink are reported. Long day plants had progressively more branches, total stem length, leaf area, and branch and shoot mass. In short days, flowering was earlier and a greater proportion of dry weight accumulation was allocated to reproductive structures. Similar explant responses were obtained from all developmental stages until flowering was well advanced in short days and then the regenerative capacity diminished. Primary measurements of donor leaves (length, area and weight) at the time of explant removal were not well correlated with adventitious bud production. Loss of regeneration was not determined by tissue or plant age but was associated with the progressive development of flowers. Thus the donor plant photoperiod only indirectly affected bud production. Organogenesis decreased with duration of short days but increased in long days and thus both the duration of the multiplication phase and the intensity of the in vitro response was enhanced by maintaining donor plants in long days.  相似文献   

12.
Zhao  Duli  Oosterhuis  D.M.  Bednarz  C.W. 《Photosynthetica》2001,39(1):103-109
In cotton (Gossypium hirsutum L.) grown in controlled-environment growth chamber the effects of K deficiency during floral bud development on leaf photosynthesis, contents of chlorophyll (Chl) and nonstructural saccharides, leaf anatomy, chloroplast ultrastructure, and plant dry matter accumulation were studied. After cotton plants received 35-d K-free nutrient solution at the early square stage, net photosynthetic rate (P N) of the uppermost fully expanded main-stem leaves was only 23 % of the control plants receiving a full K supply. Decreased leaf P N of K-deficient cotton was mainly associated with dramatically low Chl content, poor chloroplast ultrastructure, and restricted saccharide translocation, rather than limited stomata conductance in K-deficient leaves. Accumulation of sucrose in leaves of K-deficient plants might be associated with reduced entry of sucrose into the transport pool or decreased phloem loading. K deficiency during squaring also dramatically reduced leaf area and dry matter accumulation, and affected assimilate partitioning among plant tissues.  相似文献   

13.
为了探讨东北雨养区不同颜色地膜覆盖与种植密度对春玉米干物质积累和产量的影响机制,以良玉99为试验材料,设置3种覆盖处理(裸地、无色透明地膜和黑色地膜覆盖)和5个种植密度(60000、67500、75000、82500和90000株·hm-2)完全组合的田间小区试验,对春玉米水热效应、干物质积累和产量性状等进行分析.结果表明: 黑膜覆盖明显提高拔节后玉米干物质积累量和生物量,其生物量较其他处理增加3.2%~8.2%;成熟期生物量随着种植密度的增加先增大后减小,以82500株·hm2最大,较其他密度处理增加5.2%~28.3%.无色透明地膜覆盖处理的前期平均土壤温度较其他处理分别提高0.4~2.7 ℃,加快了生育进程,提高了玉米茎叶干物质转运量(T)、转运率(TE)和对籽粒产量贡献率(TC);叶和茎+叶干物质的T、TE和TC均以60000株·hm-2密度处理最大,而茎干物质转运效果以75000株·hm-2最优.在抽穗期,黑膜处理的耗水量和日耗水强度最大,分别较其他处理增加10.6%~14.9%和10.6%~24.5%;耗水量和日耗水强度均以90000株·hm-2密度处理最大,较其他处理分别高6.8%~15.7%和7.0%~20.0%.黑膜和82500株·hm-2密度处理组合明显提高了玉米的水分利用效率,较其他处理增加了4.6%~40.9%,其产量较其他处理增加3.0%~39.7%.在抽穗期,玉米茎叶干物质量与玉米产量和产量构成要素的相关性最大;茎叶干物质量每减少1 kg·hm-2,群体产量下降约0.79 kg·hm-2;茎叶干物质量每降低10%,产量下降10%左右.在增加种植密度的基础上,采用黑色地膜覆盖可以增加春玉米干物质积累量、提高春玉米产量和水分利用效率.  相似文献   

14.
The growth and development of soybeans (Glycine max L. cv. Amsoy) was studied at soil matric potentials of ?0.1 to ?1.0 bars. Chlorophyll, photosynthesis, and leaf nitrogen per plant was greatest at ?4 bars leaf water potential. Leaf area, number of internodes, plant height and dry weight of vegetative parts declined as leaf water potential decreased from ?2 to ?19 bars. Nitrogen content and nitrate reductase activity per g fresh weight determined the percentage protein of individual seeds but nitrogen content and nitrate reductase activity per plant determined the amount of total seed protein. The protein synthesized in the seed changed little in amino acid composition with changes in leaf water potential. Leaf water potentials above or below ?4 bars decreased yield, total protein and total lipid but plants produced the largest percentage of individual seed protein at ?19 bars leaf water potential.  相似文献   

15.
Mobilization of N from leaves of barley (Hordeum vulgare L.) during water stress, and the role of proline as a mobilized species, were examined in plants at the three-leaf stage. The plants responded to water stress by withdrawing about 25% of the total reduced N from the leaf blades via phloem translocation. Most of this N loss was during the first 2 days while translocation of 14C-photosynthate out of the stressed blade still remained active. Free proline accumulation in the blade was initially slow, and became more rapid during the 2nd day of stress. Although a major free amino acid, proline accounted for only about 5% of the total N (soluble + insoluble) retained in severely stressed blades. When the translocation pathway in water-stressed leaves was interrupted just below the blade by a heat girdle, a cold jacket, or by blade excision, N loss from the blade was prevented and proline began to accumulate rapidly on 1st day of stress. Little free proline accumulated in the blades until after the ability to translocate was lost. Proline was, however, probably not a major species of N translocated during stress, because proline N accumulation in heat-girdled stressed leaves was five times slower than the rate of total N export from intact blades.  相似文献   

16.
Maize was grown in two densities, 2–47 or 4–94 plants m-2, and the following treatments imposed: untreated, plants partly defoliated 51 days after sowing, and alternate plants in a row partly defoliated 44 days after sowing. Plants flowered about 82 days after sowing. Leaf area was decreased by 60–64% by defoliation on day 51. Defoliation resulted in decreases in grain yield and grain number of 6–17%, though when alternate plants were defoliated in the higher density there was a substantial decrease in yield and number of grains in defoliated plants, which was largely offset by an increase in adjacent intact plants. When plants were defoliated on day 51 subsequent growth in leaf area was similar to, and that in leaf weight nearly as large as that in untreated plants, while increase in stem weight was substantially less than in untreated plants. By the time of flowering untreated and defoliated plots differed by c. 30% in leaf area. Increments of dry matter after flowering differed by c. 15% between untreated and defoliated plots. The fraction of these increments which entered the grain was c. 90% in both untreated and defoliated plots. When alternate plants in the row were partly defoliated on day 44 their subsequent increase in leaf area was probably 5–16% less than that of the adjacent intact plants. Increments of dry matter after flowering of plots with alternate plants defoliated were 93–95 % of those of untreated plots; leaf efficiency after flowering was slightly greater than in untreated plots. The fraction of the dry matter increment after flowering which entered the grain was c. 88 % in both intact and defoliated plants of the small density, but was 94% in intact plants and 86% in defoliated plants of the large density.  相似文献   

17.
To further explore the function of NADH-dependent glutamate synthase (GOGAT), the tissue distribution of NADH-GOGAT protein and activity was investigated in rice (Oryza sativa L.) leaves. The distributions of ferredoxin (Fd)-dependent GOGAT, plastidic glutamine synthetase, and cytosolic glutamine synthetase proteins were also determined in the same tissues. High levels of NADH-GOGAT protein (33.1 μg protein/g fresh weight) and activity were detected in the 10th leaf blade before emergence. The unexpanded, nongreen portion of the 9th leaf blade contained more than 50% of the NADH-GOGAT protein and activity per gram fresh weight when compared with the 10th leaf. The expanding, green portion of the 9th leaf blade outside of the sheath contained a slightly lower abundance of NADH-GOGAT protein than the nongreen portion of the 9th blade on a fresh weight basis. The fully expanded leaf blades at positions lower than the 9th leaf had decreased NADH-GOGAT levels as a function of increasing age, and the oldest, 5th blade contained only 4% of the NADH-GOGAT protein compared with the youngest 10th leaf blade. Fd-GOGAT protein, on the other hand, was the major form of GOGAT in the green tissues, and the highest amount of Fd-GOGAT protein (111 μg protein/g fresh weight) was detected in the 7th leaf blade. In the nongreen 10th leaf blade, the content of Fd-GOGAT protein was approximately 7% of that found in the 7th leaf blade. In addition, the content of NADH-GOGAT protein in the 10th leaf blade was about 4 times higher than that of Fd-GOGAT protein. The content of plastidic glutamine synthetase polypeptide was also the highest in the 7th leaf blade (429 μg/g fresh weight) and lowest in nongreen blades and sheaths. On the other hand, the relative abundance of the cytosolic glutamine synthetase polypeptide was the highest in the oldest leaf blade, decreasing to 10 to 20% of that value in young, nongreen leaves. These results suggest that NADH-GOGAT is important for the synthesis of glutamate from the glutamine that is transported from senescing source tissues through the phloem in the nongreen sink tissues in rice leaves.  相似文献   

18.
A staging system for development of gladiola (Gladiolus × grandiflorus) that relies on simple, visual, non‐destructive criteria is proposed. Four field trials were conducted during the spring 2010, autumn/winter 2011 and winter 2011 at Santa Maria, RS, Brazil, with different gladiola cultivars, in order to observe the developmental stages of the above‐ground parts and their dry matter. The developmental cycle, which starts at dormant corm and ends with plant senescence, is divided into four developmental phases: dormancy phase, sprouting phase (from filiform roots appearance to sheaths appearance), vegetative phase (from emergence of the first leaf tip to emergence of the final leaf tip on the stem) and reproductive phase (from heading to plant senescence). The developmental stages that were identified during the dormancy phase and during the sprouting phases are coded as S stages: S0 = dormant corm, S1 = appearance of roots, S2.1 = first sheath, S2.2 = second sheath and S2.3 = third sheath. Vegetative phase is coded as V stages: VE = emergence of the sheaths above ground, V1 = first leaf, V2 = second leaf, Vn = nth leaf and VF = flag leaf. Leaf tip is the marker for V1–VF. The developmental stages during the reproductive phases are coded as R stages: R1 = heading, R2 = blooming, R3 = onset of flowering, R4 = end of anthesis, R5 = end of florets senescence and R6 = plant senescence (leaves and floret axis are brown). Sub‐stages have also been assigned between R1 and R2 and between R3 and R4. Illustrations (photographs) of each developmental stage taken from field pot‐grown plants are provided and the proposed scale was tested with field observations. These criteria are straight forward and allow for quick determination of development stage. This system can be used by both farmers and for experimental trials.  相似文献   

19.
To understand the economics of root aerenchyma formation in wetland plants, we investigated in detail the response of Alisma triviale to waterlogging. We hypothesized costs being associated with development of a large root air space. In three out-door pot experiments, seedlings (1 experiment) and mature plants (2 experiments) were grown under waterlogged and drained conditions for up to 2?months. Waterlogging promoted growth, and was associated with increased root porosity and decreased root density (fresh mass per volume). The increased formation of aerenchyma was associated with a higher root dry matter content for a given root density. Despite improved growth and earlier flowering, the waterlogged plants also showed signs of being constrained by the anoxic substrate, such as shallower roots, and a higher leaf dry matter content. The formation of aerenchyma was associated with costs, such as increased root dry matter content and reduced metaxylem vessel diameter. The faster growth of the seedlings under the waterlogged conditions, despite some signs of being stressed, was possibly a result of decreased requirements to allocate biomass below ground. In mature plants the increased aerenchyma allowed deeper root penetration, and ameliorated the effects of anoxia, reducing the differences in plant traits between the treatments.  相似文献   

20.
The polypeptides in the leaf blades, petioles and apices from photoinduced and noninduced Xanthium strumarium L. were compared by two dimensional gel-electrophoresis. A 15 kDa and a 16 kDa polypeptide were detected in gels of the leaf blade from noninduced, but not from induced, plants. Similarly, an acidic 9 kDa polypeptide was detected in the apices from noninduced plants, but not in apices from induced plants. Both the apices and petioles from noninduced plants showed a 34 kDa polypeptide which was absent in tissues from induced plants. Thus, the disappearence of identifiable polypeptides from photoinduced tissues may be associated with the photoinductive short-day treatment that leads to flowering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号