首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
White EJ  Cowan C  Cande WZ  Kaback DB 《Genetics》2004,167(1):51-63
During meiotic prophase a synaptonemal complex (SC) forms between each pair of homologous chromosomes and is believed to be involved in regulating recombination. Studies on SCs usually destroy nuclear architecture, making it impossible to examine the relationship of these structures to the rest of the nucleus. In Saccharomyces cerevisiae the meiosis-specific Zip1 protein is found throughout the entire length of each SC. To analyze the formation and structure of SCs in living cells, a functional ZIP1::GFP fusion was constructed and introduced into yeast. The ZIP1::GFP fusion produced fluorescent SCs and rescued the spore lethality phenotype of zip1 mutants. Optical sectioning and fluorescence deconvolution light microscopy revealed that, at zygotene, SC assembly was initiated at foci that appeared uniformly distributed throughout the nuclear volume. At early pachytene, the full-length SCs were more likely to be localized to the nuclear periphery while at later stages the SCs appeared to redistribute throughout the nuclear volume. These results suggest that SCs undergo dramatic rearrangements during meiotic prophase and that pachytene can be divided into two morphologically distinct substages: pachytene A, when SCs are perinuclear, and pachytene B, when SCs are uniformly distributed throughout the nucleus. ZIP1::GFP also facilitated the enrichment of fluorescent SC and the identification of meiosis-specific proteins by MALDI-TOF mass spectroscopy.  相似文献   

2.
The intimate synapsis of homologous chromosome pairs (homologs) by synaptonemal complexes (SCs) is an essential feature of meiosis. In many organisms, synapsis and homologous recombination are interdependent: recombination promotes SC formation and SCs are required for crossing-over. Moreover, several studies indicate that initiation of SC assembly occurs at sites where crossovers will subsequently form. However, recent analyses in budding yeast and fruit fly imply a special role for centromeres in the initiation of SC formation. In addition, in budding yeast, persistent SC–dependent centromere-association facilitates the disjunction of chromosomes that have failed to become connected by crossovers. Here, we examine the interplay between SCs, recombination, and centromeres in a mammal. In mouse spermatocytes, centromeres do not serve as SC initiation sites and are invariably the last regions to synapse. However, centromeres are refractory to de-synapsis during diplonema and remain associated by short SC fragments. Since SC–dependent centromere association is lost before diakinesis, a direct role in homolog segregation seems unlikely. However, post–SC disassembly, we find evidence of inter-centromeric connections that could play a more direct role in promoting homolog biorientation and disjunction. A second class of persistent SC fragments is shown to be crossover-dependent. Super-resolution structured-illumination microscopy (SIM) reveals that these structures initially connect separate homolog axes and progressively diminish as chiasmata form. Thus, DNA crossing-over (which occurs during pachynema) and axis remodeling appear to be temporally distinct aspects of chiasma formation. SIM analysis of the synapsis and crossover-defective mutant Sycp1−/− implies that SCs prevent unregulated fusion of homolog axes. We propose that SC fragments retained during diplonema stabilize nascent bivalents and help orchestrate local chromosome reorganization that promotes centromere and chiasma function.  相似文献   

3.
4.
BACKGROUND: The life cycle of most eukaryotic organisms includes a meiotic phase, in which diploid parental cells produce haploid gametes. During meiosis a single round of DNA replication is followed by two rounds of chromosome segregation. In the first, or reductional, division (meiosis I), which is unique to meiotic cells, homologous chromosomes segregate from one another, whereas in the second, or equational, division (Meiosis II) sister centromeres disjoin. Meiotic DNA replication precedes the initiation of recombination by programmed Spo11-dependent DNA double-strand breaks. Recent reports that meiosis-specific cohesion is established during meiotic S phase and that the length of S phase is modified by recombination factors (Spo11 and Rec8) raise the possibility that replication plays a fundamental role in the recombination process. RESULTS: To address how replication influences the initiation of recombination, we have used mutations in the B-type cyclin genes CLB5 and CLB6, which specifically prevent premeiotic replication in the yeast Saccharomyces cerevisiae. We find that clb5 and clb5 clb6 but not clb6 mutants are defective in DSB induction and prior associated changes in chromatin accessibility, heteroallelic recombination, and SC formation. The severity of these phenotypes in each mutant reflects the extent of replication impairment. CONCLUSIONS: This assemblage of phenotypes reveals roles for CLB5 and CLB6 not only in DNA replication but also in other key events of meiotic prophase. Links between the function of CLB5 and CLB6 in activating meiotic DNA replication and their effects on subsequent events are discussed.  相似文献   

5.
Summary The course of meiotic recombination, gene conversion and crossing-over, was investigated in Saccharomyces cerevisiae. Gene conversion was used as the selected event by removing cells from a medium inducing and promoting meiosis to a vegetative growth medium selective for convertants. Gene conversion started to increase at the same time as DNA synthesis, and nuclei entered a phase where the chromatin appeared as thread-like structures. Crossing-over of linked and unlinked markers also started early but remained at a low level until synaptonemal complexes were formed. However, gene conversion and a limited amount of crossing-over could be completed without synaptonemal complexes. It was concluded that meiotic recombination in yeast can occur as early as during DNA synthesis and does not require the function of synaptonemal complexes. Moreover, the low incidence of crossing-over early in meiosis is attributed to a low frequency of strand isomerization.  相似文献   

6.
Four different SYP proteins (SYP-1, SYP-2, SYP-3, and SYP-4) have been proposed to form the central region of the synaptonemal complex (SC) thereby bridging the axes of paired meiotic chromosomes in Caenorhabditis elegans. Their interdependent localization suggests that they may interact within the SC. Our studies reveal for the first time how these SYP proteins are organized in the central region of the SC. Yeast two-hybrid and co-immunoprecipitation studies show that SYP-1 is the only SYP protein that is capable of homotypic interactions, and is able to interact with both SYP-2 and SYP-3 directly, whereas SYP-2 and SYP-3 do not seem to interact with each other. Specifically, the coiled-coil domain of SYP-1 is required both for its homotypic interactions and its interaction with the C-terminal domain of SYP-2. Meanwhile, SYP-3 interacts with the C-terminal end of SYP-1 via its N-terminal domain. Immunoelectron microscopy analysis provides insight into the orientation of these proteins within the SC. While the C-terminal domain of SYP-3 localizes in close proximity to the chromosome axes, the N-terminal domains of both SYP-1 and SYP-4, as well as the C-terminal domain of SYP-2, are located in the middle of the SC. Taking into account the different sizes of these proteins, their interaction abilities, and their orientation within the SC, we propose a model of how the SYP proteins link the homologous axes to provide the conserved structure and width of the SC in C. elegans.  相似文献   

7.
The synaptonemal complex and the spindle plaque during meiosis in yeast   总被引:4,自引:2,他引:2  
Meiosis in Saccharomyces cerevisiae proceeds principally in the same manner as in other Ascomycetes. Leptotene is characterized by unpaired lateral components and pachytene by the presence of extensive synaptonemal complexes. The synaptonemal complex has the same dimensions and is similar in structure to those described for other organisms. Chromosome counts can now be made by reconstructing the synaptonemal complexes. Diplotene nuclei consistently contain a single polycomplex. The behaviour, doubling and the fine structure of the spindle plaque provide additional markers for the different stages of meiosis.  相似文献   

8.
9.
DNA damage to the germline genome must be accurately repaired to ensure transmission of intact genetic information to following generations. Meiosis presents challenges to the DNA damage response (DDR) because it universally requires changes to chromosome structure that can affect DNA repair outcomes. We report the existence of a meiotic DDR at chromosome axes that results in chromatin remodeling, synaptonemal complex disassembly, and axis separation in response to irradiation at late pachytene stages in C. elegans. The axis component HTP-3 is required for germline acquisition of H2AacK5, an axis-specific chromatin mark that is DNA damage responsive. Irradiated wild-types show reduction of H2AacK5 and axis separation that are dependent on the acetyltransferase MYS-1/TIP60. Restoration of H2AacK5 levels requires ATM-1 kinase and correlates with resynapsis. We propose that the meiotic DDR involves early chromatin remodeling at chromosome axes to dismantle structures promoting interhomolog recombination and facilitate efficient nonhomolog-based repair before pachytene exit.  相似文献   

10.
We utilized strains of Saccharomyces cerevisiae that exhibit high efficiency of synchrony of meiosis to examine several aspects of meiosis including sporulation, recombination, DNA synthesis, DNA polymerase I and II, and Mg2+-dependent alkaline DNases. The kinetics of commitment to intragenic recombination and sporulation are similar. The synthesis of DNA, as measured directly with diphenylamine, appears to precede the commitment to recombination. Both DNA polymerase I and II activities and total DNA-synthesizing activity in crude extracts increase two- to threefold before the beginning of meiotic DNA synthesis. Increases of 10- to 20-fold over mitotic levels are found for Mg2+-dependent alkaline DNase activity in crude extracts before and during the commitment to meiotic intragenic recombination. Of particular interest is the comparable increase in a nuclease under the control of the RAD52 gene; this enzyme has been identified by the use of antibody raised against a similar enzyme from Neurospora crassa. Since the RAD52 gene is essential for meiotic recombination, the nuclease is implicated in the high levels of recombination observed during meiosis. The effects observed in this report are meiosis specific since they are not observed in an alpha alpha strain.  相似文献   

11.
Marsupial sex chromosomes break the rule that recombination during first meiotic prophase is necessary to ensure reductional segregation during first meiotic division. It is widely accepted that in marsupials X and Y chromosomes do not share homologous regions, and during male first meiotic prophase the synaptonemal complex is absent between them. Although these sex chromosomes do not recombine, they segregate reductionally in anaphase I. We have investigated the nature of sex chromosome association in spermatocytes of the marsupial Thylamys elegans, in order to discern the mechanisms involved in ensuring their proper segregation. We focused on the localization of the axial/lateral element protein SCP3 and the cohesin subunit STAG3. Our results show that X and Y chromosomes never appear as univalents in metaphase I, but they remain associated until they orientate and segregate to opposite poles. However, they must not be tied by a chiasma since their separation precedes the release of the sister chromatid cohesion. Instead, we show they are associated by the dense plate, a SCP3-rich structure that is organized during the first meiotic prophase and that is still present at metaphase I. Surprisingly, the dense plate incorporates SCP1, the main protein of the central element of the synaptonemal complex, from diplotene until telophase I. Once sex chromosomes are under spindle tension, they move to opposite poles losing contact with the dense plate and undergoing early segregation. Thus, the segregation of the achiasmatic T. elegans sex chromosomes seems to be ensured by the presence in metaphase I of a synaptonemal complex-derived structure. This feature, unique among vertebrates, indicates that synaptonemal complex elements may play a role in chromosome segregation.  相似文献   

12.
Summary Mitotic cells of a diploid strain of Saccharomyces cerevisiae with appropriate markers for the detection of mitotic crossing-over and mitotic gene conversion were irradiated with X-rays. Induction of these recombinational events was strong. After irradiation, cells were incubated in a rich growth medium and samples were removed for studying the possible formation of synaptonemal complexes up to a time when most cells had completed the first post-irradiation cell division. No complexes were found during the entire period of sampling, during which mitotic recombination in G1 (mitotic gene conversion), DNA replication and G2 (mitotic crossing-over) had occurred. These results are interpreted to mean that synaptonemal complexes are not required for mitotic recombination.  相似文献   

13.
During meiosis, centromeres in some species undergo a series of associations, but the processes and progression to homologous pairing is still a matter of debate. Here, we aimed to correlate meiotic centromere dynamics and early telomere behaviour to the progression of synaptonemal complex (SC) construction in hexaploid wheat (2n = 42) by triple immunolabelling of CENH3 protein marking functional centromeres, and SC proteins ASY1 (unpaired lateral elements) and ZYP1 (central elements in synapsed chromosomes). We show that single or multiple centromere associations formed in meiotic interphase undergo a progressive polarization (clustering) at the nuclear periphery in early leptotene, leading to formation of the telomere bouquet. Critically, immunolabelling shows the dynamics of these presynaptic centromere associations and a structural reorganization of the centromeric chromatin coinciding with key events of synapsis initiation from the subtelomeric regions. As short stretches of subtelomeric synapsis emerged at early zygotene, centromere clusters lost their strong polarization, gradually resolving as individual centromeres indicated by more than 21 CENH3 foci associated with unpaired lateral elements. Only following this centromere depolarization were homologous chromosome arms connected, as observed by the alignment and fusion of interstitial ZYP1 loci elongating at zygotene so synapsis at centromeres is a continuation of the interstitial synapsis. Our results thus reveal that centromere associations are a component of the timing and progression of chromosome synapsis, and the gradual release of the individual centromeres from the clusters correlates with the elongation of interstitial synapsis between the corresponding homologues.  相似文献   

14.

We investigated the meiotic role of Srs2, a multi-functional DNA helicase/translocase that destabilises Rad51-DNA filaments and is thought to regulate strand invasion and prevent hyper-recombination during the mitotic cell cycle. We find that Srs2 activity is required for normal meiotic progression and spore viability. A significant fraction of srs2 mutant cells progress through both meiotic divisions without separating the bulk of their chromatin, although in such cells sister centromeres often separate. Undivided nuclei contain aggregates of Rad51 colocalised with the ssDNA-binding protein RPA, suggesting the presence of persistent single-strand DNA. Rad51 aggregate formation requires Spo11-induced DSBs, Rad51 strand-invasion activity and progression past the pachytene stage of meiosis, but not the DSB end-resection or the bias towards interhomologue strand invasion characteristic of normal meiosis. srs2 mutants also display altered meiotic recombination intermediate metabolism, revealed by defects in the formation of stable joint molecules. We suggest that Srs2, by limiting Rad51 accumulation on DNA, prevents the formation of aberrant recombination intermediates that otherwise would persist and interfere with normal chromosome segregation and nuclear division.

  相似文献   

15.
This paper describes the light microscopy (LM) and electron microscopy (EM) localization of synaptonemal complex (SC) antigens in oocytes of rats. For this purpose, we used monoclonal antibodies (Mabs) that recognize components of 30 + 33, 125, and 190 kDa antigens of SCs of rat spermatocytes. The LM localization was performed by immunofluorescence and the EM localization by immunogold staining. The reaction of the Mabs with oocytes was similar to the reaction with spermatocytes, but weaker. The 30 + 33 kDa as well as the 190 kDa antigens could always be demonstrated if axial elements of the SC were present, irrespective of whether these were paired or unpaired. Thus, these antigens could be detected from leptotene--early zygotene until diplotene. The 190-kDa antigen appeared in a diffuse manner just before the appearance of the 30 + 33 kDa antigens. The 30 + 33 kDa antigens were not only detected in the axial elements of SCs but also in characteristic aggregates, which appeared in zygotene and persisted until after the SCs had disappeared. Such aggregates had rarely been observed in spermatocytes. The 125 kDa antigen was only present in the tripartite segments of SCs, at the inner edge of the lateral elements. Thus, the reaction of the Mab against the 125 kDa antigen was detectable in zygotene, pachytene, and very early diplotene. It appeared later than 30 + 33 kDa and 190 kDa antigens and it disappeared earlier. We found that several steps of the immunostaining procedure could cause variation in the intensity of the Mab reaction.  相似文献   

16.
We have studied the meiotic segregation of a chromosome length polymorphism (CLP) in the yeast Saccharomyces cerevisiae. The neopolymorphism frequently observed within the smallest chromosomes (I, VI, III and IX) is not completely understood. We focused on the analysis of the structure of chromosome I in 88 segregants from a cross between YNN295 and FL100trp. Strain FL100trp is known to carry a reciprocal translocation between the left arm of chromosome III and the right arm of chromosome I. PCR and Southern hybridization analyses were performed and a method for the rapid detection of chromosome I rearrangements was developed. Seven chromosome I types were identified among the 88 segregants. We detected 22 recombination events between homologous chromosomes I and seven ectopic recombination events between FL100trp chromosome III and YNN295 chromosome I. These recombination events occurred in 20 of the 22 tetrads studied (91%). Nine tetrads (41%) showed two recombination events. This showed that homologous recombination involving polymorphic homologues or heterologous chromosomes is the main source of neopolymorphism. Only one of the seven chromosome I variants resulted from a transposition event rather than a recombination event. We demonstrated that a Ty1 element had transposed within the translocated region of chromosome I, generating mutations in the 3′ LTR, at the border between U5 and PBS. Received: 7 May 1999 / Accepted: 14 February 2000  相似文献   

17.
18.
19.
S L Kelly  J M Parry 《Mutation research》1983,108(1-3):109-120
Irradiation of yeast cultures with ultraviolet light at discrete stages during meiosis produces cyclic variations in sensitivity, i.e. cells are more sensitive to the lethal effects of UV light prior to entry into the meiotic DNA synthesis, and this corresponds to a peak of induction of point mutation. Cells become more resistant to both induced point mutation and lethality as they enter meiotic DNA synthesis, but become more sensitive again during spore formation. The induced level of intragenic recombination rises during the period of commitment to recombination to a level indistinguishable from the full meiotic level of spontaneous intragenic recombination. Induced reciprocal recombination remains above the spontaneous level up to the point of commitment to sporulation.  相似文献   

20.
Meiosis is a specialized cell division that gives rise to genetically distinct gametic cells. Meiosis relies on the tightly controlled formation of DNA double-strand breaks (DSBs) and their repair via homologous recombination for correct chromosome segregation. Like all forms of DNA damage, meiotic DSBs are potentially harmful and their formation activates an elaborate response to inhibit excessive DNA break formation and ensure successful repair. Previous studies established the protein kinase ATM as a DSB sensor and meiotic regulator in several organisms. Here we show that Arabidopsis ATM acts at multiple steps during DSB formation and processing, as well as crossover (CO) formation and synaptonemal complex (SC) organization, all vital for the successful completion of meiosis. We developed a single-molecule approach to quantify meiotic breaks and determined that ATM is essential to limit the number of meiotic DSBs. Local and genome-wide recombination screens showed that ATM restricts the number of interference-insensitive COs, while super-resolution STED nanoscopy of meiotic chromosomes revealed that the kinase affects chromatin loop size and SC length and width. Our study extends our understanding of how ATM functions during plant meiosis and establishes it as an integral factor of the meiotic program.

Arabidopsis ATM acts at multiple steps during DSB formation and processing, as well as crossover formation and synaptonemal complex organization, all vital for the successful completion of meiosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号