首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
FPyME (1-[3-(2-fluoropyridin-3-yloxy)propyl]pyrrole-2,5-dione) was designed as a [(18)F]fluoropyridine-based maleimide reagent for the prosthetic labeling of peptides and proteins via selective conjugation with a thiol (sulfhydryl) function. Its pyridinyl moiety carries the radioactive halogen (fluorine-18) which can be efficiently incorporated via a nucleophilic heteroaromatic substitution, and its maleimido function ensures the efficient alkylation of a free thiol function as borne by cysteine residues. [(18)F]FPyME (HPLC-purified) was prepared in 17-20% non-decay-corrected yield, based on starting [(18)F]fluoride, in 110 min using a three-step radiochemical pathway. The developed procedure involves (1) a high-yield nucleophilic heteroaromatic ortho-radiofluorination on [3-(3-tert-butoxycarbonylaminopropoxy)pyridin-2-yl]trimethylammonium trifluoromethanesulfonate as the fluorine-18 incorporation step, followed by (2) rapid and quantitative TFA-induced removal of the N-Boc-protective group and (3) optimized maleimide formation using N-methoxycarbonylmaleimide. Typically, 4.8-6.7 GBq (130-180 mCi) of radiochemically pure [(18)F]FPyME ([(18)F]-1) could be obtained after semipreparative HPLC in 110 min starting from a cyclotron production batch of 33.3 GBq (900 mCi) of [(18)F]fluoride (overall radiochemical yields, based on starting [(18)F]fluoride: 28-37% decay-corrected). [(18)F]FPyME ([(18)F]-1) was first conjugated with a small model hexapeptide ((N-Ac)KAAAAC), confirming the excellent chemoselectivity of the coupling reaction (CH(2)SH versus CH(2)NH(2)) and then conjugated with two 8-kDa proteins of interest, currently being developed as tumor imaging agents (c-AFIM-0 and c-STxB). Conjugation was achieved in high yields (60-70%, isolated and non-decay-corrected) and used optimized, short-time reaction conditions (a 1/9 (v/v) mixture of DMSO and 0.05 M aq Tris NaCl buffer (pH 7.4) or 0.1 M aq PBS (pH 8), at room temperature for 10 min) and purification conditions (a gel filtration using a Sephadex NAP-10 cartridge or a SuperDex Peptide HR 10/30 column), both compatible with the chemical stability of the proteins and the relatively short half-life of the radioisotope concerned. The whole radiosynthetic procedure, including the preparation of the fluorine-18-labeled reagent, the conjugation with the protein and the final purification took 130-140 min. [(18)F]FPyME ([(18)F]-1) represents a new, valuable, thiol-selective, fluorine-18-labeled reagent for the prosthetic labeling with fluorine-18 of peptides and proteins. Because of its excellent chemoselectivity, [(18)F]FPyME offers an interesting alternative to the use of the nonselective carboxylate and amine-reactive [(18)F]reagents and can therefore advantageously be used for the design and development of new peptide- and protein-based radiopharmaceuticals for PET.  相似文献   

2.
Given the ever-present demand for improved PET radiotracer in oncology imaging, we have synthesized 2-(3,4-dimethoxyphenyl)-6-(2-[18F]fluoroethoxy)benzothiazole ([18F]FEDBT), a fluorine-18-containing fluoroethylated benzothiazole to explore its utility as a PET imaging tracer. [18F]FEDBT was prepared via kryptofix-mediated nucleophilic substitution of the tosyl group precursor. Fractionated ethanol-based solid-phase (SPE cartridge-based) purification afforded [18F]FEDBT in 60% radiochemical yield (EOB), with radiochemical purity in excess of 98% and the specific activity was 35 GBq/μmol. The radiotracer displayed clearly higher cellular uptake ratio in various breast cancer cell lines MCF7, MDA-MB-468 and MDA-MB-231. However, both biodistribution and microPET studies have showed an higher abdominal accumulation of [18F]FEDMBT and the tumor/muscle ratio of 1.8 was observed in the MDA-MB-231 xenograft tumors mice model. Further the lipophilic improvement is needed for the reducement of hepatobilliary accumulation and to promote the tumor uptake for PET imaging of breast cancer.  相似文献   

3.
Radiochemical labeling of MDL 105725 using the secondary labeling precursor 2-[(18)F]fluoroethyltosylate ([(18)F]FETos) was carried out in yields of approximately 90% synthesizing [(18)F]MHMZ in a specific activity of approximately 50MBq/nmol with a starting activity of approximately 3GBq. Overall radiochemical yield including [(18)F]FETos synthon synthesis, [(18)F]fluoroalkylation and preparing the injectable [(18)F]MHMZ solution was 42% within a synthesis time of approximately 100 min. The novel compound showed excellent specific binding to the 5-HT(2A) receptor (K(i)=9.0 nM) in vitro and promising in vivo characteristics.  相似文献   

4.
Positron emission tomography (PET) herpes simplex virus thymidine kinase (HSV-tk) gene reporter probes 9-[(3-[(18)F]fluoro-1-hydroxy-2-propoxy)methyl]guanine ([(18)F]FHPG) and 9-(4-[(18)F]fluoro-3-hydroxymethylbutyl)guanine ([(18)F]FHBG) were prepared by nucleophilic substitution of the appropriate tosylated precursors with [(18)F]KF/Kryptofix 2.2.2 followed by a quick deprotection reaction and purification with a simplified dual Silica Sep-Pak solid-phase extraction (SPE) method in 15-30% radiochemical yield.  相似文献   

5.
N-Terminally azido-modified peptides were labeled with the novel prosthetic labeling synthon [(18)F]azadibenzocyclooctyne ([(18)F]ADIBO) using copper-free azide-alkyne [3+2]-dipolar cycloaddition in high radiochemical yields (RCYs). (18)F-Labeled [(18)F]ADIBO was prepared by nucleophilic substitution of the corresponding tosylate in 21% overall RCY (EOB) in a fully automated synthesis unit within 55 min. [(18)F]ADIBO was incubated with azide-containing peptides at room temperature in the absence of toxic metal catalysts and the formation of the triazole conjugate was confirmed. Finally, the azide-alkyne [3+2]-dipolar cycloaddition was shown to proceed with 95% radiochemical yield in ethanol within 30 min, allowing for a development of a kit-like peptide labeling approach with [(18)F]ADIBO.  相似文献   

6.
Epidermal growth factor receptors (EGFR), upregulated in many tumor types, have been a target for therapeutic development and molecular imaging. The objective of this study was to evaluate the distribution and metabolic characteristics of fluorine-18 labeled anilinoquinazolines as potential imaging agents for EGFR tyrosine kinase expression. Fluorine-18 labeled fluoronitrobenzenes were prepared by reaction of potassium cryptand [(18)F]fluoride with 1,2- and 1,4-dinitrobenzenes, and 3-nitro-N,N,N-trimethylanilinium triflate in 5min. Decay-corrected radiochemical yields of [(18)F]fluoride incorporation into the nitro-aromatic compounds were 81±2%, 44±4% and 77±5% (n=3-5) for the 2-, 3- and 4-fluoro isomers, respectively. Sodium borohydride reduction to the corresponding [(18)F]fluoroanilines was achieved with greater than 80% conversion in 5min. Coupling of [(18)F]fluoroaniline-hydrochlorides to 6,7-dimethoxy-4-chloro-quinazoline gave the corresponding 6,7-dimethoxy-4-(2-, 3- and 4-[(18)F]fluoroanilino)quinazolines in 31±5%, 17±2% and 55±2% radiochemical yield, respectively, while coupling to the 6,7-diethoxy-4-chloro-quinazoline produced 6,7-diethoxy-4-(2-, 3- and 4-[(18)F]fluoroanilino)quinazolines in 19±6%, 9±3% and 36±6% radiochemical yield, respectively, in 90min to end of synthesis from [(18)F]fluoride. Biodistribution of 2- and 4-[(18)F]fluoroanilinoquinazolines was conducted in tumor-bearing mice (MDA-MB-435 and MDA-MB-468 xenografts). Low tumor uptake (<1% injected dose per gram (ID/g) of tissue up to 3h postinjection of the radiotracers) was observed. High bone uptake (5-15% ID/g) was noted with the 4-[(18)F]fluoroanilinoquinazolines. The metabolic stabilities of radiolabeled quinazolines were further evaluated by incubation with human female cryopreserved isolated hepatocytes. Rapid degeneration of the 4-fluoro-substituted compounds to baseline polar metabolites was observed by radio-TLC, whereas, the 2- and 3-[(18)F]fluoroaniline derivatives were significantly more stable, up to 2h, corroborating the in vivo biodistribution studies. para-Substituted [(18)F]fluoroanilines, a common structural motif in radiopharmaceuticals, are highly susceptible to metabolic degradation.  相似文献   

7.
In recent years, there has been considerable effort to design and synthesize radiotracers suitable for use in Positron Emission Tomography (PET) imaging of the alpha4beta2 neuronal nicotinic acetylcholine receptor (nAChR) subtype. A new fluoropyridinyl derivative of (-)-cytisine (1), namely (-)-9-(2-fluoropyridinyl)cytisine (3, K(i) values of 24 and 3462 nM for the alpha4beta2 and alpha7 nAChRs subtypes, respectively) has been synthesized in four chemical steps from (-)-cytisine and labelled with fluorine-18 (T(1/2): 119.8 min) using an efficient two-step radiochemical process [(a). nucleophilic heteroaromatic ortho-radiofluorination using the corresponding N-Boc-protected nitro-derivative, (b). TFA removal of the Boc protective group]. Typically, 20-45 mCi (0.74-1.67 GBq) of (-)-9-(2-[18F]fluoropyridinyl)cytisine ([18F]-3, 2-3 Ci/micromol or 74-111 GBq/micromol) were easily obtained in 70-75 min starting from a 100 mCi (3.7 GBq) aliquot of a cyclotron-produced [18F]fluoride production batch (20-45% non decay-corrected yield based on the starting [18F]fluoride). The in vivo pharmacological profile of (-)-9-(2-[18F]fluoropyridinyl)cytisine ([18F]-3) was evaluated in rats with biodistribution studies and brain radioactivity monitoring using intracerebral radiosensitive beta-microprobes. The observed in vivo distribution of the radiotracer in brain was rather uniform, and did not match with the known regional densities of nAChRs. It was also significantly different from that of the parent compound (-)-[3H]cytisine. Moreover, competition studies with (-)-nicotine (5 mg/kg, 5 min before the radiotracer injection) did not reduce brain uptake of the radiotracer. These experiments clearly indicate that (-)-9-(2-[18F]fluoropyridinyl)cytisine ([18F]-3) does not have the required properties for imaging nAChRs using PET.  相似文献   

8.
Replacement of specific hydroxyl groups by fluorine in carbohydrates is an ongoing challenge from chemical, biological, and pharmaceutical points of view. A rapid and efficient two-step, regio- and stereoselective synthesis of 2-deoxy-2-(R)-fluoro-beta-d-allose (2-(R)-fluoro-2-deoxy-beta-d-allose; 2-FDbetaA), a fluorinated analogue of the rare sugar, d-allose, is described. TAG (3,4,6-tri-O-acetyl-1,5-anhydro-2-deoxy-d-arabino-hex-1-enitol or 3,4,6-tri-O-acetyl-d-glucal), was fluorinated in anhydrous HF with dilute F(2) in a Ne/He mixture or with CH(3)COOF at -60 degrees C. The fluorinated intermediate was hydrolyzed in 1N HCl and the hydrolysis product was purified by liquid chromatography and characterized by 1D (1)H, (13)C, and (19)F NMR spectroscopy as well as 2D NMR spectroscopy and mass spectrometry. In addition, (18)F-labeled 2-deoxy-2-(R)-fluoro-beta-d-allose (2-[(18)F]FDbetaA) was synthesized for the first time, with an overall decay-corrected radiochemical yield of 33+/-3% with respect to [(18)F]F(2), the highest radiochemical yield achieved to date for electrophilic fluorination of TAG. The rapid and high radiochemical yield synthesis of 2-[(18)F]FDbetaA has potential as a probe for the bioactivity of d-allose.  相似文献   

9.
N-Succinimidyl 3-(di-tert-butyl[(18)F]fluorosilyl)benzoate ([(18)F]SiFB), a novel synthon for one-step labeling of proteins, was synthesized via a simple (18)F-(19)F isotopic exchange. A new labeling technique that circumvents the cleavage of the highly reactive active ester moiety under regular basic (18)F-labeling conditions was established. In order to synthesize high radioactivity amounts of [(18)F]SiFB, it was crucial to partially neutralize the potassium oxalate/hydroxide that was used to elute (18)F(-) from the QMA cartridge with oxalic acid to prevent decomposition of the active ester moiety. Purification of [(18)F]SiFB was performed by simple solid-phase extraction, which avoided time-consuming HPLC and yielded high specific activities of at least 525 Ci/mmol and radiochemical yields of 40-56%. In addition to conventional azeotropic drying of (18)F(-) in the presence of [K(+)?2.2.2.]C(2)O(4), a strong anion-exchange (SAX) cartridge was used to prepare anhydrous (18)F(-) for nucleophilic radio-fluorination omitting the vacuum assisted drying of (18)F(-). Using a lyophilized mixture of [K(+)?2.2.2.]OH resolubilized in acetonitrile, the (18)F(-) was eluted from the SAX cartridge and used directly for the [(18)F]SiFB synthesis. [(18)F]SiFB was applied to the labeling of various proteins in likeness to the most commonly used labeling synthon in protein labeling, N-succinimidyl-4-[(18)F]fluorobenzoate ([(18)F]SFB). Rat serum albumin (RSA), apo-transferrin, a β-cell-specific single chain antibody, and erythropoietin were successfully labeled with [(18)F]SiFB in good radiochemical yields between 19% and 36%. [(18)F]SiFB- and [(18)F]SFB-derivatized RSA were directly compared as blood pool imaging agents in healthy rats using small animal positron emission tomography. Both compounds demonstrated identical biodistributions in healthy rats, accurately visualizing the blood pool with PET.  相似文献   

10.
2-[(18)F]Fluoro-2-deoxy-D-glucose ([(18)F]FDG) as the most important PET radiotracer is available in almost every PET center. However, there are only very few examples using [(18)F]FDG as a building block for the synthesis of (18)F-labeled compounds. The present study describes the use of [(18)F]FDG as a building block for the synthesis of (18)F-labeled peptides and proteins. [(18)F]FDG was converted into [(18)F]FDG-maleimidehexyloxime ([(18)F]FDG-MHO), a novel [(18)F]FDG-based prosthetic group for the mild and thiol group-specific (18)F labeling of peptides and proteins. The reaction was performed at 100 degrees C for 15 min in a sealed vial containing [(18)F]FDG and N-(6-aminoxy-hexyl)maleimide in 80% ethanol. [(18)F]FDG-MHO was obtained in 45-69% radiochemical yield (based upon [(18)F]FDG) after HPLC purification in a total synthesis time of 45 min. Chemoselecetive conjugation of [(18)F]FDG-MHO to thiol groups was investigated by the reaction with the tripeptide glutathione (GSH) and the single cysteine containing protein annexin A5 (anxA5). Radiolabeled annexin A5 ([(18)F]FDG-MHO-anxA5) was obtained in 43-58% radiochemical yield (based upon [(18)F]FDG-MHO, n = 6), and [(18)F]FDG-MHO-anxA5 was used for a pilot small animal PET study to assess in vivo biodistribution and kinetics in a HT-29 murine xenograft model.  相似文献   

11.
FPhEP (1, (+/-)-2-exo-(2'-fluoro-3'-phenyl-pyridin-5'-yl)-7-azabicyclo[2.2.1]heptane) belongs to a recently described novel series of 3'-phenyl analogues of epibatidine, which not only possess subnanomolar affinity and high selectivity for brain alpha4beta2 neuronal nicotinic acetylcholine receptors (nAChRs), but also were reported as functional antagonists of low toxicity (up to 15 mg/kg in mice). FPhEP (1, K(i) of 0.24 nM against [(3)H]epibatidine) as reference as well as the corresponding N-Boc-protected chloro- and bromo derivatives (3a,b) as precursors for labelling with fluorine-18 were synthesized in eight and nine steps, respectively, from commercially available N-Boc-pyrrole (overall yields=17% for 1, 9% for 3a and 8% for 3b). FPhEP (1) was labelled with fluorine-18 using the following two-step radiochemical process: (1) no-carrier-added nucleophilic heteroaromatic ortho-radiofluorination from the corresponding N-Boc-protected chloro- or bromo derivatives (3 a,b-1mg) and the activated K[(18)F]F-Kryptofix(222) complex in DMSO using microwave activation at 250 W for 1.5 min, followed by (2) quantitative TFA-induced removal of the N-Boc-protective group. Radiochemically pure (>99%) [(18)F]FPhEP ([(18)F]-1, 2.22-3.33 GBq, 66-137 GBq/micromol) was obtained after semi-preparative HPLC (Symmetry C18, eluent aq 0.05 M NaH(2)PO(4)/CH(3)CN, 80:20 (v:v)) in 75-80 min starting from a 18.5 GBq aliquot of a cyclotron-produced [(18)F]fluoride production batch (10-20% nondecay-corrected overall yield). In vitro binding studies on rat whole-brain membranes demonstrated a subnanomolar affinity (K(D) 660 pM) of [(18)F]FPhEP ([(18)F]-1) for nAChRs. In vitro autoradiographic studies also showed a good contrast between nAChR-rich and -poor regions with a low non-specific binding. Comparison of in vivo Positron Emission Tomography (PET) kinetics of [(18)F]FPhEP ([(18)F]-1) and [(18)F]F-A-85380 in baboons demonstrated faster brain kinetics of the former compound (with a peak uptake at 20 min post injection only). Taken together, the preliminary data obtained confirm that [(18)F]FPhEP ([(18)F]-1) has potential for in vivo imaging nAChRs in the brain with PET.  相似文献   

12.
3,4,5-Tri-O-acetyl-2-[18F]fluoro-2-deoxy-d-glucopyranosyl 1-phenylthiosulfonate (Ac3-[18F]FGlc-PTS) was developed as a thiol-reactive labeling reagent for the site-specific 18F-glycosylation of peptides. Taking advantage of highly accessible 1,3,4,6-tetra-O-acetyl-2-deoxy-2-[18F]fluoroglucopyranose, a three-step radiochemical pathway was investigated and optimized, providing Ac3-[18F]FGlc-PTS in a radiochemical yield of about 33% in 90 min (decay-corrected and based on starting [18F]fluoride). Ac3-[18F]FGlc-PTS was reacted with the model pentapeptide CAKAY, confirming chemoselectivity and excellent conjugation yields of >90% under mild reaction conditions. The optimized method was adopted to the 18F-glycosylation of the alphavbeta3-affine peptide c(RGDfC), achieving high conjugation yields (95%, decay-corrected). The alphavbeta3 binding affinity of the glycosylated c(RGDfC) remained uninfluenced as determined by competition binding studies versus 125I-echistatin using both isolated alphavbeta3 and human umbilical vein endothelial cells (Ki = 68 +/- 10 nM (alphavbeta3) versus Ki = 77 +/- 4 nM (HUVEC)). The whole radiosynthetic procedure, including the preparation of the 18F-glycosylating reagent Ac3-[18F]FGlc-PTS, peptide ligation, and final HPLC purification, provided a decay-uncorrected radiochemical yield of 13% after a total synthesis time of 130 min. Ac3-[18F]FGlc-PTS represents a novel 18F-labeling reagent for the mild chemoselective 18F-glycosylation of peptides indicating its potential for the design and development of 18F-labeled bioactive S-glycopeptides suitable to study their pharmacokinetics in vivo by positron emission tomography (PET).  相似文献   

13.
[(18)F]Fluoroethylcholine has been recently introduced as a promising (18)F-labelled analogue of [(11)C]choline which had been previously described as a tracer for metabolic cancer imaging with positron emission tomography (PET). Due to the practical advantages of using the longer-lived radioisotope (18)F (t(1/2)=110 min), offering the opportunity of a more widespread clinical application, we established a reliable, fully automated synthesis for its production using a modified, commercially available module. [(18)F]Fluoroethylcholine was prepared from N,N-dimethylaminoethanol by iodide catalyzed alkylation with 1-[(18)F]fluoro-2-tosylethane as alkylating agent, resulting in a total radiochemical yield of 30+/-6% after a synthesis time of 50 min. The specific activity of [(18)F]fluoroethylcholine was >55 GBq/micromol and the radiochemical purity 95-99%.  相似文献   

14.
N-[2-(Diethylamino)ethyl]-5-[(Z)-(5-[18F]fluoro-2-oxo-1,2-dihydro-3H-indol-3-ylidene)methyl]-2,4-dimethyl-1H-pyrrole-3-carboxamide, a new potential positron emission tomography tracer for imaging cancer tyrosine kinase, has been prepared by the nucleophilic substitution of the nitro-precursor N-[2-(diethylamino)ethyl]-5-[(Z)-(5-nitro-2-oxo-1,2-dihydro-3H-indol-3-ylidene)methyl]-2,4-dimethyl-1H-pyrrole-3-carboxamide with K18F/Kryptofix 2.2.2 followed by a simple chromatography methodology combined solid-phase extraction with high-performance liquid chromatography purification procedures in 15-25% radiochemical yields.  相似文献   

15.
The alkyne-azide Cu(I)-catalyzed Huisgen cycloaddition, a click-type reaction, was used to label a double-stranded oligonucleotide (siRNA) with fluorine-18. An alkyne solid support CPG for the preparation of monostranded oligonucleotides functionalized with alkyne has been developed. Two complementary azide labeling agents (1-(azidomethyl)-4-[(18)F]fluorobenzene) and 1-azido-4-(3-[(18)F]fluoropropoxy)benzene have been produced with 41% and 35% radiochemical yields (decay-corrected), respectively. After annealing with the complementary strand, the siRNA was directly labeled by click chemistry with [(18)F]fluoroazide to produce the [(18)F]-radiolabeled siRNA with excellent radiochemical yield and purity.  相似文献   

16.
Cerebral beta-adrenergic receptors (beta-ARs) are of interest in several disorders including Parkinson's disease, Alzheimer's disease and in particular major depressive disorder. Development of a positron emission tomography (PET) ligand for imaging beta-ARs would allow the quantification of these receptors in the living human brain so as to better understand both the pathophysiology of depression and how to improve treatment. Currently there are no radioligands suitable for this purpose. In an attempt to achieve this goal, we prepared [(18)F]-labeled (2S)-1-(1-fluoropropan-2-ylamino)-3-(2-cyclohexylphenoxy)propan-2-ol (fluoro-Exaprolol; (2S)-1). Radiolabeling with fluorine-18 was accomplished via preparation of a precursor containing a tosyl leaving group (10), and utilizes the 2-oxazolidinone group to simultaneously protect both the amine and hydroxy groups. The oxazolidinone was readily removed with lithium aluminum hydride following a nucleophilic [(18)F]-fluoride for tosyl displacement to prepare [(18)F]-(2S)-1 in 31% radiochemical yield (uncorrected for decay), with >98% radiochemical purity in <1h. The specific activity of the formulated product was 927 mCi/micromol and the log P (pH 7.4) was 2.97. Preliminary biological evaluations in conscious rats indicated that [(18)F]-(2S)-1 had good brain uptake for imaging (0.8-1.3% injected dose/gram (% ID/g) of wet tissue, 5 min post-injection of the radiotracer) with a slow washout (>0.5% ID/g at 60 min post-injection) in all brain regions. Pharmacological challenges indicate that the binding is largely non-specific, as administration of Propranolol, authentic (2S)-1, or WAY 100635 prior to injection of [(18)F]-(2S)-1 did not block uptake of the radiotracer. These results indicate that [(18)F]-(2S)-1 is not a suitable candidate for PET imaging of cerebral beta-ARs.  相似文献   

17.
The fluoroalkyl-containing tropane derivative 2beta-carbo-2'-fluoroethoxy-3beta-(4-bromo-phenyl)tropane (MCL-322) is a highly potent and moderately selective ligand for the dopamine transporter (DAT). The compound was labeled with the short-lived positron emitter (18)F in a single step by nucleophilic displacement of the corresponding tosylate precursor MCL-323 with no-carrier-added [(18)F]fluoride. The positron emission tomography (PET) radiotracer 2beta-carbo-2'-[(18)F]fluoroethoxy-3beta-(4-bromo-phenyl)tropane [(18)F]MCL-322 was obtained in decay-corrected radiochemical yields of 30-40% at a specific radioactivity of 1.6-2.4Ci/mumol (60-90GBq/mumol) at the end-of-synthesis (EOS). Small animal PET, ex vivo and in vivo biodistribution experiments in rats demonstrated a high uptake in the striatum (3.2% ID/g) 5min after injection, which increased to 4.2% ID/g after 60min. The uptake in the cerebellum was 1.8% ID/g and 0.6% ID/g after 5min and 60min post-injection, respectively. Specific binding to DAT of [(18)F]MCL-322 was confirmed by blocking experiments using the high affinity DAT ligand GBR 12909. The radiopharmacological characterization was completed with metabolite and autoradiographic studies confirming the selective uptake of [(18)F]MCL-322 in the striatum. It is concluded that the simple single-step radiosynthesis of [(18)F]MCL-322 and the promising radiopharmacological data make [(18)F]MCL-322 an attractive candidate for the further development of a PET radiotracer potentially suitable for clinical DAT imaging in the human brain.  相似文献   

18.
In recent years, considerable effort has been spent on the design, synthesis and pharmacological characterization of radiofluorinated derivatives of the 5-HT(1A) receptor antagonist, WAY-100635, for the in vivo study of these receptors in human brain with PET. (Pyridinyl-6)-fluoro- and (pyridinyl-5)-fluoro-analogues of WAY-100635 (6-fluoro and 5-fluoro-WAY-100635, 5a/6a) were synthesized as well as the corresponding chloro-, bromo- and nitro-derivatives as precursors for labelling (5b-d and 6b-d). Comparative radiolabelling of these precursors with fluorine-18 (positron-emitting isotope, 109.8 min half-life) clearly demonstrated that only ortho-fluorination in this pyridine series, and not meta-fluorination, is of interest for the preparation of a radioligand by nucleophilic heteroaromatic substitution. 6-[(18)F]Fluoro-WAY-100635 ([(18)F]5a) can be efficiently synthesized in one step, either from the corresponding 6-bromo precursor (using conventional heating at 145 degrees C for 10 min) or from the corresponding 6-nitro precursor (using microwave activation at 100 W for 1 min). Typically, 15-25 mCi (0.55-0.92 GBq) of 6-[(18)F]fluoro-WAY-100635 ([(18)F]5a, 1-2 Ci/micromol or 37-72 GBq/micromol) were obtained in 50-70 min starting from a 100 mCi (3.7 GBq) aliquot of a batch of cyclotron-produced [(18)F]fluoride. This (18)F-labelled radioligand is now being evaluated in PET studies.  相似文献   

19.
Aim of this study was to label the potent dual P-glycoprotein (Pgp) and breast cancer resistance protein (BCRP) inhibitor elacridar (1) with (18)F to provide a positron emission tomography (PET) radiotracer to visualize Pgp and BCRP. A series of new 1- and 2-halogen- and nitro-substituted derivatives of 1 (4a-e) was synthesized as precursor molecules and reference compounds for radiolabelling and shown to display comparable in vitro potency to 1 in increasing rhodamine 123 accumulation in a cell line overexpressing human Pgp (MDCKII-MDR1). 1-[(18)F]fluoroelacridar ([(18)F]4b) was synthesized in a decay-corrected radiochemical yield of 1.7±0.9% by a 1-step no-carrier added nucleophilic aromatic (18)F-substitution of 1-nitro precursor 4c. Small-animal PET imaging of [(18)F]4b was performed in na?ve rats, before and after administration of unlabelled 1 (5 mg/kg, n=3), as well as in wild-type and Mdr1a/b((-/-))Bcrp1((-/-)) mice (n=3). In PET experiments in rats, administration of unlabelled 1 increased brain activity uptake by a factor of 9.5 (p=0.0002, 2-tailed Student's t-test), whereas blood activity levels remained unchanged. In Mdr1a/b((-/-))Bcrp1((-/-)) mice, the mean brain-to-blood ratio of activity at 60 min after tracer injection was 7.6 times higher as compared to wild-type animals (p=0.0002). HPLC analysis of rat brain tissue extracts collected at 40 min after injection of [(18)F]4b revealed that 93±7% of total radioactivity in brain was in the form of unchanged [(18)F]4b. In conclusion, the in vivo behavior of [(18)F]4b was found to be similar to previously described [(11)C]1 suggesting transport of [(18)F]4b by Pgp and/or BCRP at the rodent BBB. However, low radiochemical yields and a significant degree of in vivo defluorination will limit the utility of [(18)F]4b as a PET tracer.  相似文献   

20.
The biodistribution of the nicotinic acetylcholine receptor (nAChR) radioligand 2-[18F]fluoro-3-[2(S)-2-azetidinylmethoxy]pyridine ([18F]fluoro-A-85380, half-life of fluorine-18 = 110 min) in selected rat brain areas was assessed in vivo. The radiotracer showed a good penetration in the brain. The regional distribution of the radioligand was consistent with the density of nAChRs determined from previous studies in vitro. Sixty minutes post-injection, the highest uptake was observed in the thalamus, (1% I.D./g tissue), an intermediate one in the frontal cortex (0.78% I.D./g tissue), and the lowest in the cerebellum (0.5% I.D./g tissue). Pretreatment with several nAChR ligands (nicotine, cytisine, epibatidine, unlabeled fluoro-A-85380) substantially reduced uptake of the radioligand in the three cerebral areas. Pretreatment with the nAChR channel blocker mecamylamine or with the muscarinic receptor antagonist dexetimide had no appreciable effect on the uptake of fluoro-A-85380. These results support the high in vivo selectivity and specificity of fluoro-A-85380. Therefore, [18F]fluoro-A-85380 may be useful for positron emission tomography study of nAChRs in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号