首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Because small ruminants (<15 kg) have a high ratio of metabolic rate to fermentation capacity, they are expected to select and require low-fiber, nutrient-dense concentrate diets. However, recent studies suggest that small ruminants may not be as limited in their digestive capacity as previously thought. In this study, we examined harvesting, rumination, digestion, and passage of three diets (domestic figs Ficus carica, fresh alfalfa Medicago sativa, and Pacific willow leaves Salix lasiandra) ranging from 10 to 50% neutral detergent fiber content (NDF) in captive blue duikers (Cephalophus monticola, 4 kg). Harvesting and rumination rates were obtained by observing and videotaping animals on each diet, and digestibility and intake were determined by conducting total collection digestion trials. We estimated mean retention time of liquid and particulate digesta by administering Co-EDTA and forages labelled with YbNO3 in a pulse dose and monitoring fecal output over 4 days. Duikers harvested and ruminated the fig diet faster than the alfalfa and willow diets. Likewise, they achieved higher dry matter, energy, NDF, and protein digestibility when eating figs, yet achieved a higher daily digestible energy intake on the fresh willow and alfalfa than on the figs by eating proportionately more of these forages. Duikers maintained a positive nitrogen balance on all diets, including figs, which contained only 6.3% crude protein. Mean retention time of cell wall in the duikers’ digestive tract declined with increasing NDF and cellulose content of the diet. Digestibility coefficients and mean retention times of these small ruminants were virtually equivalent to those measured for ruminants two orders of magnitude larger, suggesting that they are well adapted for a mixed diet. Received: 10 August 1999 / Accepted: 16 November 1999  相似文献   

2.
North American porcupines (Erethizon dorsatum) subsist predominantly on low-protein, high-fiber, high-tannin diets. Therefore, we measured the porcupine's ability to digest dry matter, fiber, and protein by conducting digestion trials on eight natural forages and one pelleted ration varying in concentration of fiber, nitrogen, and tannins. On these diets, dry matter intake ranged from 5 to 234 g/kg(0.75)/d and dry matter digestibility ranged from 62% to 96%. Porcupines digested highly lignified fiber better than many large hindgut fermenters and ruminants. The porcupine's ability to digest fiber may be explained, in part, by their lengthy mean retention time of particles (38.43+/-0.56 h). True nitrogen digestibility was 92% for nontannin forages and pellets. Endogenous urinary nitrogen was 205 mg N/kg(0.75)/d, and metabolic fecal nitrogen was 2.8 g N/kg dry matter intake. Porcupines achieved nitrogen balance at relatively low levels of nitrogen intake (346 mg N/kg(0.75)/d). Tannins reduced the porcupines' ability to digest protein. However, the reduction in protein digestion was not predictable from the amount of bovine serum albumin precipitated. Like many herbivores, porcupines may ameliorate the effects of certain tannins in natural forages on protein digestibility through physiological and behavioral adaptations.  相似文献   

3.
We studied the effects of elevated ultraviolet-B radiation on interactions between insect herbivores and their host plants by exposing two species of phytochemically different willows, Salix myrsinifolia and S. phylicifolia, to a modulated increase in ultraviolet radiation in an outdoor experiment and monitoring the colonisation of insect herbivores on these willows. We examined the effect of increased ultraviolet-B (UV-B) radiation on (1) the quality of willow leaves, (2) the distribution and abundance of insect herbivores feeding on these willows, (3) the resulting amount of damage, and (4) the performance of insect larvae feeding on the exposed plant tissue. Six clones of each of the two willow species were grown in eight blocks for 12 weeks in the UV-B irradiation field. The clones were exposed to a constant 50% increase in UV-B radiation (simulating 20-25% ozone depletion), to a small increase in UV-A radiation or to ambient solar irradiation. We allowed colonisation on the willows by naturally occurring insects, but also introduced adults of a leaf beetle, Phratora vitellinae, a specialist herbivore on S. myrsinifolia. Increased UV-B radiation did not affect any of the measured indices of plant quality. However, numbers of P. vitellinae on S. myrsinifolia were higher in plants with UV-B treatment compared with UV-A and shade controls. In laboratory tests, growth of the second-instar larva of P. vitellinae was not affected by UV-B treatment of S. myrsinifolia, but was retarded on UV-B treated leaves of S. phylicifolia. In addition, naturally occurring insect herbivores were more abundant on willows exposed to elevated UV-B radiation compared to those grown under control treatments. In spite of the increased abundance of insect herbivores, willows treated with elevated UV-B did not suffer more herbivore damage than willows exposed to ambient solar radiation (shade control). The observed effects of UV-B on herbivore abundance, feeding and growth varied significantly due to spatial variation in environment quality, as indicated by the UV-treatment x block interaction. The results suggest that (1) environmental variation modifies the effects of UV-B radiation on plant-insect interactions and (2) specialist herbivores might be more sensitive to chemical changes in their secondary host plants (S. phylicifolia) than to changes in their primary hosts (S. myrsinifolia).  相似文献   

4.
A South African winter ephemeral D. pluvialis was exposed, under low and high nutrient conditions, to four different daily doses of biologically effective UV-B radiation. These simulated different depletions (range 0–30%) in the ozone layer at the southerly distribution limit (33° 56′S) of this species, and included daily UV-B doses received at the northerly distribution limit (26° 38′S) without ozone depletion. Growth inhibition by increased UV-B radiation was observed during early vegetative stages, but only under low nutrient conditions. Thereafter, net CO2 assimilation rate, growth and reproduction were stimulated by an increase in UV-B radiation, though doses above those approximating a 20% ozone depletion appeared to be inhibitory. Differential stimulation occurred in the two nutrient treatments. Under high nutrient conditions, photosynthesis (specifically carboxylation efficiency), and numbers of leaves, inflorescences and diaspores per plant, and leaf areas increased, but leaf thickness decreased with increased UV-B radiation. Under low nutrient conditions, dry masses of leaves, stems, inflorescences and diaspores, and total above-ground dry masses increased with increased UV-B radiation. Foliar organic carbon and nitrogen concentrations and foliar concentrations of UV-B absorbing compounds were unaffected by increased UV-B radiation, but foliar P concentrations declined. Diaspore viability declined with increased UV-B radiation. The net effect was a 35 to 43% reduction in viable diaspore production under high nutrient conditions at UV-B doses equivalent to those currently received at the northerly distribution limit during the reproductive phase. It is concluded that anticipated increases in UV-B radiation could reduce regeneration success, and seedling survival in areas of low soil fertility, particularly at lower latitudes, and consequently increase the risk of localized population extinctions from stochastic causes.  相似文献   

5.
Spring wheat (Triticum aestivum) was grown in the field under ambient and supplemental levels of ultraviolet-B (UV-B, 280–315 nm) radiation to determine the potential for alteration in plant nutrients, decomposition, leaf quality and dry matter yield. Supplemental UV-B radiation simulating a 12, 20 and 25% stratospheric ozone depletion significantly decreased dry matter yield, but had no significant impact on harvest index. UV-B radiation resulted in an increase of the concentrations of N and K in all plant parts; changes of the concentrations of P, Mg, Fe and Zn varied in a tissue-dependent manner, as the decrease of P in leaves and stems, and its increase in spikes and grains. The mass of N, P, K, Mg, Fe and Zn in various plant parts and whole plant was generally decreased except leaf N mass was increased by enhanced UV-B radiation. Enhanced UV-B radiation decreased the concentrations of soluble carbohydrates in leaves and increased that of holocellulose and soluble proteins. After 60 and 100 days of decomposition of leaves and stems in the field, enhanced UV-B radiation stimulated the loss of organic C. As a consequence, the nutrient content of soils might be less diminished under enhanced UV-B radiation.  相似文献   

6.
The effects of elevated UV-B radiation on growth, symbiotic function and concentration of metabolites were assessed in purely symbiotic and NO3-fed nodulated plants of Lupinus luteus and Vicia atropurpurea grown outdoors either on tables under supplemental UV-B radiation or in chambers covered with different types of plexi-glass to attenuate solar ultraviolet radiation. Moderately and highly elevated UV-B exposures simulating 15% and 25% ozone depletion as well as sub- ambient UV-B did not alter organ growth, plant total dry matter and N content per plant in both L. luteus and V. atropurpurea. In contrast, elevated UV-B increased (P <0.05) flavonoid and anthocyanin concentrations in roots and leaves of L. luteus, but not of V. atropurpurea. Feeding nodulated plants of L. luteus under elevated UV-B radiation with 2 mM NO3 increased (P <0.05) nodule, leaf and total dry matter, and whole plant N content. With V. atropurpurea, NO3 reduced (P <0.05) nodule activity, root %N and concentrations of flavonoids, anthocyanins in roots and leaves and soluble sugars in roots, in contrast to an observed increase (P <0.05) in nodule dry matter per plant. Similarly, supplying 2 mM NO3 to L. luteus plants exposed to sub-ambient UV-B radiation significantly reduced individual organ growth, plant total biomass, nodule dry matter, nodule %N, and whole plant N content, as well as root concentrations of flavonoids, anthocyanins, soluble sugars, and starch of L. luteus, but not V. atropurpurea plants. These results show no adverse effect of elevated UV-B radiation on growth and symbiotic function of L. luteus and V. atropurpurea plants. However, NO3 supply promoted growth in L. luteus plants exposed to the highly elevated UV-B radiation.  相似文献   

7.
The effects of enhanced UV-B (290-320 nm) radiation on two native Mediterranean pines (Pinus pinea L., Pinus halepensis Mill.) were recorded during a one-year field study. Plants received ambient or ambient plus supplemental UV-B radiation (simulating a 15% stratospheric ozone depletion over Patras. Greece, 38.3°N. 29.1°E) and only natural precipitation, i.e. they were simultaneously exposed to other natural stresses. particularly water stress during summer. Supplemental UV-B irradiation started in early February, 1993 and up to late June, no effects were observed on growth and photochemical efficiency of photosystem II, as measured by chlorophy II fluorescence induction. Water stress during the summer was manifested in the control plants as a decline in the ratio of variable to maximum fluorescence (Fv/Fm), the apparent photon yield for oxygen evolution (φl) and the photosynthetic capacity at 5% CO2 (Pm). In addition, a partial needle loss was evident. Under supplemental UV-B radiation, however, the decreases in Fv/Fm, φi, and Pm. as well as needle losses were significantly less. Soon after the first heavy autumn rains. photosynthetic parameters in both control and UV-B treated plants recovered to similar values. but the transient summer superiority of UV-B irradiated plants resulted in a significant increase in their dry weight measured at plant harvest. during late January. 1994. Plant height. UV-B absorbing compounds, photosynthetic pigments and relative water content measured at late spring. late summer and at plant harvest, were not significantly affected by supplemental UV-B radiation. The results indicate that enhanced UV-B radiation may be beneficial for Mediterranean pines through a partial alleviation of the adverse effects of summer drought.  相似文献   

8.
Seedlings of Ceratonia siliqua L. were grown for 1 year in the field under ambient or ambient plus supplemental UV-B radiation (corresponding to 15% ozone depletion over Patras) and received two levels of additional irrigation during the summer dry period. The experiment was started during February 1998 and two major samplings were performed, the first at the end of the dry period (September 1998) and the second at the end of the experiment (January 1999). Plants receiving additional irrigation showed significantly higher leaf number, plant height and chlorophyll content at the end of the summer, but these differences were abolished at the final harvest. Plants growing under enhanced UV-B radiation had significantly fewer leaves and less nitrogen content at the end of the dry period, but these effects were also abolished at the final harvest, during which significant UV-B induced increases in stem dry mass were observed. None of the other measured parameters (mean leaf area, leaf dry mass, leaf thickness, UV-B absorbing compounds, phenolics, tannins and photochemical efficiency of PSII) were affected by either treatment. Combined UV-B / water effects were not significant. We may conclude that although some minor responses to enhanced UV-B radiation were evident, C. siliqua is resistant against UV-B radiation damage at the level applied.  相似文献   

9.
The influence of UV-B radiation from filtered or unfiltered fluorescent sunlamps on early seedling growth and translocation of 65Zn from cotyledons to the shoot was examined in two cultivars of cotton, Acala and Gregg. Ten-day-old seedlings which had been irradiated in the greenhouse for 6 h continuously each day for 14 days with 0.81 or 1.61 W × m-2 UV-B radiation under two unfiltered FS-40 sunlamps, showed pronounced phytotoxic damage. This was characterized at first by bronzing and glazing of the cotyledons and later by upward curling of the leaves and abscission. Leaf expansion, dry matter accumulation, and mobilization of 65Zn from the cotyledons was severely impaired in the young developing shoot under unfiltered UV-B radiation. A significant stress response also was observed in seedlings exposed to 0.61 W × m-2 UV-B radiation through a polystyrene filter and 0.73 W × m-2 UV-B radiation through a cellulose-acetate filter. This stress response was characterized by the formation of a red pigment in the petioles of the cotyledons, reduced leaf expansion, and reduced transport of 65Zn. Control seedlings exposed to 0.03 W × m-2 UV-B radiation through a mylar filter were green, had maximum leaf size and dry-matter accumulation, and had the greatest percentage of 65Zn translocated from the cotyledons.  相似文献   

10.
Tropical regions currently receive the highest levels of global solar ultraviolet-B radiation (UV-B, 280–320 nm) even without ozone depletion. The influence of natural, present-day UV-B irradiance in the tropics was examined for five tropical species including three native rain forest tree species (Cecropia obtusifolia, Tetragastris panamensis, Calophyilum longifolium) and two economically important species (Swietenia macrophylla, Manihot esculenta). Solar UV-B radiation conditions in a small clearing on Barro Colorado Island, Panama (9° N), were obtained using either a UV-B-excluding plastic film or a film that transmits most of the solar UV-B. Significant differences between UV-B-excluded and near-ambient UV-B plants were often exhibited as increased foliar UV-B absorbing compounds and, in several cases, as reduced plant height with exposure to solar UV-B. Increases in leaf mass per area and reductions in leaf blade length under solar UV-B occurred less frequently. Biomass and photosystem II function using chlorophyll a fluorescence were generally unaffected. The results of this study provide evidence that tropical vegetation, including native rain forest species, responds to the present level of natural solar UV-B radiation. This suggests that even minor ozone depletion in the tropics may have biological implications.  相似文献   

11.
The response of tundra plants to enhanced UV-B radiation simulating 15 and 30% ozone depletion was studied at two high arctic sites (Isdammen and Adventdalen, 78° N, Svalbard).The set-up of the UV-B supplementation systems is described, consisting of large and small UV lamp arrays, installed in 1996 and 2002. After 7 years of exposure to enhanced UV-B radiation, plant cover, density, morphological (leaf fresh and dry weight, leaf thickness, leaf area, reproductive and ecophysiological parameters leaf UV-B absorbance, leaf phenolic content, leaf water content) were not affected by enhanced UV-B radiation. DNA damage in the leaves was not increased with enhanced UV-B in Salix polaris and Cassiope tetragona. DNA damage in Salix polaris leaves was higher than in leaves of C. tetragona. The length of male gametophyte moss plants of Polytrichum hyperboreum was reduced with elevated UV-B as well as the number of Pedicularis hirsuta plants per plot, but the inflorescence length of Bistorta vivipara was not significantly affected. We discuss the possible causes of tolerance of tundra plants to UV-B (absence of response to enhanced UV-B) in terms of methodology (supplementation versus exclusion), ecophysiological adaptations to UV-B and the biogeographical history of polar plants  相似文献   

12.
Sixteen growing castrated lambs (37.0 ± 3.31 kg) were used in two 5 × 5 and one 6 × 6 Latin squares to measure the intake and digestibility of: (1) urea—molasses-treated straw, or mixtures containing (2) 25; (3) 50; or (4) 75% dried grass; and (5) grass alone. The dry matter intake was 40, 50, 69, 84 and 90 g day?1 per kg of metabolic live weight (P<0.001), and digestibility was 470, 489, 591, 671 and 735 g kg?1, respectively, for the above treatments. The dry matter intake of lambs offered diets 2, 3 and 4 as complete diets was 47, 56 and 66 g day?1 kg of metabolic live weight, and digestibility was 513, 621 and 673 g kg?1, respectively. When the feeds were offered separately, dry matter intake was 54, 63 and 78 g day?1 per kg of metabolic live weight and digestibility was 541, 582 and 662 g kg?1, respectively. Dry matter intake for mixed diets was higher (P<0.01) than for feeds given separately.  相似文献   

13.
Food intake is a key biological process in animals, as it determines the energy and nutrients available for the physiological and behavioural processes. In herbivores, the abundance, structure and quality of plant resources are known to influence intake strongly. In ruminants, as the forage quality declines, digestibility and total intake decline. Equids are believed to be adapted to consume high-fibre low-quality forages. As hindgut fermenters, it has been suggested that their response to a reduction in food quality is to increase intake to maintain rates of energy and nutrient absorption. All reviews of horse nutrition show that digestibility declines with forage quality; for intake, however, most studies have found no significant relationship with forage quality, and it has even been suggested that horses may eat less with declining forage quality similarly to ruminants. A weakness of these reviews is to combine data from different studies in meta-analyses without allowing the differences between animals and diets to be controlled for. In this study, we analysed a set of 45 trials where intake and digestibility were measured in 21 saddle horses. The dataset was analysed both at the group (to allow comparisons with the literature) and at the individual levels (to control for individual variability). As expected, dry matter digestibility declined with forage quality in both analyses. Intake declined slightly with increasing fibre contents at the group level, and there were no effects of crude protein or dry matter digestibility on intake. Overall, the analysis for individual horses showed a different pattern: intake increased as digestibility and crude protein declined, and increased with increasing fibre. Our analysis at the group level confirms previous reviews and shows that forage quality explains little of the variance in food intake in horses. For the first time, using mixed models, we show that the variable 'individual' clarifies the picture, as the horses showed different responses to a decrease in forage quality: some compensated for the low nutritional value of the forages by increasing intake, few others responded by decreasing intake with declining forage quality, but not enough to cause any deficit in their energy and protein supplies. On the whole, all the animals managed to meet their maintenance requirements. The individual variability may be a by-product of artificial selection for performance in competition in saddle horses.  相似文献   

14.
This critical review of recent literature questions earlier predictions that photosynthetic productivity of higher plants is vulnerable to increased ultraviolet-B (UV-B) radiation as a result of stratospheric ozone (O3) depletion. Direct UV-B-induced inhibition of photosynthetic competence is observed only at high UV-B irradiances and primarily involves the loss of soluble Calvin cycle enzymes and adaxial stomatal closure in amphistomatous plants. However, even under these extreme UV-B exposures, acclimation (e.g. induction of UV-B absorbing flavonoids) can protect the photosynthetic processes. In plants irradiated with UV-B throughout development a reduction in productivity is usually associated with a reduced ability to intercept light (i.e. smaller leaf area) and not an inhibition of photosynthetic competence. Finally, a review of field experiments utilizing realistic UV-B enhancement is made to evaluate whether the mechanisms involved in UV-B-induced depressions of photosynthesis are likely to impact on the photosynthetic productivity of crops and natural vegetation in the future. Predictions of plant responses to O3 depletion are suspect from square-wave irradiance experiments due to the increased sensitivity of plants to UV-B at relatively low photosynthetically-active photon flux densities (PPFD) and ultraviolet-A (UV-A) irradiances. Realistic modulated UV-B irradiances in the field do not appear to have any significant effects on photosynthetic competence or light-interception. It is concluded that O3 depletion and the concurrent rise in UV-B irradiance is not a direct threat to photosynthetic productivity of crops and natural vegetation.Key words: Biomass, development, ozone depletion, photosynthesis, ultraviolet-B.   相似文献   

15.
We examined the effect of ultraviolet-B radiation (UV-B, 290–320 nm) on the growth rate of the intertidal marine alga Ulva expansa (Setch.) S. & G. (Chlorophyta). Segments of thallus collected from a natural population were grown in outdoor seawater tanks. Combinations of UV-B-opaque screens, UV-B-transparent screens, and UV-B lamps were used to investigate the effects of solar UV-B and solar plus supplemental UV-B on the growth of these segments. Growth was measured by changes in segment surface area, damp weight, and dry weight. Growth rates of segments were inhibited under both solar UV-B and solar plus supplemental UV-B treatments. Growth rates were also inhibited by high levels of photosynthetically active radiation, independent of UV-B fluence. These results indicate that increases in UV-B resulting from further ozone depletion will have a negative impact on the growth of this alga.  相似文献   

16.
Tosserams  Marcel  Magendans  Erwin  Rozema  Jelte 《Plant Ecology》1997,128(1-2):267-281
In a greenhouse study, plants of three monocotyledonous and five dicotyledonous species, which occur in a Dutch dune grassland, were exposed to four levels of ultraviolet-B (UV-B) radiation. UV-B levels simulated up to 30% reduction of the stratospheric ozone column during summertime in The Netherlands. Six of the plant species studied in the greenhouse were also exposed to enhanced UV-B irradiance in an experimental field study. In the field experiment plants either received the ambient UV-B irradiance (control) or an enhanced UV-B level simulating 15–20% ozone depletion during summertime in The Netherlands. The purpose of both experiments was to determine the response of the plant species to UV-B radiation and to compare results obtained in the greenhouse with results of the field experiment. Large intraspecific differences in UV-B sensitivity were observed in the greenhouse study. Total dry matter accumulation of monocotyledons was increased, while dry matter accumulation of dicotyledons remained unaffected or decreased. The increase in biomass production of monocotyledons at elevated UV-B was not related to the rate of photosynthesis but to alterations in leaf orientation. In the greenhouse study, UV-B radiation also affected morphological characteristics. Shoot height or maximum leaf length of five out of eight species was reduced. In the field study only one species showed a significantly decreased maximum leaf length at enhanced UV-B. Possible reasons for this discrepancy are discussed. The absorbance of methanolic leaf extracts also differed between species. UV absorbance of field-grown plants was higher than greenhouse-grown plants. In the greenhouse study, the highest UV-B level increased UV-B absorbance of some species. In the field study however, this stimulation of UV absorbance was not observed. In general, results obtained in the greenhouse study were similar to results obtained in the field study. Difficulties in extrapolating results of UV-B experiments conducted in the greenhouse to the field situation are discussed.  相似文献   

17.
Fifteen populations of tartary buckwheat (Fagopyrum tataricum Gaertn.) occurring in habitats with different natural UV-B levels were sampled, and the plants were exposed to enhanced UV-B radiation under field conditions simulating 25% depletion of the stratospheric ozone layer. The experimental design was a 2 × 15 factorial, with two levels of UV-B radiation (ambient and enhanced UV-B radiation) and plants from 15 populations. The responses of plants in growth, morphology, productivity and in the composition of photosynthetic pigments were measured. The results demonstrated that there were significant differences among populations in responses to UV-B radiation: some populations exhibited a positive effect while others were negatively affected. The UV-B effects on plant traits were correlated with the constitutive values. A principal component analysis (PCA) was used to evaluate the overall sensitivity of responses to UV-B radiation. Our results suggest that the sensitivity of plants to UV-B radiation is not only associated with the ambient UV-B level in natural habitats but also with the relative growth rate and other factors.  相似文献   

18.
Gaberščik  Alenka  Novak  Mateja  Trošt  Tadeja  Mazej  Zdenka  Germ  Mateja  Björn  Lars-Olof 《Plant Ecology》2001,154(1-2):49-56
Pulmonaria officinalis is an understorey spring geophyte, which starts its vegetative period before full foliation of the tree storey. During its early growth phase it is exposed to full solar radiation, therefore the enhanced UV-B radiation could present a threat to this species. An outdoor experiment in which potted plants were exposed to below ambient, ambient, and above ambient (corresponding to 17% ozone reduction) UV-B radiation, was conducted in order to evaluate the radiation effects. The amount of photosynthetic pigments and photochemical efficiency of PSII were not affected, but the amount of UV-B absorbing compounds was lower in plants grown under reduced UV-B. This change was measurable after only fourteen days in reproductive shoots, while in the vegetative shoots, it was not detectable until after three months. The leaves of P. officinalis are variegated and the light green spots became less transparent to PAR under enhanced UV-B. The results reveal that under simulated 17% ozone depletion the harmful effects of UV-B on the measured parameters were negligible.  相似文献   

19.
Stratospheric ozone depletion is most pronounced at high latitudes, and the concurring increased UV-B radiation might adversely affect plants from polar areas. However, vascular plants may protect themselves against UV-B radiation by UV-absorbing compounds located in the epidermis. In this 3-year study, epidermal UV-B (max 314 nm) and UV-A (max 366 nm) screening was assessed using a fluorescence method in 12 vascular species growing in their natural environment at Svalbard. The potential for acclimation to increased radiation was studied with artificially increased UV-B, simulating 11% ozone depletion. Open-top chambers simulated an increase in temperature of 2–3°C in addition to the UV-B manipulation. Adaxial epidermal UV-B transmittance varied between 1.6 and 11.4%. Artificially increased UV-B radiation and temperature did not consistently influence the epidermal UV-B transmittance in any of the measured species, suggesting that they may not have the potential to increase their epidermal screening, or that the screening is already high enough at the applied UV-B level. We propose that environmental factors other than UV-B radiation may influence epidermal UV-B screening.  相似文献   

20.
Small ruminants are generally classified as either browsers or frugivores. We compared intake and digestion in one browsing species, the pudu (Pudu pudu), body weight 9 kg, and three frugivorous species, the red brocket (Mazama americana), 20 kg, the bay duiker (Cephalophus dorsalis), 12 kg, and Maxwell's duiker (C. maxwellii), 9 kg. Rations comprised: a commercial grain and alfalfa pellet, a small amount of vegetables, and mixed hay. Across species, neutral-detergent fiber (insoluble fiber) consumed averaged 34.2 ± 2.6% of dry matter (DM) while the crude protein consumed averaged 16.1 ± 0.5% DM. Apparent DM digestion was similar in pudu (75.2 ± 4.7%), brocket (73.2 ± 1.1%), and Maxwell's duikers (73.0 ± 2.8%), and significantly lower (P = 0.0167) in bay duikers (67.1 ± 4.3%). There were significant differences among species in digestibilities of neutral-detergent fiber, hemicellulose, and cellulose, but they did not follow body size differences, since larger species were expected to show higher digestion coefficients for fiber compared to smaller species. The type of fiber fed may have influenced these results. Frugivores may be adapted to a diet of soluble fibers, as might be found in wild fruits, instead of the insoluble fibers in the diet fed. Passage trials were conducted on the two smallest species. The mean transit time for pudu was 29.9 ± 0.8 hr, and for the Maxwell's duiker was 42.2 ± 6.4 hr. © 1996 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号