首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The early development of the parthenogenetic Marmorkrebs (marbled crayfish) is described with respect to external morphology, cell lineage, and segment formation. Due to its parthenogenetic reproduction mode, the question arises whether or not the marbled crayfish is a suitable model organism for developmental approaches. To address this question, we describe several aspects of the embryonic development until hatching. We establish ten stages based on characteristic external changes in the living eggs such as blastoderm formation, gastrulation process, formation and differentiation of the naupliar and post-naupliar segments, limb bud differentiation, and eye differentiation. The study of the post-naupliar cell division patterns, segment formation, and engrailed expression reveals distinct similarities to that of other freshwater crayfish. On this basis, we evaluate the possibility of a generalization of ontogenetic processes in the Marmorkrebs for either freshwater crayfish or other crustacean developmental systems.  相似文献   

2.
The parthenogenetic marbled crayfish, Marmorkrebs, has no known wild population, but has been introduced into natural ecosystems in two continents. Interactions with native crayfish, particularly through fighting, could affect the ecological impact of Marmorkrebs introductions. Marmorkrebs have been characterized anecdotally as having low levels of aggression, which could mitigate their potential to compete with native species. We isolated Marmorkrebs and Louisiana red swamp crayfish (Procambarus clarkii), then conducted size-matched intra and interspecific pairings. Marmorkrebs were as likely to win a fight as P. clarkii, although contests between P. clarkii and Marmorkrebs began significantly faster than contests between two Marmorkrebs. These results suggest that Marmorkrebs have the potential to compete with other species on the same level as P. clarkii, which is itself a highly successful introduced species around the world.  相似文献   

3.
Development, growth, and egg production of the Marmorkrebs (marbled crayfish), a crayfish with parthenogenetic reproduction, uncertain geographic origin, and taxonomic position, was studied under laboratory conditions. Length and weight increments strongly depended on temperature being highest at 30 degrees C, and lowest at 15 degrees C. At 25 degrees C, cephalothorax length and weight increased by 17.5 mm and 1700 mg, respectively, in the course of 150 d, whereas at 15 degrees C these parameters increased by only 7 mm and 100 mg during the same period of time. Photoperiod slightly affected growth at 25 degrees C. During growth experiments, mortality was lower at 20 degrees C compared to higher (25 degrees , 30 degrees C) or lower temperatures (15 degrees C), and lower under short-day than under long-day conditions. Females matured early (at an age of 141-255 d, a cephalothorax length of 14-21.5 mm, and a weight of 0.63-2 g) compared to other crayfish species. Reproductive females with a cephalothorax length of between 25-35 mm produced large clutches (up to 416 eggs) and brooding periods varied between 22 and 42 d. In order to establish a staging scheme for Marmorkrebs embryos, embryos were photographed, externally visible ontogenetic events charted, and dissected embryos stained with a nuclear dye. These experiments indicate that their development is virtually identical to that of other crayfish. In conclusion, these results and others show that the Marmorkrebs may be taken as a representative valid model organism for future developmental studies on Crustacea.  相似文献   

4.
After interest in keeping crayfish (Crustacea, Decapoda, Astacida) in home aquaria peaked in the mid-2000s, the aquarium trade has become a novel introduction pathway for non-native crayfish species in Germany. Here, we provide an update on the ornamental crayfish trade approximately one decade after the ‘crayfish hype’ to explore the long-term implications in terms of bio-invasion risk. Specifically, species’ availability in e-commerce and potential invasiveness were assessed and compared to previous studies. Morphological and ecological traits of the offered species were compiled and related to their long-term availability (covering 2005–2015). In July 2015, a total of 31 online shops offered 28 crayfish species, which represents a decline of 24 % in species diversity compared to the late 2000s. The estimated rate of import of new species has considerably flattened and approaches pre-hype values (<1 species year?1). However, the risk associated with the offered species, as assessed by a risk screening tool, has not decreased compared to the late 2000s. Long-term availability in the trade was primarily determined by bright coloration, the ability to reproduce under warm aquarium conditions, and a preference for lentic habitats. Species featuring such traits are likely to persist in the aquarium trade and include four high-risk species, most notably invasive and crayfish plague-carrying red swamp crayfish (Procambarus clarkii) and Marmorkrebs (Procambarus fallax f. virginalis). Persistent propagule pressure from aquaria has substantially contributed to the establishment of both species in Germany, stressing the need for more effective pathway management.  相似文献   

5.
We present a study of the hemolymph vascular system of the marbled crayfish, Procambarus fallax f. virginalis, the only crayfish species known to be parthenogenetic. To identify potential evolutionary patterns, we compared data from a total of 48 specimens of P. fallax with 22 specimens of Orconectes limosus. Visualizations (2D and 3D) were carried out using a combination of classical and modern morphological techniques. Our data were compared to the existing literature.Like all Decapoda, both P. fallax and O. limosus have a hemolymph vascular system, consisting of a globular heart with seven off-branching arteries. We were able to visualize in detail the heart of crayfish for the first time, i.e., the myocard with its clusters of muscles running through the lumen of the heart, the valves and flaps of ostia and arteries. Furthermore, the branching patterns of the seven artery systems were analyzed. Anatomical structures identified to be consistent in all specimens of both species were combined as ground pattern of hemolymph vascular system features for Astacida.  相似文献   

6.
Crustacean-SIFamide (GYRKPPFNGSIFamide) is a novel neuropeptide that was recently isolated from crayfish nervous tissue. We mapped the localisation of this peptide in the median brain and eyestalk neuropils of the marbled crayfish (Marmorkrebs), a parthenogenetic crustacean. Our experiments showed that crustacean-SIFamide is strongly expressed in all major compartments of the crayfish brain, including all three optic neuropils, the lateral protocerebrum with the hemiellipsoid body, and the medial protocerebrum with the central complex. These findings imply a role of this peptide in visual processing already at the level of the lamina but also at the level of the deeper relay stations. Immunolabelling is particularly strong in the accessory lobes and the deutocerebral olfactory lobes that receive a chemosensory input from the first antennae. Most cells of the olfactory globular tract, a projection neuron pathway that links deuto- and protocerebrum, are labelled. This pathway plays a central role in conveying tactile and olfactory stimuli to the lateral protocerebrum, where this input converges with optic information. Weak labelling is also present in the tritocerebrum that is associated with the mechanosensory second antennae. Taken together, we suggest an important role of crustacean-SIFamidergic neurons in processing high-order, multimodal input in the crayfish brain.  相似文献   

7.
Prolonged brood care is one of the evolutionary clues for the successful colonization of freshwater habitats by freshwater crayfish (Astacida). By means of macrophotography, light microscopy, and scanning electron microscopy we investigated all phases of brood care in freshwater crayfish, with particular emphasis on the morphological structures involved. We selected the recently discovered parthenogenetic marbled crayfish (species identity not yet known) as a model organism due to its fast reproduction and high resistance to handling stress. In order to examine if there is a causal relationship between brood care and the developmental status of the offspring's sensory apparatus, we additionally investigated major sense organs of juvenile Stages 1-5 in comparison with those of the adults. Brood care in the marbled crayfish is characterized by initial and final "active" phases dominated by specific maternal or juvenile behavior and a medial "passive" phase based more on the action of temporarily developed structures rather than on behavior. The most remarkable feature of this period, which includes permanent carrying of the eggs and the first two juvenile stages under the mother's abdomen, is safeguarding of hatching by a telson thread that keeps the helpless newborn hatchlings linked to the egg cases on the maternal pleopods and thus prevents them from being lost. Further important transient structures are the recurved hooks on the first pereiopods of Stage 1 and 2 juveniles that are used to firmly attach these nonfeeding stages to the mother's abdomen. In hatchlings all sense organs necessary for an independent life, such as eyes, olfactory aesthetascs, gustatory fringed setae, hydrodynamic receptor hairs, and statocysts are not developed or are underdeveloped, making brood care indispensable. Most of these sense organs appear in Stage 2 juveniles, but only from Stage 3, the first freelancing and feeding stage, are all sense organs well developed and operating, thus reducing brood care in this final period to temporary provisioning of shelter. Brooding of the eggs and postembryonic brood care are to some extent also found in other freshwater Decapoda like freshwater crabs and aeglid anomurans, but safeguarding of hatching is confined to the Astacida only. This sophisticated mode of passive brood care is unique in the animal kingdom and is apparently related to the sensory deficiencies of the first juvenile stage.  相似文献   

8.
There is a close association between parthenogenesis and polyploidy. For this reason, we undertook a karyological analysis to test whether the parthenogenetic Marmorkrebs, Procambarus fallax forma virginalis, possesses an enlarged set of chromosomes. For this purpose, we karyotyped the Marmorkrebs, the sexual form of Pfallax (together called P. fallax complex), and the closely related species P. alleni. The latter shows 94 chromosomes in the haploid condition. In contrast to this, we found a haploid set of 92 chromosomes in individuals of the P. fallax complex. However, in mitotic metaphases the sexual form shows 184 chromosomes, whereas the Marmorkrebs possesses 276 chromosomes. Hence, the parthenogenetic Marmorkrebs reveals a triple amount of the haploid chromosome number. In addition, we detected a strikingly large subtelocentric chromosome which appears once in haploid and twice in diploid cells of sexual individuals of the Pfallax complex. In the parthenogenetic Marmorkrebs, this prominent chromosome occurs thrice. All this clearly reveals that the Marmorkrebs is a triploid organism. The applicability of the used methods, the significance of polyploidy in evolution of Decapoda, putative pathways to parthenogenetic triploidy, a possible hybrid origin and the scientific and ecological consequences of an increased chromosome set in Marmorkrebs are discussed.  相似文献   

9.
Hexapoda have been traditionally seen as the closest relatives of the Myriapoda (Tracheata hypothesis) but molecular studies have challenged this hypothesis and rather have suggested a close relationship of hexapods and crustaceans (Tetraconata hypothesis). In this new debate, data on the structure and development of the arthropod nervous system contribute important new data ("neurophylogeny"). Neurophylogenetic studies have already provided several examples for individually identifiably neurons in the ventral nerve cord that are homologous between insects and crustaceans. In the present report, we have analysed the emergence of Engrailed-expressing cells in the embryonic brain of a parthenogenetic crayfish, the marbled crayfish (Marmorkrebs), and have compared our findings to the pattern previously reported from insects. Our data suggest that a group of six Engrailed-expressing neurons in the optic anlagen, the so-called secondary head spot cells can be homologised between crayfish and the grasshopper. In the grasshopper, these cells are supposed to be involved in establishing the primary axon scaffold of the brain. Our data provide the first example for a cluster of brain neurons that can be homologised between insects and crustaceans and show that even at the level of certain cell groups, brain structures are evolutionary conserved in these two groups.  相似文献   

10.
11.
We sequenced the complete mitogenomes of three species of Decapoda, Astacidea, comprising Astacida (freshwater crayfish) and Homarida (marine clawed lobsters): 1. Procambarus fallax f. virginalis (Astacida, Astacoidea), 2. Homarus gammarus (Homarida, Nephropoidea) and 3. Enoplometopus occidentalis (Homarida, Enoplometopoidea). Together with the available species in GenBank, the taxon Astacidea is covered with at least one representative for each of the four main subtaxa. Astacidea show unexpectedly diverse genomic organizations. Ten different gene arrangements have been observed in the 28 investigated species. Compared with the decapod ground pattern, a huge inversion, involving more than half of the mitogenome, has been found in four freshwater crayfish species of Astacoidea and convergently in one lobster species. Surprisingly, this inversion can also be observed in the distantly related Priapulida. This multiple convergent evolution suggests a relative ease in the evolution of great similarities in mitochondrial gene order. In addition, a partial or complete loss of the protein‐coding gene nad2 has been found in E. occidentalis and H. gammarus but not in Nephrops norvegicus, Homarus americanus and Enoplometopus debelius. A reversal of the strand asymmetry has been found in five astacideans which is supposed to be caused by the inversion of a replication origin in the control region.  相似文献   

12.
The presence of a characteristic crustacean larval type, the nauplius, in many crustacean taxa has often been considered one of the few uniting characters of the Crustacea. Within Malacostraca, the largest crustacean group, nauplii are only present in two taxa, Euphauciacea (krill) and Decapoda Dendrobranchiata. The presence of nauplii in these two taxa has traditionally been considered a retained primitive characteristic, but free-living nauplii have also been suggested to have reappeared a couple of times from direct developing ancestors during malacostracan evolution. Based on a re-study of Thysanoessa raschii (Euphausiacea) using preserved material collected in Greenland, we readdress this important controversy in crustacean evolution, and, in the process, redescribe the naupliar and metanaupliar development of T. raschii. In contrast to most previous studies of euphausiid development, we recognize three (not two) naupliar (= ortho-naupliar) stages (N1-N3) followed by a metanauplius (MN). While there are many morphological changes between nauplius 1 and 2 (e.g., appearance of long caudal setae), the changes between nauplius 2 and 3 are few but distinct. They involve the size of some caudal spines (largest in N3) and the setation of the antennal endopod (an extra seta in N3). A wider comparison between free-living nauplii of both Malacostraca and non-Malacostraca revealed similarities between nauplii in many taxa both at the general level (e.g., the gradual development and number of appendages) and at the more detailed level (e.g., unclear segmentation of naupliar appendages, caudal setation, presence of frontal filaments). We recognize these similarities as homologies and therefore suggest that free-living nauplii were part of the ancestral malacostracan type of development. The derived morphology (e.g., lack of feeding structures, no fully formed gut, high content of yolk) of both euphausiid and dendrobranchiate nauplii is evidently related to their non-feeding (lecithotrophic) status.  相似文献   

13.

Background

One marbled crayfish, Marmorkrebs, Procambarus fallax f. virginalis (Hagen, 1870), was discovered in a natural ecosystem in Japan in 2006. Because Marmorkrebs are parthenogenetic, they could establish a population from only a single individual, and thus pose a risk for becoming established in Japan, as they have in other countries. There are two major reasons to be concerned about the possibility of Marmorkrebs establishing viable populations in Japan. First, Japan??s only endemic crayfish, Cambaroides japonicus (De Haan, 1841), lives throughout Hokkaido and is endangered. Introduced Marmorkrebs are potential competitors that could further threaten C. japonicus. Second, Marmorkrebs live in rice paddies in Madagascar and consume rice. Marmorkrebs populations could reduce rice yields in Japan.

Results

We created five models in MaxEnt of the potential distribution of Marmorkrebs in Japan. All models showed eastern Honshu, Shikoku and Kyushu contain suitable habitats for Marmorkrebs. Hokkaido, the main habitat for C. japonicus, contained much less suitable habitat in most models, but is where the only Marmorkrebs in Japan to date was found.

Conclusions

Marmorkrebs appear to be capable of establishing populations in Japan if introduced. They appear to pose minimal threat to C. japonicus, but may negatively affect rice production.  相似文献   

14.
Frank Lyko 《当今生物学》2017,47(3):172-177
A crayfish for cancer research Marmorkrebs (or marbled crayfish) is a triploid crayfish known since the mid‐1990s, which reproduces parthenogenetically. It originated from the North American decapod species Procambarus fallax and was distributed as a popular aquarium pet. Subsequent anthropogenic releases have resulted in the establishment of several stable populations in the wild that constitute a serious invasive threat. Interestingly, marbled crayfish use a parthenogenetic mode of reproduction that results in the generation of clones with minimal genetic variation. In addition, the animals can be easily bred and manipulated in the laboratory. These features establish marbled crayfish as a novel and innovative model organism for tumor biology, particularly for the analysis of clonal evolution and epigenetic adaptation of tumor genomes.  相似文献   

15.
Recently, we briefly reported on the first case of parthenogenesis in the decapod Crustacea which was found in the Marmorkrebs or marbled crayfish, a cambarid species of unknown geographic origin and species identity. Curiously, this animal is known only from aquarium populations, where it explosively propagates. By means of light and electron microscopic techniques we have now investigated the reproductive components of this crayfish, using more than 100 specimens ranging from hatchling to repeatedly spawned adult. Additionally, we documented its principal life stages. Our results revealed that the external sexual characters and also the gonads of the marbled crayfish are purely female, making this fast-reproducing species a good model for investigating female reproductive features in crayfish. Testicular tissues, ovotestes, or male gonoducts, gonopores, or gonopods were never found, either in small juveniles or large adult specimens, confirming the parthenogenetic nature of this crayfish. Parthenogenesis may have arisen spontaneously or by interspecific hybridization since Wolbachia-like feminizing microorganisms were not found in the ovaries. The external sexual characters of the marbled crayfish are first recognized in Stage 4 juveniles and are structurally complete approximately 2 months after hatching in specimens of approximately 2 cm total length. In the same life stage the ovary is fully differentiated as well, although the oocytes are in previtellogenic and primary vitellogenic stages only. The architecture of the mature ovary and also the synchronous maturation of cohorts of primary vitellogenic oocytes by secondary vitellogenesis are in general agreement with data published on ovaries of bisexual crayfish. New results were obtained with respect to the muscular nature of the ovarian envelope and its extensive proliferation after the first spawning, the distribution of hemal sinuses in the ovarian envelope and in the interstitium around the oogenetic pouches, the high transport activity of the follicle cells, and the colonization of oogenetic pouches by previtellogenic oocytes that originate in the germaria. Investigation of the nuclei of oocytes in the germaria and oogenetic pouches revealed no signs of meiosis, as usually found in females of bisexual decapods, suggesting that parthenogenesis in the marbled crayfish might be an apomictic thelytoky. The detection of new rickettsial and coccidian infections in the ovary and further organs raises fears that the marbled crayfish might endanger native European species by transmission of pathogens once escaped into the wild.  相似文献   

16.
Previous studies of neurogenic activity in the thoracic neuromeres of indirect developing crustaceans indicated that the temporal patterns of neurogenesis can be correlated with the appearance of the thoracic appendages during larval and metamorphic development. To test further the idea that the temporal patterns of neurogenesis in crustaceans are related to their life histories, we examined neurogenesis in the ventral nerve cord of a direct developing crustacean, the freshwater crayfish Cherax destructor, whose life history contains neither larval stages nor metamorphoses. Neurogenesis was examined using the in vivo incorporation of bromodeoxyuridine into DNA. During late embryonic development the thoracic neuromeres of the crayfish contain arrays of mitotically active neuroblasts similar to those previously described in the spider crab and lobster. The arrays in the crayfish abdomen are, however, greatly reduced compared with those of the thorax. On hatching, both the thoracic and abdominal appendages of C. destructor are capable of movement. The pleopods, however, do not beat rhythmically until the second postembryonic stage whereas the pereiopods are not used in coordinated walking movements until the third stage. An examination of the time course of neurogenesis in the ventral nerve cord revealed that neurogenic activity in each neuromere ceases during or before the moult to the developmental stage in which its segmental appendage is first used in coordinated movements. These findings indicate that the patterns of neurogenesis in crustaceans are indeed related to the maturation of the segmental appendages and, in particular, to the maturation of motor behaviours.  相似文献   

17.
SUMMARY Higher crustaceans (class Malacostraca) represent the most species-rich and morphologically diverse group of non-insect arthropods. The superorders Eucarida and Peracarida, two large groups that separated over 350 million years ago, encompass most malacostracan diversity. Recently, the Hox genes of the peracarid woodlouse Porcellio scaber (Isopoda) were shown to be expressed in domains that coincide with morphological boundaries of body tagmata, which differ from those in insects ( Abzhanov and Kaufman 1999a,b ). Moreover, observed changes in Hox expression domains during ontogeny correlate with morphological remodeling, such as a transformation of the first thoracic leg into mouthpart maxillipeds, which occurs in the trunk of the embryo. Decapods have a different modification of the malacostracan bodyplan, with up to three pairs of maxillipeds and extensive fusion and cephalization of the thorax. Here we describe expression patterns of the trunk Hox genes Scr, Antp, Ubx, abd-A and cad in the eucarid crayfish Procambarus clarkii (Decapoda). We find that the crayfish expression patterns, for the most part, resemble those of the woodlouse Porcellio scaber (Isopoda), but are more modulated and complex . Nevertheless, as in Porcellio the boundaries of the Hox expression domains do correlate with morphological features and their modulations to transformations in the embryo. Thus we propose that the trunk Hox genes were likely important in the evolution of and currently play an essential role in the development of the complex decapod bodyplan.  相似文献   

18.
This study examines the expression of the photopigment gene in the developing retina of the freshwater crayfish Procambarus clarkii(Crustacea, Malacostraca, Decapoda). Both sense and anti-sense RNA probes were used for in situ hybridization (ISH) of whole embryos collected at various stages during development. A characteristic of retinal development is the formation of screening pigment in the retinular cells of the retinal ommatidia. This pigmentation is seen as a band that begins at the lateral side of the retinal field and progresses medially. At hatching the retina is approximately 50% pigmented. ISH of whole embryos shows that expression of the photopigment gene by the retinular cells correlates with the extent of the screening pigment band in the retina and with the presence of rhabdoms within the ommatidia. Sections taken through embryos after being hybridized indicate that staining is localized in the cytoplasm of the retinular cells and in the axonal region below the basement membrane. No staining reaction was seen in the rhabdoms of older ommatidia. ISH staining was also seen at the anterior midline of the protocerebrum where extraretinal photoreceptors have been reported. The data presented here show a close correlation of opsin expression within the retinular cells of the ommatidia and the formation of the very early rhabdoms, similar to Drosophila. The results will be discussed in relation to recent studies in Drosophila that suggest rhodopsin plays a role in effecting the organization of the terminal web-like cytoskeleton at the base of the developing rhabdom microvilli.  相似文献   

19.
The cardiovascular system performs key physiological functions even as it develops and grows. The ontogeny of cardiac physiology was studied throughout embryonic and larval development in the red swamp crayfish Procambarus clarkii using videomicroscopic dimensional analysis. The heart begins to contract by day 13 of development (at 25°C, 20 kPa O2). Prior to eclosion, heart rate (ƒH) decreases significantly. Previous data suggests that the decrease in cardiac parameters prior to hatching may be due to an oxygen limitation of the embryo. Throughout development, metabolizing mass and embryonic oxygen consumption primarily increased while egg surface area remains constant. The limited area for gas exchange of the egg membrane, in combination with the increasing oxygen demand of the embryo could result in an inadequate diffusive supply of oxygen to developing tissues. To determine if the decrease in cardiac function was the result of an internal hypoxia experienced during late embryonic development, early and late stage embryos were exposed to hyperoxic water (PO2 =40 kPa O2). The ƒH in late stage embryos increased significantly over control values when exposed to hyperoxic water suggesting that the suppression in cardiac function observed in late stage embryos is likely due to a limited oxygen supply.  相似文献   

20.
During early vertebrate development, a series of neuromeres divides the central nervous system from the forebrain to the spinal cord. Here we examine in more detail the expression of Wnt-3, a member of the Wnt gene family of secreted proteins, in the developing diencephalon, in comparison to the expression of the homeobox gene Dlx-1. In 9.5-day mouse embryos, Wnt-3 is expressed in a restricted area of the diencephalon before any morphological signs of subdivisions appear. Around embryonic day 11.5, Wnt-3 expression becomes restricted to one of the neuromeres of the diencephalon, the dorsal thalamus. Dlx-1 is expressed in a non-overlapping area immediately anterior to and abutting the Wnt-3 expressing domain, corresponding to the ventral thalamus. In addition, Wnt-3 is expressed in the midbrain-hindbrain region. In the adult mouse, Wnt-3 and Dlx-1 are expressed in subsets of neural cells derived from the original areas of expression in the diencephalon. Taken together, our results suggest that Wnt-3 and Dlx-1 provide positional information for the regional specification of neuromeres in the forebrain. The continued expression of these genes in the adult mouse brain suggests a distinct role in the mature CNS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号