首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Rieger V  Harzsch S 《Tissue & cell》2008,40(2):113-126
The embryonic development of neurotransmitter systems in crustaceans so far is poorly understood. Therefore, in the current study we monitored the ontogeny of histamine-immunoreactive neurons in the ventral nerve cord of the Marbled Crayfish, an emerging crustacean model system for developmental studies. The first histaminergic neurons arise around 60% of embryonic development, well after the primordial axonal scaffold of the ventral nerve cord has been established. This suggests that histaminergic neurons do not serve as pioneer neurons but that their axons follow well established axonal tracts. The developmental sequence of the different types of histaminergic neurons is charted in this study. The analysis of the histaminergic structures is also extended into adult specimens, showing a persistence of embryonic histaminergic neurons into adulthood. Our data are compared to the pattern of histaminergic neurons in other crustaceans and discussed with regard to our knowledge on other aspects of neurogenesis in Crustacea. Furthermore, the possible role of histaminergic neurons as characters in evolutionary considerations is evaluated.  相似文献   

3.
We examined the development of the nervous system in Aurelia (Cnidaria, Scyphozoa) from the early planula to the polyp stage using confocal and transmission electron microscopy. Fluorescently labeled anti-FMRFamide, antitaurine, and antityrosinated tubulin antibodies were used to visualize the nervous system. The first detectable FMRFamide-like immunoreactivity occurs in a narrow circumferential belt toward the anterior/aboral end of the ectoderm in the early planula. As the planula matures, the FMRFamide-immunoreactive cells send horizontal processes (i.e., neurites) basally along the longitudinal axis. Neurites extend both anteriorly/aborally and posteriorly/orally, but the preference is for anterior neurite extension, and neurites converge to form a plexus at the aboral/anterior end at the base of the ectoderm. In the mature planula, a subset of cells in the apical organ at the anterior/aboral pole begins to show FMRFamide-like and taurine-like immunoreactivity, suggesting a sensory function of the apical organ. During metamorphosis, FMRFamide-like immunoreactivity diminishes in the ectoderm but begins to occur in the degenerating primary endoderm, indicating that degenerating FMRFamide-immunoreactive neurons are taken up by the primary endoderm. FMRFamide-like expression reappears in the ectoderm of the oral disc and the tentacle anlagen of the growing polyp, indicating metamorphosis-associated restructuring of the nervous system. These observations are discussed in the context of metazoan nervous system evolution.  相似文献   

4.
One of the long-standing questions in zoology is that on the phylogenetic relationships within the Arthropoda. Comparative studies on structure and development of the nervous system can contribute important arguments to this discussion. In the present report, the arrangement of serotonin- and engrailed-expressing cells was examined in the embryonic ventral nerve cord of the American lobster Homarus americanus Milne Edwards, 1873 (Malacostraca, Pleocyemata, Homarida), and the spatial relationship of these two cell classes was explored by a double-labelling approach. The goal of this study was to determine whether the lobster serotonergic neurons are homologous to similar cells present in representatives of the Hexapoda and other Arthropoda. The results indicate that, in fact, these neurons in the lobster ventral nerve cord have corresponding counterparts in many other mandibulate taxa. Based on the finding of these homologies, the arrangement of serotonergic neurons in a model trunk ganglion of the mandibulate ground pattern was reconstructed as comprising an anterior and a posterior pair of serotonergic neurons per hemiganglion, each cell with both an ipsilateral and a contralateral neurite. Starting from this ground pattern, the evolutionary diversification of this class of neurons within the Mandibulata is discussed.  相似文献   

5.
6.
Volumetric and histological changes of the central nervous system were studied during post embryonic development of a spider, Argiope aurantia. The neural mass of Argiope grows allometrically with respect to volume of the cephalothorax and body weight. In the first instar 46% of the cephalothoracic volume constitutes the neural mass and this is reduced to 4% in the female (9th stage) and 12% in the male (7th stage) spider. Growth curves for the cephalic ganglion, measured at all stages, represent a straight line. The neural mass of females is two and a half times larger than that of the males. The ganglion increased 24 fold in female and 10 fold in male spiders. Addition of neural mass occurs in all stages. The brain volume is greater than that of the subesophageal ganglion in the first two instars. In subsequent stadia, the subesophageal ganglion grows faster, and in females it is finally three times and in males two times larger than the brain. Growth of cortex and neuropile depict exponential curves. Comparison of growth patterns of these shows an inverse relationship during development. While the volume of the cortex is higher in the first two or three stages, the volume of the neuropile is higher in the remaining stadia. The causes for this growth pattern are discussed. Counts of cell numbers show that there is a constant population of neurons throughout the post-embryonic development. The number of nerve cells in females is higher than in males, 11% in the subesophageal ganglion and 58% in the brain. The growth of the cortex is partly accomplished by an increase in cell volume. In male and female spiders the increase in Type-B cells is 20 and 50 fold, while that of large motor neurons is 200 and 600 fold respectively. The motor neurons of 20 μ and above number 63 in male and 916 in female adult spiders. The growth of neuropile occurs through an increase of dendritic arborization and axonal branching. The largest axons measure 1 μ in the first and 16 μ in adult stages. An increase of incoming sensory fibers is also noticed during development. Invasion of neural lamella into cortex and neuropile increases during development. Neural lamella which are 1-2 μ in the first stage grow to 40–100 μ thickness in adult female spiders, near the origin of the main nerves. One type of astral cells, counted in neuropile, increases 10 fold. The appearance of a central body and the beginning of web construction coincide during the second instar. The relationship between these two is discussed.  相似文献   

7.
Extant panarthropods (euarthropods, onychophorans and tardigrades) are hallmarked by stunning morphological and taxonomic diversity, but their central nervous systems (CNS) are relatively conserved. The timing of divergences of the ground pattern CNS organization of the major panarthropod clades has been poorly constrained because of a scarcity of data from their early fossil record. Although the CNS has been documented in three-dimensional detail in insects from Cenozoic ambers, it is widely assumed that these tissues are too prone to decay to withstand other styles of fossilization or geologically older preservation. However, Cambrian Burgess Shale-type compressions have emerged as sources of fossilized brains and nerve cords. CNS in these Cambrian fossils are preserved as carbon films or as iron oxides/hydroxides after pyrite in association with carbon. Experiments with carcasses compacted in fine-grained sediment depict preservation of neural tissue for a more prolonged temporal window than anticipated by decay experiments in other media. CNS and compound eye characters in exceptionally preserved Cambrian fossils predict divergences of the mandibulate and chelicerate ground patterns by Cambrian Stage 3 (ca 518 Ma), a dating that is compatible with molecular estimates for these splits.  相似文献   

8.
The principal neural cell types forming the mature central nervous system (CNS) are now understood to be diverse. This cellular subtype diversity originates to a large extent from the specification of the earlier proliferating progenitor populations during development. Here, we review the processes governing the differentiation of a common neuroepithelial cell progenitor pool into mature neurons, astrocytes, oligodendrocytes, ependymal cells and adult stem cells. We focus on studies performed in mice and involving two distinct CNS structures: the spinal cord and the cerebral cortex. Understanding the origin, specification and developmental regulators of neural cells will ultimately impact comprehension and treatments of neurological disorders and diseases.  相似文献   

9.
10.
11.
Development, growth, and egg production of the Marmorkrebs (marbled crayfish), a crayfish with parthenogenetic reproduction, uncertain geographic origin, and taxonomic position, was studied under laboratory conditions. Length and weight increments strongly depended on temperature being highest at 30 degrees C, and lowest at 15 degrees C. At 25 degrees C, cephalothorax length and weight increased by 17.5 mm and 1700 mg, respectively, in the course of 150 d, whereas at 15 degrees C these parameters increased by only 7 mm and 100 mg during the same period of time. Photoperiod slightly affected growth at 25 degrees C. During growth experiments, mortality was lower at 20 degrees C compared to higher (25 degrees , 30 degrees C) or lower temperatures (15 degrees C), and lower under short-day than under long-day conditions. Females matured early (at an age of 141-255 d, a cephalothorax length of 14-21.5 mm, and a weight of 0.63-2 g) compared to other crayfish species. Reproductive females with a cephalothorax length of between 25-35 mm produced large clutches (up to 416 eggs) and brooding periods varied between 22 and 42 d. In order to establish a staging scheme for Marmorkrebs embryos, embryos were photographed, externally visible ontogenetic events charted, and dissected embryos stained with a nuclear dye. These experiments indicate that their development is virtually identical to that of other crayfish. In conclusion, these results and others show that the Marmorkrebs may be taken as a representative valid model organism for future developmental studies on Crustacea.  相似文献   

12.
Mechanisms that regulate neural stem cell activity in the adult brain are tightly coordinated. They provide new neurons and glia in regions associated with high cellular and functional plasticity, after injury, or during neurodegeneration. Because of the proliferative and plastic potential of neural stem cells, they are currently thought to escape their physiological control mechanisms and transform to cancer stem cells. Signals provided by proteins of the transforming growth factor (TGF)-beta family might represent a system by which neural stem cells are controlled under physiological conditions but released from this control after transformation to cancer stem cells. TGF-beta is a multifunctional cytokine involved in various physiological and patho-physiological processes of the brain. It is induced in the adult brain after injury or hypoxia and during neurodegeneration when it modulates and dampens inflammatory responses. After injury, although TGF-beta is neuroprotective, it may limit the self-repair of the brain by inhibiting neural stem cell proliferation. Similar to its effect on neural stem cells, TGF-beta reveals anti-proliferative control on most cell types; however, paradoxically, many brain tumors escape from TGF-beta control. Moreover, brain tumors develop mechanisms that change the anti-proliferative influence of TGF-beta into oncogenic cues, mainly by orchestrating a multitude of TGF-beta-mediated effects upon matrix, migration and invasion, angiogenesis, and, most importantly, immune escape mechanisms. Thus, TGF-beta is involved in tumor progression. This review focuses on TGF-beta and its role in the regulation and control of neural and of brain-cancer stem cells. This work was supported by the German Federal Ministry of Education and Research (BMBF no. 01GA0510 and no. 0312134) and by the Bavarian State Ministry of Sciences, Research and the Arts, "Forneurocell grant".  相似文献   

13.
Summary DNA synthesis has been studied in chick embryos age between 2 and 10 days, using labelling with tritiated thymidine and stripping film autoradiography. The observations made earlier in the literature on a premitotic migration of the nuclei in the neural epithelium have been verified. In young stages (before day 7) peripherally migrated cells do not synthesize DNA, but after day 7 such a synthesis occurs. In spite of this, few mitoses are seen. The interpretation of these facts is discussed.The costs of this investigation were defrayed by grants from the Swedish Medical Research Council, the Medical Faculty of Lund, and the Royal Physiographic Society.  相似文献   

14.
The question whether tardigrades possess a tripartite, segmented brain and a subpharyngeal ganglion or not is a matter of ongoing debate. This study sets out to analyze the structure of the nervous system of Batillipes pennaki and Actinarctus doryphorus ocellatus in order to provide new insights specially into the organization of the tardigrade brain. Based on the assumption that tardigrades are members of the taxon Panarthropoda rather than of the taxon Cycloneuralia, insights into the organization of their brain could help to clarify their relationship within Panarthropoda. Our results indicate that B. pennaki and A. doryphorus ocellatus neither possess a tripartite brain nor a subpharyngeal ganglion. The implications of these findings are discussed and compared with reference to previous studies.  相似文献   

15.
A fundamental question in biology is how animal segmentation arose during evolution. One particular challenge is to clarify whether segmental ganglia of the nervous system evolved once, twice, or several times within the Bilateria. As close relatives of arthropods, Onychophora play an important role in this debate since their nervous system displays a mixture of both segmental and non-segmental features. We present evidence that the onychophoran “ventral organs,” previously interpreted as segmental anlagen of the nervous system, do not contribute to nerve cord formation and therefore cannot be regarded as vestiges of segmental ganglia. The early axonal pathways in the central nervous system arise by an anterior-to-posterior cascade of axonogenesis from neuronal cell bodies, which are distributed irregularly along each presumptive ventral cord. This pattern contrasts with the strictly segmental neuromeres present in arthropod embryos and makes the assumption of a secondary loss of segmentation in the nervous system during the evolution of the Onychophora less plausible. We discuss the implications of these findings for the evolution of neural segmentation in the Panarthropoda (Arthropoda + Onychophora + Tardigrada). Our data best support the hypothesis that the ancestral panarthropod had only a partially segmented nervous system, which evolved progressively into the segmental chain of ganglia seen in extant tardigrades and arthropods.  相似文献   

16.
In the attempt to know the factors influencing the vasculogenesis and to verify whether the vessel formation and growth are influenced, during different ontogenetic periods, by oxygen deficiency, the intraneural vascular network has been morphometrically analyzed in chicken embryo optic tectum under conditions of aerogenic hypoxia. Chicken eggs, incubated under routine conditions, have been half-painted with melted wax at the 2nd incubation day (i.d.). Fragments of optic tectum, isolated from living embryos at the 8th, 14th and 17th i.d., have been fixed and embedded according to the usual E/M procedures. A parallel series of normally developed embryos of 8, 14 and 17 incubation days has been likewise prepared. On semithin sections from the hypoxic specimens and normal control embryos the area occupied by vessels (Av), the number of vessels (Nv) and the diameter of the radially directed ones (Dv) have been evaluated. The preliminary results indicate that hypoxia evokes, from the 8th to the 17th i.d., an increment of the Av parameter, due first to microvessel neoformation and enlargement from the 8th to the 14th i.d., then from the 14th to the 17th i.d. only to a growth of new capillary branches. The response of the vascular network to the hypoxic condition is more marked from the 8th to the 14th i.d., t.i. when, in relation to the differentiation and the stratification of the neurons, the metabolic requirements of the developing tectum are presumably increased. O2 deficiency causes severe developmental disorders of the cyto- and mieloarchitecture of the tectum: the vascular response can apparently prevent actual damages only when the hypoxic condition lasts for a relatively short time.  相似文献   

17.
Summary Tyrosine hydroxylase, responsible for the formation ofl-dopa froml-tyrosine, has been identified in the central nervous system of the crayfish,Pacifastacus leniusculus (Crustacea, Decapoda). It requires pterine as cofactor and is inhibited by a number of known tyrosine hydroxylase inhibitors; iron-chelators, tyrosine analogues and also by the catecholamines, dopamine and noradrenaline. Iron enhances the activity of the enzyme. It differs from the vertebrate tyrosine hydroxylase in having a more alkaline pH optimum and a higher affinity for the pterine cofactor. Kinetic studies were performed andK m andV max values are presented. Dopa formed was identified and quantitatively measured by high pressure liquid chromatography (HPLC) and electrochemical detection.  相似文献   

18.
Saito T 《Nature protocols》2006,1(3):1552-1558
This protocol describes a basic method for in vivo electroporation in the nervous system of embryonic mice. Delivery of electric pulses following microinjection of DNA into the brain ventricle or the spinal cord central canal enables efficient transfection of genes into the nervous system. Transfection is facilitated by forceps-type electrodes, which hold the uterus and/or the yolk sac containing the embryo. More than ten embryos in a single pregnant mouse can be operated on within 30 min. More than 90% of operated embryos survive and more than 90% of these survivors express the transfected genes appropriately. Gene expression in neurons persists for a long time, even at postnatal stages, after electroporation. Thus, this method could be used to analyze roles of genes not only in embryonic development but also in higher order function of the nervous system, such as learning.  相似文献   

19.
The peripheral leg nerves of grasshoppers are initially formed by a set of pioneer neurons and guidepost cells. These cells are used as guiding structures for later-arising axons of sensory neurons. The development of the central projections of the pioneer cells, the guidepost cells and some sensory cells is shown with Lucifer Yellow injection or with DiI application. The axons of the pioneer cells Ti1 enter the central nervous system at 38% of embryonic development. They turn anteriorly close to the midline and ascend with no major branching to the brain. The axons of the guidepost cells Fe1 and Tr1 follow the same path but do not ascend to the brain. Sensory axons of the subgenual organ and the femoral organ probably do not follow the central path pioneered by the former neurons. They end ipsilaterally in the respective thoracic neuromere, as is found in the adult.  相似文献   

20.
Lipofection of cDNAs in the embryonic vertebrate central nervous system.   总被引:8,自引:0,他引:8  
C E Holt  N Garlick  E Cornel 《Neuron》1990,4(2):203-214
Neurons from the embryonic brain of Xenopus were transfected in vivo with a vector expressing luciferase cDNA using a simple lipofection procedure. Luciferase activity was monitored quantitatively, and the protein was immunolocalized in whole-mount embryonic brains. Luciferase-expressing neurons were often intensely labeled, displaying a Golgi-like filling of their dendrites, axons, and growth cones. Luciferase expression could be targeted to the retina by simply removing the skin epidermis covering the area and exposing the whole embryo to the DNA-lipofectin mixture. Luciferase activity in transfected embryos rose to peak values during the first 48 hr posttransfection and was still detectable 28 days later. Cotransfection experiments in which embryonic nervous tissue was exposed simultaneously to two different genes, luciferase and chloramphenicol acetyl-transferase, showed that transfected cells coexpressed the two genes at an extremely high frequency (85%-100%). This offers the possibility of targeting functionally significant genes along with benign reporter genes in the developing CNS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号