首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Primary aliphatic alkanols from C6 to C13 were tested for their antifungal activity against Saccharomyces cerevisiae using a broth dilution method. Undecanol (C11) was found to be the most potent fungicide against this yeast with the minimum fungicidal concentration (MFC) of 25 μg/ml (0.14 mM), followed by decanol (C10) with the minimum inhibitory concentration (MIC) of 50 μg/ml (0.31 mM). The time-kill curve study showed that undecanol was fungicidal against S. cerevisiae at any growth stages. This fungicidal activity was not influenced by pH values. Dodecanol (C12) was the most effective fungistatic but did not show any fungicidal activity up to 1600 μg/mL. Fungistatic dodecanol quickly reduced cell viability, but the cell viability recovered shortly after and then finally became no longer different from the control indicating that the effect of dodecanol on S. cerevisiae was classified as a sublethal damage. However, fungistatic dodecanol combined with sublethal amount of anethole showed a fungicidal activity against this yeast. Anethole completely restricted the recovery of cell viability. Therefore expression of the synergistic effect was probably due to the blockade of the recovering process from dodecanol induced-stress. The alkanols tested inhibited glucose-induced acidification by inhibiting the plasma membrane H+-ATPase. Octanol (C8) increased plasma membrane fluidity in the spheroplast cells of S. cerevisiae. The same series of aliphatic primary alkanols was also tested against a food spoilage fungus Zygosaccharomyces bailii and compared with their effects against S. cerevisiae. Decanol was found to be the most potent fungicide against Z. bailii with an MFC of 50 μg/ml (0.31 mM), whereas undecanol was found to be the most potent fungistatic with an MIC of 25 μg/ml (0.14 mM). The time-kill curve study showed that decanol was fungicidal against Z. bailii at any growth stage. This antifungal activity was slightly enhanced in combination with anethole. The primary antifungal action of medium-chain (C9–C12) alkanols comes from their ability as nonionic surfactants to disrupt the native membrane-associated function of the integral proteins. Hence, the antifungal activity of alkanols is mediated by biophysical process, and the maximum activity can be obtained when balance between hydrophilic and hydrophobic portions becomes the most appropriate.  相似文献   

2.
A homologous series (C3-C14) of each alkyl 3,4- and 3,5-dihydroxybenzoates, and 3,4- and 3,5-dihydroxyphenyl alkanoates exhibit similar antifungal activity against Saccharomyces cerevisiae. Their nonyl derivatives exhibit the most potent antifungal activity against this yeast with the minimum fungicidal concentration (MFC) in the range between 12.5 and 50 microg/mL. In addition, various 3,4-dihydroxybenzoates, possessing different side chains, namely unsaturated, branched and alicyclic were synthesized and their activity was compared.  相似文献   

3.
AIMS: The aim was to investigate the antifungal actions of nonyl gallate against Saccharomyces cerevisiae ATCC 7754. METHODS AND RESULTS: The maximum potency of both the growth inhibitory and the fungicidal effect against the yeast strain was found in nonyl gallate among n-alkyl gallates tested. Nonyl gallate induced ROS generation dose-dependently in growing cells. This ester rapidly killed yeast cells even when cell division was restricted by cycloheximide. This ester inhibited glucose-induced medium acidification and promoted the efflux of intracellular potassium ions in a nongrowing condition. Moreover, nonyl gallate induced a leakage of calcein from artificially prepared liposomes to a greater extent than dodecyl gallate did. CONCLUSIONS: These results suggested nonyl gallate injured plasma membrane of S. cerevisiae, resulting in its exhibition of fungicidal effect accompanying with a leakage of intracellular materials from the cells. SIGNIFICANCE AND IMPACT OF THE STUDY: Our study reveals new knowledge on the antifungal actions of nonyl gallate against S. cerevisiae. When nonyl gallate is applied as a food preservative, the level of its addition to foods may be reduced because of its potent antifungal activity compared with weak acids including sorbic acid and benzoic acid.  相似文献   

4.
Papyriflavonol A (PapA), a prenylated flavonoid (5,7,3',4'-tetrahydroxy-6,5'-di-(r,r-dimethylallyl)-flavonol), was isolated from the root barks of Broussonetia papyriferra. Our previous study showed that PapA has a broad-spectrum antimicrobial activity against pathogenic bacteria and fungi. In this study, the mode of action of PapA against Candida albicans was investigated to evaluate PapA as antifungal agent. The minimal inhibitory concentration (MIC) values were 10~25 microgram/ml for C. albicans and Saccharomyces cerevisiae, gram-negative bacteria (Escherichia coli and Salmonella typhimurium) and gram-positive bacteria (Staphylococcus epidermidis and Staphylococcus aureus). The kinetics of cell growth inhibition, scanning electron microscopy, and measurement of plasma membrane florescence anisotrophy revealed that the antifungal activity of PapA against C. albicans and S. cerevisiae is mediated by its ability to disrupt the cell membrane integrity. Compared with amphotericin B, a cell membrane disrupting polyene antibiotic, the hemolytic toxicity of PapA was negligible. At 10~25 microgram/ml of MIC levels for the tested strains, the hemolysis ratio of human erythrocytes was less than 5%. Our results suggest that PapA could be a therapeutic fungicidal agent having a broad spectrum antimicrobial agent.  相似文献   

5.
Octyl gallate (3,4,5-trihydroxybenzoate) was found to possess antifungal activity against Saccharomyces cerevisiae and Zygosaccharomyces bailii, in addition to its potent antioxidant activity. Catechol moiety is essential to elicit this activity. The primary fungicidal activity of octyl gallate comes from its ability to act as a nonionic surface-active agent (surfactant). The length of the alkyl chain is not a major contributor but plays an important role in eliciting the activity.  相似文献   

6.
The minimum inhibitory concentration (MIC) of the major intermediates of the general phenylpropanoid and lignin specific pathways of plants were determined employing a range of yeasts and bacteria. Of the three main classes of compounds tested, the hydroxycinnamaldehydes were the most effective, possessing notable antifungal and antibacterial activity. Determination of the minimum killing concentration (MKC) of the hydroxycinnamaldehydes revealed MIC/MKC ratios suggesting these compounds to be fungicidal, but not bactericidal, in their mode of action. In contrast, the hydroxycinnamic acids and hydroxycinnamyl alcohols possessed little antimicrobial activity, with the exception of the hydroxycinnamic acids, which were antibacterial.  相似文献   

7.
We examined tea extract, (-) epigallocatechin gallate (EGCg) and theaflavin digallate (TF3) for their antifungal and fungicidal activities against Trichophyton mentagrophytes, T. rubrum, Candida albicans and Cryptococcus neoformans. Tea extract (2.5%) inhibited completely the growth of both T. mentagrophytes and T. rubrum. EGCg at 2.5 mg/ml failed to inhibit their growth, whereas TF3 at 0.5 mg/ml inhibited the growth. EGCg (1mg/ml) showed no fungicidal activity against Trichophyton. TF3 (1mg/ml) killed Trichophyton by a long time contact (72-96 hrs). Tea extract showed a fungicidal activity against Trichophyton in a dose- and contact time-dependent manner. It did not inhibit the growth of C. albicans, but at a high concentration, inhibited slightly the growth of C. neoformans. It had no fungicidal activity against C. albicans or C. neoformans.  相似文献   

8.
A series of novel inhibitors of glucosamine-6-phosphate synthase, analogues of AADP and BADP, have been synthesized and their inhibitory, lipophilic and antifungal properties have been tested. The improvement in lipophilicity has not much affected the antifungal activity of the new compounds. Dipeptides containing norvaline and selected inhibitors have shown substantial activity against S. cerevisiae and C. glabrata and only poor activity against C. albicans strain. These peptides do not seem to be toxic towards human cells.  相似文献   

9.
Penaeidins are 5.5- to 6.6-kDa antimicrobial peptides recently isolated from the plasma and haemocytes of the tropical shrimp Penaeus vannamei. These molecules differ from the other classes of antimicrobial peptides in that they are composed of a proline-rich N-terminus and of a C-terminus containing six cysteine residues engaged in three disulfide bridges. In order to gain information on their antimicrobial activity, two penaeidins (Pen-2 and Pen-3a) were expressed in Saccharomyces cerevisiae. The recombinant Pen-2 and -3a were characterized in terms of primary structure by Edman degradation, mass spectrometry and gas chromatography. A protocol was then established to purify the amount of penaeidins required for the determination of their activity spectrum. We demonstrate in this study that expression in yeast is appropriate for the large-scale production of functional penaeidins, whose activities are almost indistinguishable from those of the native molecules. Data on Pen-2 and -3a activity demonstrate that penaeidins have a broad spectrum of antifungal properties associated with a fungicidal activity, and that their antibacterial activities are essentially directed against Gram-positive bacteria, with a strain-specific inhibition mechanism. Despite a better efficiency of Pen-3a on most of the tested strains, similar activity spectra and inhibition mechanisms were observed for both Pen-2 and -3a. Finally, no synergistic effect could be observed between the two molecules.  相似文献   

10.
A set of N-arylbenzenesulfonamides with various substituents at the arylamine and benzenesulfonyl positions were prepared, and their antifungal properties were measured in vitro against such plant pathogenic fungi as Pythium ultimum, Phytophthora capsici, Rhizoctonia solani, and Botrytis cinerea. Compounds 3, 4, 8, 9, 10, 14, 16, 18, 20, 21, 24 and 27 had antifungal activity over a broad spectrum of the phytopathogenic fungi tested, where 50% of inhibition (ED50) was in the range of 3-15 microg/ml. Based on the in vitro activity, six derivatives (3, 4, 10, 18, 21 and 27) were selected and tested further for their fungicidal efficacy in vivo. The fungicidal efficacy of 10, 21 and 27 had a disease control value of over 85% at 50 microg/ml against wheat leaf rust, while that of 4 was selective against cabbage club root disease.  相似文献   

11.
CTBT (7-chlorotetrazolo[5,1-c]benzo[1,2,4]triazine) causes intracellular superoxide production and oxidative stress and enhances the susceptibility of Saccharomyces cerevisiae, Candida albicans, and C.?glabrata cells to cycloheximide, 5-fluorocytosine, and azole antimycotic drugs. Here, we demonstrate the antifungal activity of CTBT against 14 tested filamentous fungi. CTBT prevented spore germination and mycelial proliferation of Aspergillus niger and the pathogenic Aspergillus fumigatus. The action of CTBT is fungicidal. CTBT increased the formation of reactive oxygen species in fungal mycelium as detected by 2',7'-dichlorodihydrofluorescein diacetate and reduced the radial growth of colonies in a dose-dependent manner. Co-application of CTBT and itraconazole led to complete inhibition of fungal growth at dosages lower than the chemicals alone. Antifungal and chemosensitizing activities of CTBT in filamentous fungi may be useful in combination treatments of infections caused by drug-resistant fungal pathogens.  相似文献   

12.
Panomycocin, the killer toxin of Pichia anomala NCYC 434 (K5), is a 49 kDa monomeric glycoprotein with exo-beta-1,3-glucanase activity (patent pending). In this study we evaluated the in vitro activity of panomycocin against a panel of 109 human isolates of seven different pathogenic Candida spp. using microdilution and time-kill methods. Panomycocin was most active against C. tropicalis, C. pseudotropicalis and C. glabrata with MIC(90) values of 1 microg/ml. It displayed significant activity against C. albicans and C. parapsilosis with MIC(90) values of 4 and 2 microg/ml, respectively. For C. krusei, the MIC(90) value was 8 microg/ml. Panomycocin was fungicidal against all the tested Candida spp. The MFC values were only one or 2 dilutions higher than the MICs with the exception of C. krusei isolates with MFCs greater than or equal to 4xMIC. Results of this study indicated that panomycocin could be considered as a natural antifungal agent against Candida infections and has significant potential for further investigation.  相似文献   

13.
Primary alcohols, from methanol to eicosanol, were applied to water for control of larval stage mosquitoes. By applying the alkanols as soluble solutions rather than as insoluble monolayers, and by trapping larvae under glass in assays that isolated them from the surface phenomena believed to be responsible for death by suffocation, we have shown that the action of alkanols against mosquito larvae is biochemical in nature, not just physical. Primary alcohols are known to act as general anesthetics, with increasing potency correlated to increasing chain length until a point of cutoff is reached, usually at dodecanol (C12), after which activity disappears entirely. In mosquitoes, we found that activity levels off after undecanol (C11) but does not disappear until after pentadecanol (C15), that it is reversible, and that chain length plays a role not only in potency, but also in the time needed to manifest toxic effects. We used sonication, a surfactant, temperature, and the introduction of double bonds to manipulate activity around the cutoff, suggesting that it is at least partially a function of solubility. Mosquitoes appear to be the first animal for which cutoff has been demonstrated to occur at a chain length beyond C12, offering new insights into the molecular basis of anesthetic cutoff and suggesting the possibility that alkanols might be used for selective pest control. Alkanols are stable, colorless, inexpensive, biodegradable and essentially non-toxic to humans, making them promising candidates for pest management programs.  相似文献   

14.
The mechanism of action of the antifungal agent 3-(4-bromophenyl)-5-acyloxymethyl-2,5-dihydrofuran-2-one against Candida albicans was investigated by flow cytometry, using propidium iodide, DiBAC4(3), and FUN-1 as the fluorescent dyes. A related but less active agent, together with amphotericin B and fluconazole, was tested in parallel for comparison of the results. The incrustoporine derivative was found to have a potent fungicidal activity on C. albicans, resulting in damage of cell membrane.  相似文献   

15.
In the present article, we examined the antileishmanial, antimalarial, antibacterial, and antifungal activities of several newly synthesized O-alkylated phloroglucinol compounds (11-19) which are analogues of the naturally occurring antimalarial compound 1. Analogues 12 and 16 exhibited antileishmanial activity against, Leishmania donovani promastigotes with IC(50)s of 5.3 and 4.2microg/mL, respectively. Naturally occurring monomeric formylated acylphloroglucinol compounds, grandinol (2), jensenone (3), and their analogues (29-37), were also synthesized and evaluated for antileishmanial, antimalarial, antibacterial, and antifungal activities. Amongst these, both grandinol and jensenone showed mild to moderate antibacterial, antifungal, and antileishmanial activities. Jensenone (3) was effective against Candida albicans with an IC(50) of 5.5microg/mL but was ineffective against Cryptococcus neoformans and methicillin-resistant Staphylococcus aureus. Among the analogues, 34 was the most active against C. albicans and C. neoformans with IC(50)s of 2.0 and 2.5microg/mL, respectively, and was fungicidal toward Candida albicans.  相似文献   

16.
A broad spectrum of medicinal plants was used as traditional remedies for various infectious diseases. Fungal infectious diseases have a significant impact on public health. Fungi cause more prevalent infections in immunocompromised individuals mainly patients undergoing transplantation related therapies, and malignant cancer treatments. The present study aimed to investigate the in vitro antifungal effects of the traditional medicinal plants used in India against the fungal pathogens associated with dermal infections. Indian medicinal plants (Acalypha indica, Lawsonia inermis Allium sativum and Citrus limon) extract (acetone/crude) were tested for their antifungal effects against five fungal species isolated from skin scrapings of fungal infected patients were identified as including Alternaria spp., Curvularia spp., Fusarium spp., Trichophyton spp. and Geotrichum spp. using well diffusion test and the broth micro dilution method. All plant extracts have shown to have antifungal efficacy against dermal pathogens. Particularly, Allium sativum extract revealed a strong antifungal effect against all fungal isolates with the minimum fungicidal concentration (MFC) of 50–100 μg/mL. Strong antifungal activity against Curvularia spp., Trichophyton spp., and Geotrichum spp. was also observed for the extracts of Acalypha indica, and Lawsonia inermis with MFCs of 50–800 μg/mL respectively. The extracts of Citrus limon showed an effective antifungal activity against most of the fungal strains tested with the MFCs of 50–800 μg/mL. Our research demonstrated the strong evidence of conventional plants extracts against clinical fungal pathogens with the most promising option of employing natural-drugs for the treatment of skin infections. Furthermore, in-depth analysis of identifying the compounds responsible for the antifungal activity that could offer alternatives way to develop new natural antifungal therapeutics for combating resistant recurrent infections.  相似文献   

17.
Growth inhibitory properties of chalcones to Candida   总被引:1,自引:1,他引:0  
The growth inhibitory properties of derivatives of chalcone (1,3-diphenyl-2-propen-1-one) were studied against oral Candida species, including C. albicans. C. tropicalis and C. glabrata. The antifungal activities of 2-hydroxychalcone and 2,5-dihydroxychalcone were so high that they inhibited the growth of most strins at the concentration of 200 μg ml-1, whereas chalcone was less active (to a limited number of strains) or inactive. 2-Hydroxychalcone was active only against C. glabrata. The other chalcones without a 2-hydroxyl group showed no significant antifungal activity. The minimum inhibitory concentration of 2-hydroxychalcone was 75 μ ml-1 to all strains of three Candida species sensitive to it. The antifungal property was based on a fungicidal action. The structure-activity relationship indicates that the presence of a hydroxyl group at the 2-position potentially improves the antifungal property.  相似文献   

18.
Pathogenic and spoilage fungi cause enormous challenges to food related fatal infections. Plant essential oil based classical emulsions can functions as antifungal agents. To investigate the antifungal spectrum, that is the scope of the nanoemulsion composed of Cleome viscosa essential oil and Triton-x-100 fabricated by ultrasonication method. Minimum inhibitory and fungicidal concentration of essential oil nanoemulsion (EONE) was tested against food borne pathogenic C. albicans. The MIC and MFC values ranged from 16.5 to 33 µl/ml with significant reduction on biofilm of C. albicans isolates. The alteration of molecular fingerprints was confirmed by Fourier transformed infrared spectroscopy and subsequent reduction of chitin levels in cell walls was noted by spectroscopic analysis. The EONE and their bioactive compounds cause collateral damage on C. albicans cells.  相似文献   

19.
The increasing incidence of drug-resistant pathogens and toxicity of existing antifungal compounds has drawn attention towards the antimicrobial activity of natural products. The aim of the present study was to evaluate the antifungal activity of coriander essential oil according to classical bacteriological techniques, as well as with flow cytometry. The effect of the essential oil upon germ tube formation, seen as an important virulence factor, and potential synergism with amphotericin B were also studied. Coriander essential oil has a fungicidal activity against the Candida strains tested with MLC values equal to the MIC value and ranging from 0.05 to 0.4% (v/v). Flow cytometric evaluation of BOX, PI and DRAQ5 staining indicates that the fungicidal effect is a result of cytoplasmic membrane damage and subsequent leakage of intracellular components such as DNA. Also, concentrations bellow the MIC value caused a marked reduction in the percentage of germ tube formation for C. albicans strains. A synergetic effect between coriander oil and amphotericin B was also obtained for C. albicans strains, while for C. tropicalis strain only an additive effect was observed. This study describes the antifungal activity of coriander essential oil on Candida spp., which could be useful in designing new formulations for candidosis treatment.  相似文献   

20.
The fungicidal effects of the peptide HP (2-20). derived from the N-terminal sequence of Helicobacter pylori ribosomal protein L1 (RPL1). have been investigated. HP (2-20) displays a strong fungicidal activity against various fungi, without haemolytic activity against human erythrocyte cells, and the fungicidal activity is inhibited by Ca2+ and Mg2+ ions. In order to investigate the fungicidal mechanism(s) of HP (2-20). the amount of intracellular trehalose was measured in C. albicans. It was found that the amounts of intracellular trehalose were decreased when HP (2-20) was used. The action of the peptide against fungal cell membranes was further examined by the potassium-release test; HP (2-20) was found to increase the amount of K+ released from the cells. Furthermore, HP (2-20) caused significant morphological changes, as shown by scanning electron microscopy, and by testing the membrane disrupting activity using liposomes (phosphatidyl choline/cholesterol; 10: 1, w/w). Our results suggest that HP (2-20) may exert its antifungal activity by disrupting the structure of cell membranes, via pore formation or direct interaction with the lipid bilayers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号