首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Members of the cyclophilin (Cyp) family are known to function as co-chaperones, interacting with chaperones such as heat shock protein 90, and perform important roles in protein folding under high temperature stress. In addition, they have been isolated from a wide range of organisms. However, there have been no reports on the functions of algal Cyps under other stress conditions. To study the functions of the cDNAGjCyp-1 isolated from the red alga (Griffithsia japonica), a recombinant GjCyp-1 containing a hexahistidine tag at the amino-terminus was constructed and expressed inEscherichia coli. Most of the gene product expressed inE. coli was organized as aggregate insoluble particles known as inclusion bodies. Thus, the optimal time, temperature, and concentration ofl(+)-arabinose for expressing the soluble and nonaggregated form of GjCyp-1 inE. coli were examined. The results indicate that the induction of Cyp, at 0.2%l(+)-arabinose for 2 h at 25°C, had a marked effect on the yield of the soluble and active form of the co-chaperone as PPlase. An expressed fusion protein, H6GjCyp-1, maintained the stability ofE. coli proteins up to-75°C. In a functional bioassay of the recombinant H6GjCyp-1, the viability ofE. coli cells overexpressing H6GjCyp-1 was compared to that of cells not expressing H6GjCyp-1 at −75°C. For all the cycles of a freeze/thaw treatment, a significant increase in viability was observed in theE. coli cells overexpressing H6GjCyp-1. The results of the GjCyp-1 bioassays, as well asin vitro studies, strongly suggest that the algal Cyp confers freeze tolerance toE. coli.  相似文献   

2.
Smirnova  G. V.  Torkhova  O. A.  Oktyabr'skii  O. N. 《Microbiology》2003,72(5):542-547
The study of glutathione status in aerobically grown Escherichia coli cultures showed that the total intracellular glutathione (GSHin + GSSGin) level falls by 63% in response to a rapid downshift in the extracellular pH from 6.5 to 5.5. The incubation of E. coli cells in the presence of 50 mM acetate or 10 g/ml gramicidin S decreased the total intracellular glutathione level by 50 and 25%, respectively. The fall in the total intracellular glutathione level was accompanied by a significant decrease in the (GSHin : GSSGin) ratio. The most profound effect on the extracellular glutathione level was exerted by gramicidin S, which augmented the total glutathione level by 1.8 times and the (GSHout : GSSGout) ratio by 2.1 times. The gramicidin S treatment and acetate stress inhibited the growth of mutant E. coli cells defective in glutathione synthesis 5 and 2 times more severely than the growth of the parent cells. The pH downshift and the exposure of E. coli cells to gramicidin S and 50 mM acetate enhanced the expression of the sodA gene coding for superoxide dismutase SodA.  相似文献   

3.
Glycine betaine is known to be the preferred osmoprotectant in many bacteria, and glycine betaine accumulation has also been correlated with increased cold tolerance. Trehalose is often a minor osmoprotectant in bacteria and it is a major determinant for desiccation tolerance in many so-called anhydrobiotic organisms such as baker's yeast(Saccharomyces cerevisiae). Escherichia coli has two pathways for synthesis of these protective molecules; i.e., a two-step conversion of UDP-glucose and glucose-6-phosphate to trehalose and a two-step oxidation of externally-supplied choline to glycine betaine. The genes governing the choline-to-glycine betaine pathway have been studied inE. coli and several other bacteria and higher plants. The genes governing UDP-glucose-dependent trehalose synthesis have been studied inE. coli andS. cerevisiae. Because of their well-documented function in stress protection, glycine betaine and trehalose have been identified as targets for metabolic engineering of stress tolerance. Examples of this experimental approach include the expression of theE. coli betA andArthrobacter globiformis codA genes for glycine betaine synthesis in plants and distantly related bacteria, and the expression of theE. coli otsA and yeastTPS1 genes for trehalose synthesis in plants. The published data show that glycine betaine synthesis protects transgenic plants and phototrophic bacteria against stress caused by salt and cold. Trehalose synthesis has been reported to confer increased drought tolerance in transgenic plants, but it causes negative side effects which is of concern. Thus, the much-used model organismE. coli has now become a gene resource for metabolic engineering of stress tolerance.  相似文献   

4.
A sporulating culture ofBacillus thuringiensis subsp.kenyae strain HD549 is toxic to larvae of lepidopteran insect species such asSpodoptera litura, Helicoverpa armigera andPhthorimaea operculella, and a dipteran insect,Culex fatigans. A 1.9-kb DNA fragment, PCR-amplified from HD549 using cryII-gene-specific primers, was cloned and expressed inE. coli. The recombinant protein produced 92% mortality in first-instar larvae ofSpodoptera litura and 86% inhibition of adult emergence inPhthorimaea operculella, but showed very low toxicity againstHelicoverpa armigera, and lower mortality against third-instar larvae of dipteran insectsCulex fatigans, Anopheles stephensi andAedes aegypti. The sequence of the cloned crystal protein gene showed almost complete homology with a mosquitocidal toxin gene fromBacillus thuringiensis var.kurstaki, with only five mutations scattered in different regions. Amino acid alignment with different insecticidal crystal proteins using the MUTALIN program suggested presence of the conserved block 3 region in the sequence of this protein. A mutation in codon 409 of this gene that changes a highly conserved phenylalanine residue to serine lies in this block.  相似文献   

5.
Biological activities of the salannin type of limonoids isolated fromAzadirachta indica A. Juss were assessed using the gram pod borerHelicoverpa armigera (Hubner) and the tobacco armywormSpodoptera litura (Fabricius) (Lepidoptera: Noctuidae). Inhibition of larval growth was concomitant with reduced feeding by neonate and third instar larvae. All three compounds exhibited strong antifeedant activity in a choice leaf disc bioassay with 2.0, 2.3 and 2.8 (μ/cm2 of 3-O-acetyl salannol, salannol and salannin, respectively deterring feeding by 50% inS. litura larvae. In nutritional assays, all three comounds reduced growth and consumption when fed to larvae without any effect on efficiency of conversion of ingested food (ECI), suggesting antifeedant activity alone. No toxicity was observed nor was there any significant affect on nutritional indices following topical application, further suggesting specific action as feeding deterrents. When relative growth rates were plotted against relative consumption rates, growth efficiency of theH. armigera fed diet containing 3-O-acetyl salannol, salannol or salannin did not differ from that of starved control larvae (used as calibration curve), further confirming the specific antifeedant action of salannin type of limonoids. Where the three compounds were co-administered, no enhancement in activity was observed. Non-azadirachtin limonoids having structural similarities and explicitly similar modes of action, like feeding deterrence in the present case, have no potentiating effect in any combination.  相似文献   

6.
Previous studies have indicated that ADP-glucose pyrophosphorylase (ADPGlc PPase) from the cyanobacteriumAnabaena sp. strain PCC 7120 is more similar to higher-plant than to enteric bacterial enzymes in antigenicity and allosteric properties. In this paper, we report the isolation of theAnabaena ADPGlc PPase gene and its expression inEscherichia coli. The gene we isolated from a genomic library utilizes GTG as the start codon and codes for a protein of 48347 Da which is in agreement with the molecular mass determined by SDS-PAGE for theAnabaena enzyme. The deduced amino acid sequence is 63, 54, and 33% identical to the rice endosperm small subunit, maize endosperm large subunit, and theE. coli sequences, respectively. Southern analysis indicated that there is only one copy of this gene in theAnabaena genome. The cloned gene encodes an active ADPGlc PPase when expressed in anE. coli mutant strain AC70R1-504 which lacks endogenous activity of the enzyme. The recombinant enzyme is activated and inhibited primarily by 3-phosphoglycerate and Pi, respectively, as is the nativeAnabaena ADPGlc PPase. Immunological and other biochemical studies further confirmed the recombinant enzyme to be theAnabaena enzyme.  相似文献   

7.
To construct the Bac-to-Bac expression system of Bombyx mori nucleopolyhedrovirus (BmNPV), a transfer vector was constructed which contained an Escherichia coli (E. coli) mini-F replicon and a lacZ: attTN7: lacZ cassette within the upstream and downstream regions of the BmNPV polyhedrin gene. B. mori larvae were cotransfected with wild-type BmNPV genomic DNA and the transfer vector through subcutaneous injection to generate recombinant viruses by homologous recombination in vivo. The genomic DNA of budded viruses extracted from the hemolymph of the transfected larvae was used to transform E. coli DH10B. Recombinant bacmids were screened by kanamycin resistance, PCR and restriction enzyme (REN) digestion. One of the bacmid colonies, BmBacJS13, which had similar REN profiles to that of wild-type BmNPV, was selected for further research. To investigate the infectivity of BmBacJS13, the polyhedrin gene was introduced into the bacmid and the resultant recombinant (BmBacJS13-ph) was transfected to BmN cells. The budded viruses were collected from the supernatant of the transfected cells and used for infecting BmN cells. Growth curve analysis indicated that BmBacJS13-ph had a similar growth curve to that of wild-type BmNPV. Bio-assays indicated that BmBacJS13-ph was also infectious to B. mori larvae. Foundation items: 973 (2003CB114202); Programme Strategic Scientific Alliances between China and the Netherlands (2004CB720404); National Natural Fundation of China project (30630002)  相似文献   

8.
To understand the mechanism of phosphate accumulation, a gene encoding polyphosphate kinase (PPK) was cloned from the genomic library of Serratia marcescens by Southern hybridization. From the nucleotide sequence of a 4 kb DNA fragment, an open reading frame of 2063 nucleotides was identified encoding a protein of 686 amino acids with molecular mass of 70 kDa. The potential CRP binding site and pho box sequence were found upstream of the putative promoter in the regulatory region. The expression of PPK resulted in the formation of inclusion bodies and the product was active at low temperature. The E. coli strain harboring plasmid pSPK5 with ppk gene increased enzyme activity of polyphosphate kinase, resulting in increased accumulation of polyphosphate in E. coli.  相似文献   

9.
Summary In the course of an attempt to identify genes that encode Escherichia coli dihydropteridine reductase (DHPR) activities, a chromosomal DNA fragment that directs synthesis of two soluble polypeptides of Mr 44000 and 46000 was isolated. These proteins were partially purified and were identified by determination of their N-terminal amino acid sequences. The larger was serine hydroxymethyltransferase, encoded by the glyA gene, while the smaller was the previously described product of an unnamed gene closely linked to glyA, and transcribed in the opposite direction. Soluble extracts of E. coli cells that overproduced the 44 kDa protein had elevated DHPR activity, and were yellow in colour. Their visible absorption spectra were indicative of a CO-binding b-type haemoprotein that is high-spin in the reduced state. The sequence of the N-terminal 139 residues of the protein, deduced from the complete nucleotide sequence of the gene, had extensive homology to almost all of Vitreoscilla haemoglobin. We conclude that E. coli produces a soluble haemoglobin-like protein, the product of the hmp gene (for haemoprotein). Although the protein has DHPR activity, it is distinct from the previously purified E. coli DHPR.  相似文献   

10.
Carotenoids are important natural pigments produced by many microorganisms and plants. We have previously reported the isolation of a new marine bacterium,Paracoccus haeundaensis, which produces carotenoids, mainly in the form of astaxanthin. The astaxanthin biosynthesis gene cluster, consisting of six carotenogenic genes, was cloned and characterized from this organism. Individual genes of the carotenoid biosynthesis gene cluster were functionally expressed inEscherichia coli and each gene product was purified to homogeneity. Their molecular characteristics, including enzymatic activities, were previously reported. Here, we report cloning the genes for crtE, crtEB, crtEBI, crtEBIY, crtEBIYZ, and crtEBI-YZW of theP. haeundaensis carotenoid biosynthesis genes inE. coli and verifying the production of the corresponding pathway intermediates. The carotenoids that accumulated in the transformed cells carrying these gene combinations were analyzed by chromatographic and spectroscopic methods.  相似文献   

11.
The initial attempts at hyper-expressing buffalo/goat growth hormone (GH)-ORFs inEscherichia coli directly under various strong promoters were not successful despite the presence of a functional gene. High level expression of GH was achieved as a fusion protein with glutathione-S-transferase (GST). To produce native GH in an unfused state, we adapted an established strategy of two-cistronic approach in our system. In this strategy, utilizing one of the highly efficient reported sequences as the first cistron led to a nearly 1000-fold enhancement in the level of expression under anE. coli promoter (trc). In search of a newer first-cistron sequence as well as to see the generality of the two-cistronic approach, we explored the ability of different lengths of a highly expressing natural gene to act as an efficient first cistron. Surprisingly,GST, which is naturally highly expressible inE. coli, could not be fitted into a successful two-cistronic construct. In addition, placement of the entire two-cistronic expression cassette (which had earlier given high-level GH expression undertrc promoter) under theT7 promoter inE. coli failed to hyper-express GH. These results suggest that the successful exploitation of the two-cistron arrangement for hyper-expression of eukaryotic ORFs in bacteria is not as straightforward as was previously thought. It appears probable that factors such as the sequence context, together with the length and codons used in the first cistron are important as well.  相似文献   

12.
A genomic library of Zymomonas mobilis DNA was constructed in Escherichia coli using cosmid vector pHC79. Immunological screening of 483 individual E. coli strains revealed two clones expressing pyruvate decarboxylase, the key enzyme for efficient ethanol production of Z. mobilis. The two plasmids, pZM1 and pZM2, isolated from both E. coli strains were found to be related and to exhibit a common 4.6 kb SphI fragment on which the gene coding for pyruvate decarboxylase, pdc, was located.The pdc gene was similarily well expressed in both aerobically and anaerobically grown E. coli cells, and exerted a considerable effect on the amount of fermentation products formed. During fermentative growth on 25 mM glucose, plasmid-free E. coli lacking a pdc gene produced 6.5 mM ethanol, 8.2 mM acetate, 6.5 mM lactate, 0.5 mM succinate, and about 1 mM formate leaving 10.4 mM residual glucose. In contrast, recombinant E. coli harbouring a cloned pdc gene from Z. mobilis completely converted 25 mM glucose to up to 41.5 mM ethanol while almost no acids were formed.  相似文献   

13.
14.
Cry4Aa produced by Bacillus thuringiensis is a dipteran-specific toxin and is, therefore, of great interest for developing a bioinsecticide to control mosquitoes. However, the expression of Cry4Aa in Escherichia coli is relatively low, which is a major disadvantage in its development as a bioinsecticide. In this study, to establish an effective production system, a 1,914-bp modified gene (cry4Aa-S1) encoding Cry4Aa was designed and synthesized in accordance with the G + C content and codon preference of E. coli genes without altering the encoded amino acid sequence. The cry4Aa-S1 gene allowed a significant improvement in expression level, over five-fold, compared to that of the original cry4Aa gene. The product of the cry4Aa-S1 gene showed the same level of insecticidal activity against Culex pipiens larvae as that from cry4Aa. This suggested that unfavorable codon usage was one of the reasons for poor expression of cry4Aa in E. coli, and, therefore, changing the cry4Aa codons to accord with the codon usage in E. coli led to efficient production of Cry4Aa. Efficient production of Cry4Aa in E. coli can be a powerful measure to prepare a sufficient amount of Cry4Aa protein for both basic analytical and applied researches.  相似文献   

15.
A cDNA coding mutated cecropin CMIV fromBombyx mori was synthesized according to its amino acid sequence usingE. coli biased codons. The gene was cloned into the fusion expression vector pEZZ318 and was expressed inE. coli HB101. The fusion protein produced was purified by affinity chromatography to yield 26 mg/L fusion product. The anti-bacterial activities of recombinant cecropin CMIV were recovered after cleavage by chemical method.  相似文献   

16.
Summary The dedB gene of Escherichia coli has sequence similarity to the zfpA gene of the chloroplast chromosome. The functions of dedB and zfpA are unknown. We constructed derivatives of temperature-sensitive polA strains into whose chromosomes a plasmid containing the disrupted dedB gene was integrated by homologous recombination. These strains contained normal and disrupted dedB genes in their chromosomes. We then selected plasmid-segregated strains and found no cells containing the disrupted dedB gene, indicating that disruption of the dedB gene was lethal in polA strains of E. coli.  相似文献   

17.
The streptokinase (SK) gene from S. equisimilis H46A (ATCC 12449) was cloned in E. coli W3110 under the control of the tryptophan promoter. The recombinant SK, which represented 15% of total cell protein content, was found in the soluble fraction of disrupted cells. The solubility of this SK notably differed from that of the product of the SK gene from S. equisimilis (ATCC 9542) which had been cloned in E. coli W3110 by using similar expression vector and cell growth conditions, and occurred in the form of inclusion bodies.  相似文献   

18.
Summary A DNA segment covering the signal sequence coding region, the ribosome binding site, and the promoter of the staphylokinase (sak) 42D gene (Behnke and Gerlach 1987) was cloned into pUC19 to form a portable expression-secretion unit (ESU). Fusion of human interferon α1 (hIFNα1) and hybrid hIFNα1/2 genes to thissak ESU resulted in secretory expression of the two gene products in bothEscherichia coli andBacillus subtilis. While most of the IFNα was exported to the periplasmic space ofE. coli, about 99% was secreted to the culture medium by recombinantB. subtilis strains. The total yield inE. coli was 1.2×105 IU/ml. This level of expression and export led to instability of the recombinant strains that was spontaneously relieved in vivo by inactivation of thesak ESU through insertion of an IS1 element. No such instability was observed withB. subtilis although expression and secretion levels reached even 3×106 IU/ml. Proteolytic degradation of IFNα by extracellular proteases was avoided by a combination of constitutive expression and secretion during the logarithmic growth phase and the use of exoprotease-reduced host strains. The IFNα1 protein purified fromB. subtilis culture supernatant was correctly processed, carried the expected 11 amino acid N-terminal elongation that resulted from DNA manipulations and proved to be homogenous in Western blotting experiments. The same recombinant plasmid that directed efficient secretion of hIFNα1 inB. subtilis gave poor yields when introduced intoStreptococcus sanguis.  相似文献   

19.
Summary The denV gene of bacteriophage T4 was reconstituted from two overlapping DNA fragments cloned in M13 vectors. The coding region of the intact gene was tailored into a series of plasmid vectors containing different promoters suitable for expression of the gene in E. coli and in yeast. Induction of the TAC promoter with IPTG resulted in overexpression of the gene, which was lethal to E. coli. Expression of the TACdenV gene in the absence of IPTG, or the use of the yeast GAL1 or ADH promoters resulted in partial complementation of the UV sensitivity of uvrA, uvrB, uvrC and recA mutants of E. coli and rad1, rad2, rad3, rad4 and rad10 mutants of S. cerevisiae. The extent of denV-mediated reactivation of excision-defective mutants was approximately equal to that of photoreactivation of such strains. Excision proficient E. coli cells transformed with a plasmid containing the denV gene were slightly more resistant to ultraviolet (UV) radiation than control cells without the denV gene. On the other hand, excision proficient yeast cells were slightly more sensitive to killing by UV radiation following transformation with a plasmid containing the denV gene. This effect was more pronounced in yeast mutants of the RAD52 epistasis group.  相似文献   

20.
In a two-phase operation, E. coli containing λSNNU1 (Q S ) in the chromosome is typically cultured at 33°C and cloned gene expression is induced by elevating the temperature. At least 40°C is necessary for complete induction of cloned gene expression; however, temperatures above 40°C have been shown to inhibit cloned gene expression. This suggests that a three-phase operation, which has an induction phase between the growth and production phases, may result in higher gene expression. In this study, optimal temperature management strategies were investigated for the three-phase operation of cloned gene expression in thermally inducible E. coli/bacteriophage systems. The optimal temperature for the induction phase was determined to be 40°C. When the temperature of the production stage was 33°C, the optimal time period for the induction phase at 40°C was determined to be 60 min. In contrast, when the temperature of the production phase was 37°C, the optimal period for the induction phase at 40°C was 20∼30 min. When the three-phase temperature and temporal profile were set at a growth phase of 33°C, an induction phase at 40°C for 30 min, and a production phase at 37°C, the highest level of cloned gene expression was achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号