首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The morphology of visual interneurons in the tiger beetle larva was identified after recording their responses. Stained neurons were designated as either medulla or protocerebral neurons according to the location of their cell bodies. Medulla neurons were further subdivided into three groups. Afferent medulla neurons extended processes distally in the medulla neuropil and a single axon to the brain through the optic nerve. They received their main input from stemmata on the ipsilateral side. Two distance-sensitive neurons, near-by sensitive and far-sensitive neurons, were also identified. Atypical medulla neurons extended their neurites distally in the medulla and proximally to the brain, as afferent medulla neurons, but their input patterns and the shapes of their spikes differed from afferent neurons. Protocerebral neurons sent a single axon to the medulla neuropil. They spread collateral branches in the posterior region of the protocerebrum on its way to the medulla neuropil. They received main input from stemmata on the contralateral side. Medulla intrinsic neurons did not extend an axon to the brain, and received either bilateral or contralateral stemmata input only. The input patterns and discharge patterns of medulla neurons are discussed with reference to their morphology.  相似文献   

2.
1.  The larva of the tiger beetle (Cicindela chinensis) possesses six stemmata on either side of the head. Optical and physiological properties of two pairs of large stemmata and a pair of anterior medium sized stemmata, and responses of second-order visual interneurons (medulla neurons) have been examined.
2.  Objects at infinite distance were estimated to focus 50 m deep in the retina in the large stemmata. Receptive fields of four large stemmata, the acceptance angle of each being 90°, largely overlapped one another.
3.  The stemmata possessed a single type of retinular cell with a maximal spectral sensitivity at 525 nm, and a flicker fusion frequency of 25–50 Hz.
4.  Medulla neurons expanded fan-shaped dendrites in the medulla neuropil, and their axons extended into the protocerebrum. They responded to illumination with a variety of discharge patterns. They also responded with spike discharges to moving objects and to apparent movements provided by sequential illumination or extinction of LEDs. They did not show directional selectivity. They possessed well-defined receptive fields ranging from 30° to 105°.
  相似文献   

3.
The visual system of the larval tiger beetle (Cicindela chinensis) consists of six (two large, two mediumsized, and two small) stemmata on either side of the head, and an underlying neuropil mass. Each stemma exhibits a corneal lens and an underlying rhabdom layer. Retinular cells extend single proximal axons into the neuropil mass. The neuropil mass has a flattened heart-shape, and consists of two juxtaposed identical structures, each being a neuropil complex of each of the two large stemmata. The complex consists of lamina and medulla neuropils. Most retinular axons terminate in the lamina neuropil. Axons of two types of lamina monopolar neurons descend parallel to each other into the lamina neuropil. Moreover, each lamina neuropil contains a single giant monopolar neuron. Possible centrifugal processes and tangential neurons also occur. Lamina monopolar axons descend straight into the medulla neuropil. Medulla neurons spread fan-shaped dendrites distally in the medulla neuropil and send single axons toward the protocerebrum. These data are discussed with respecct to the unique visual behavior of this larva and in comparison with other insect visual systems.  相似文献   

4.
The tiger beetle larva shows two distinct visual responses, a predatory jump and an evasive withdrawal into the burrow (escape). In the present study the visual stimuli controlling these two responses have been behaviorally analyzed in the larva of Cicindela chinensis. The threshold size needed for a target to elicit both responses is a visual angle of 5–7°. The velocities of moving targets needed to elicit the responses are 0.4–33° s−1 for the jump and 0.76–90° s−1 for the escape. Choice between the two responses appears to be controlled by the actual target size rather than by the angular size. It also appears to be controlled by the target height. As the height of the target increases, the probability for the jump decreases, whereas the probability for the escape increases. Response properties of the larva with only a single functional stemma, the other stemmata being occluded, are different from those of the intact larva, which suggests cooperation of at least two stemmata for the release of different visual responses. Visual responses of the one-stemma larva still vary, however, with target size and target height, which suggests the visual responses are partially controlled even by a single stemma. Although our data do not resolve these conflicting results, more than one stemma is necessary for a firm choice between the two responses. Accepted: 13 May 1997  相似文献   

5.
Lepidopterans display biological rhythms associated with egg laying, eclosion and flight activity but the photoreceptors that mediate these behavioural patterns are largely unknown. To further our progress in identifying candidate light-input channels for the lepidopteran circadian system, we have developed polyclonal antibodies against ultraviolet (UV)-, blue- and extraretinal long-wavelength (LW)-sensitive opsins and examined opsin immunoreactivity in the adult optic lobes of four hawkmoths, Manduca sexta, Acherontia atropos, Agrius convolvuli and Hippotion celerio. Outside the retina, UV and blue opsin protein expression is restricted to the adult stemmata, with no apparent expression elsewhere in the brain. Melatonin, which is known to have a seasonal influence on reproduction and behaviour, is expressed with opsins in adult stemmata together with visual arrestin and chaoptin. By contrast, the LW opsin protein is not expressed in the retina or stemmata but rather exhibits a distinct and widespread distribution in dorsal and ventral neurons of the optic lobes. The lamina, medulla, lobula and lobula plate, accessory medulla and adjacent neurons innervating this structure also exhibit strong LW opsin immunoreactivity. Together with the adult stemmata, these neurons appear to be functional photoreceptors, as visual arrestin, chaoptin and melatonin are also co-expressed with LW opsin. These findings are the first to suggest a role for three spectrally distinct classes of opsin in the extraretinal detection of changes in ambient light and to show melatonin-mediated neuroendocrine output in the entrainment of sphingid moth circadian and/or photoperiodic rhythms.This work was partially supported by the Canadian Institute for Advanced Research (A.D.B.) and the National Science Foundation (grant nos. IBN-0082700 and IBN-0346765; A.D.B.).  相似文献   

6.
Panorpa larvae possess stemmata (lateral ocelli), which have the structure of compound eyes, and stemma lamina and stemma medulla neuropils. A distinct lobula neuropil is lacking. The stemma neuropils have a columnar organization. They contain lamina monopolar cells, and both short and long visual fibers. All the identified larval monopolar neurons have radially arranged dendrites along the entire depth of the lamina neuropil and a single terminal arborization within the medulla (L1/L2-type). The terminals of visual fibers have short spiny lateral projections. Long fibers possess en passant synapses within the lamina. The same principles of organization of first and second order visual neuropils are found in Panorpa imagines. In contrast to the larvae, a lobula neuropil is present. Adults have monopolar cells of the L1-type that are similar to the L1-neurons found in Diptera. The columnar organization, the presence of short and long visual fibers, and lamina monopolar neurons are thus features common to both visual systems, viz., the larval (stemmata) and the imaginal (compound eyes).  相似文献   

7.
We presented the tachinid fly Exorista japonica with moving host models: a freeze-dried larva of the common armyworm Mythimna separata, a black rubber tube, and a black rubber sheet, to examine the effects of size, curvature, and velocity on visual recognition of the host. The host models were moved around the fly on a metal arm driven by motor. The size of the larva, the velocity of movement, and the length and diameter of the rubber tube were varied. During the presentation of the host model, fixation, approach, and examination behaviours of the flies were recorded. The fly fixated on, approached, and examined the black rubber tube as well as the freeze-dried larva. Furthermore, the fly detected the black rubber tube at a greater distance than the larva. The rubber tube elicited higher rates of approach and examination responses than the rubber sheet, suggesting that curvature affects the responses of the flies. The length, diameter, and velocity of host models had little effect on response rates of the flies. During host pursuit, the fly appeared to walk towards the ends of the tube. These results suggest that the flies respond to the leading or trailing edges of a moving object and ignore the length and diameter of the object.  相似文献   

8.
The concept of coded 'command releasing systems' proposes that visually specialized descending tectal (and pretectal) neurons converge on motor pattern generating medullary circuits and release--in goal-specific combination--specific action patterns. Extracellular recordings from medullary neurons of the medial reticular formation of the awake immobilized toad in response to moving visual stimuli revealed the following main results. (i) Properties of medullary neurons were distinguished by location, shape, and size of visual receptive fields (ranging from relatively small to wide), by trigger features of various moving configural stimulus objects (including prey- and predator-selective properties), by tactile sensitivity, and by firing pattern characteristics (sluggish, tonic, warming-up, and cyclic). (ii) Visual receptive fields of medullary neurons and their responses to moving configural objects suggest converging inputs of tectal (and pretectal) descending neurons. (iii) In contrast to tectal monocular 'small-field' neurons, the excitatory visual receptive fields of comparable medullary neurons were larger, ellipsoidally shaped, mostly oriented horizontally, and not topographically mapped in an obvious fashion. Furthermore, configural feature discrimination was sharper. (iv) The observation of multiple properties in most medullary neurons (partly showing combined visual and cutaneous sensitivities) suggests integration of various inputs by these cells, and this is in principle consistent with the concept of command releasing systems. (v) There is evidence for reciprocal tectal/medullary excitatory pathways suitable for premotor warming-up. (vi) Cyclic bursting of many neurons, spontaneously or as a post-stimulus sustaining event, points to a medullary premotor/motor property.  相似文献   

9.
The role of colour vision in night-active cats has not been elucidated completely hitherto. In order to assess the colour sensitivity in cat cortical neurons we used large isoluminant computer-generated monochromatic and polychromatic background stimuli which were superimposed on moving and stationary (on/off) light bars. Background stimuli were moved at different speeds either inphase or antiphase. The modulatory effect of the visual noise on the neuronal bar was the primary objective of the study. The maximum amplitudes of some 40% of the neurons tested was influenced by both moving and stationary bars. About two thirds of amplitude-sensitive cells showed aldo altered direction selectivity. Latencies and field widths, on the other hand, turned out to be rather stable. The retino-cortical conduction time was not influenced either. In conclusion, a large portion of cat cortical visual neurons is remarkably sensitive to the spectral composition of the visual noise process surrounding the stimulating light bar.  相似文献   

10.
The role of colour vision in night-active cats has not been elucidated completely hitherto. In order to assess the colour sensitivity in cat cortical neurons we used large isoluminant computer-generated monochromatic and polychromatic background stimuli which were superimposed on moving and stationary (on/off) light bars. Background stimuli were moved at different speeds either inphase or antiphase. The modulatory effect of the visual noise on the neuronal bar was the primary objective of the study. The maximum PSTH peaks of some 40% of the neurons tested was influenced by both moving and stationary bars. About 2 thirds of maximum peak-sensitive cells showed also altered direction selectivity. Latencies and field widths, on the other hand, turned out to be rather stable. The retino-cortical conduction time was not influenced either. In conclusion, a large portion of cat cortical visual neurons is remarkably sensitive to the spectral composition of the visual noise process surrounding the stimulating light bar.  相似文献   

11.
In most organisms, specific structures are responsible for detecting light patterns and vision. Several species of sea urchins appear to have a diffuse photoreceptor system that enables them to detect light and in some cases objects. The presence of extraocular vision was investigated on a sea urchin common in northern Oman, Diadema setosum. Urchins from 8- to 10-m deep coral communities were used in controlled experiments that quantified the orientation response of the urchins to various visual cues: size, contrast and colour of circular targets simulating urchins’ outlines. Urchins responded to black discs down to 11° initial visual angle but not to smaller discs. The minimum grey-scale value triggering a response was between 50 and 37% black. Urchins responded to red targets but not to green or blue ones. An average angular distance between spines of 5.3° suggested a visual acuity of about 10.6°. D. setosum thus showed extraocular vision allowing them to detect objects of different sizes, contrasts and to some extent colour, supporting the hypothesis that the whole sea urchin’s body acts as a single large compound eye.  相似文献   

12.
Summary Retained larval eyes (stemmata) were studied in the imagines of three species of Trichoptera: Phrygania grandis, Agrypnia varia, and Trichostegia minor. At the light-microscopic level the stemmata of all three species appeared to represent different stages of reduction with respect to size, shape and number of lenses. However, in all three species electron-microscopic studies showed units with monolayered rhabdoms, each formed by four retinula cells. By use of immunocytochemistry the presence of S-antigen was demonstrated in the retinula cells and their axons. This method also revealed the central projections of the axons of the retinula cells, which were found (i) to terminate either in the lamina accessoria or (ii) to penetrate this area to join the fibers of the outer chiasma of the optic lobes and then terminate in the medulla accessoria. The lamina accessoria and the medulla accessoria are the assumed remnants of the larval optic lobes. It is suggested that the imaginal stemmata might still be functioning photoreceptors.  相似文献   

13.
Responses of 114 pulvinar neurons to moving visual stimuli were studied. Most (79) neurons possessed spontaneous activity (10–25 spikes/sec). Of 59 neurons tested, 31 responded to stimulation of both retinas and 28 to stimulation only of the contralateral retina. Of 114 neurons, 41 responded only to movement of black objects, while the rest responded to movement of both black and light objects. According to the character of their responses to movement the neurons were divided into two main groups. The first group consisted of neurons sensitive to the direction of motion and responding with a spike discharge to movement in one direction and by inhibition to movement in the opposite direction. The second group included neurons insensitive to the direction of motion and responding by an equal number of discharges to movements in two opposite directions. Besides these two main groups, other neurons responding to movement in two opposite directions by discharges with different temporal distribution and also neurons which changed the character of their response from nondirectional to directional depending on the size of the moving stimulus, were found.L. A. Orbeli Institute of Physiology, Academy of Sciences of the Armenian SSR, Erevan. Translated from Neirofiziologiya, Vol. 10, No. 4, pp. 348–354, July–August, 1978.  相似文献   

14.
有大量的研究提出,大熊猫具有发达的嗅觉和听觉系统但是视力很差。 虽然有些关于大熊猫视力和色觉方面的研究,但是至今我们对大熊猫的具体视力值方面的内容知之甚少。为了定量化大熊猫的视力值,我们观察并记录了8只圈养大熊猫(雌:雄=4:4)对于移动不同水平黑白相间条纹宽度的纸片的行为反应。我们发现,在测量距离为50 cm的情况下,大熊猫能够区分大约为0.46mm宽的黑白相间条纹。这个研究结果为大熊猫视网膜结构的解剖学研究提供了行为学支持,也为今后研究大熊猫的通讯和认知提供一定的参考。  相似文献   

15.
Responses of neurons in the superior colliculi and visual cortex of rabbits to a black and white boundary moving in different directions were investigated. Neurons responding clearly to presentation of the black and white boundary moving in one direction (movement in the opposite direction led to inhibition of spontaneous activity) and neurons giving well-defined maximal responses to movement of this boundary in 2 or 3 directions were found in the superior colliculi. Neurons with a marked maximal response to the stimulus moving in 1 or 2 directions were found in the visual cortex. Nembutal has a powerful effect on the quantitative detector properties of visual cortical neurons and sometimes may completely inhibit unit activity.V. Kapsukas Vilnius State University. Translated from Neirofiziologiya, Vol. 4, No. 1, pp. 61–67, January–February, 1972.  相似文献   

16.
A technique is described and tested for mapping the sensitivities and preferred directions of motion at different locations within the receptive fields of direction-selective motion-detecting visual neurons. The procedure is to record the responses to a number of visual stimuli, each stimulus presentation consisting of a set of short, randomly-oriented, moving bars arranged in a square grid. Each bar moves perpendicularly to its long axis. The vector describing the sensitivity and preferred direction of motion at each grid location is obtained as a sum of the unit vectors defining the directions of motion of the bars in each of the stimuli at that location, weighted by the strengths of the corresponding responses. The resulting vector field specifies the optimum flow field for the neuron. The advantage of this technique over the conventional approach of probing the receptive field sequentially at each grid location is that the parallel nature of the stimulus is sensitive to nonlinear interactions (such as shunting inhibition for mutual facilitation) between different regions of the visual field. The technique is used to determine accurately the motion receptive fields of direction-selective motion detecting neurons in the optic lobes of insects. It is potentially applicable to motion-sensitive neurons with highly structured receptive fields, such as those in the optic tectum of the pigeon or in area MST of the monkey.  相似文献   

17.
Neurons sensitive to visual stimulation in the lateral suprasylvian area of the cortex were investigated in cats with pretrigeminal brain section. About 25% of the neuron population responding to visual stimulation were shown to be highly sensitive to moving black objects. These neurons were called black-sensitive. Neurons of this group had a low level of spontaneous activity and were mainly directionally sensitive. Some of them exhibited summation of responses during successive enlargement of the stimulus. An important distinguishing feature of these neurons was a change in the temporal structure of their response after contrast reversal of the stimulus.L. A. Orbeli Institute of Physiology, Academy of Sciences of the Armenian SSR, Erevan. Translated from Neirofiziologiya, Vol. 15, No. 1, pp. 16–21, January–February, 1983.  相似文献   

18.
19.
In order to specify the tectal projection to the bulbar/spinal regions, the antidromic responses of the physiologically identified tectal neurons as well as the gross antidromic field responses in the optic tectum to electrical stimuli applied to the caudal medulla were examined in the paralyzed common toad, Bufo bufo. The antidromic field potential was recorded in the optic tectum in response to electrical stimuli applied to the ventral paramedian portion of the contralateral caudal medulla (where the crossed tecto-spinal pathway of Rubinson (1968) and Lázár (1969) runs), but generally not when they were applied to various parts of the ipsilateral caudal medulla. The antidromic field potential was largest at the superficial part of Layer 6 or at the border between Layers 6 and 7 of the optic tectum, indicating that neurons in these layers project to the contralateral caudal medulla. Mapping experiments of the antidromic field potential over the optic tectum showed that the antidromic field potential was recorded mainly in the lateral part of it, indicating that this part of the optic tectum is the main source of projection neurons to the contralateral caudal medulla. Various classes of tectal neurons as well as retinal ganglion neurons were identified from the characteristics of the response properties to moving visual stimuli and the properties of the receptive fields. Of these, the Class T1, T2, T3, T4, T5(1), T5(2), T5(3), and T5(4) tectal neurons were activated antidromically by stimuli applied to the contralateral caudal medulla. Only a limited proportion of the Class T5(1) neurons was activated antidromically by stimuli applied to the ipsilateral caudal medulla. On the other hand, the Class T7 and T8 neurons, as well as the Class R2, R3, and R4 retinal neurons, were not activated antidromically by stimuli applied to the caudal medulla of either side. These results suggest a possibility that these tectal neurons which project to the medullary regions form the substrate of the sensorimotor interfacing and contribute to the initiation or coordination of the visually guided behavior, such as prey-catching.  相似文献   

20.
Summary The response properties and gross morphologies of neurons that connect the medulla and midbrain in the butterfly Papilio aegeus are described. The neurons presented give direction-selective responses, i.e. they are excited by motion in the preferred direction and the background activity of the cells is inhibited by motion in the opposite, null, direction. The neurons are either maximally sensitive to horizontal motion or to slightly off-axis vertical upward or vertical downward motion, when tested in the frontal visual field. The responses of the cells are dependent on the contrast frequency of the stimulus with peak values at 5–10 Hz. The receptive fields of the medulla neurons are large and are most sensitive in the frontal visual field. Examination of the local and global properties of the receptive fields of the medulla neurons indicates that (1) they are fed by local elementary motion-detectors consistent with the correlation model and (2) there is a non-linear spatial integration mechanism in operation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号