首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 949 毫秒
1.
种子重量与海拔的关系是植物生态学中重要而尚存争议的问题。本文对中国123科853种2879份野生植物种子的重量在海拔上的变化特点以及二者之间的相互关系进行了深入研究,结果显示:种子重量总体上与海拔呈负相关,种子重量级别多样性和生活型多样性随海拔上升呈阶梯状下降。但7级种子中,只有100级种子的重量与海拔呈负相关;7种生活型中,只有灌木和匍匐草本的种子重量与海拔呈负相关;在种水平上,只有82%的物种种子重量与海拔存在相关性。本研究揭示了我国种子重量与海拔之间的复杂关系,以及遗传和环境对种子重量的影响,对植物育种、森林管理以及入侵植物的防治具有一定指导意义。  相似文献   

2.
基因组大小在被子植物物种之间存在着巨大的变异, 但目前对不同生活型被子植物功能性状与基因组大小的关系缺乏统一的认识。本研究基于被子植物245科2,226属11,215个物种的基因组大小数据, 探讨了不同生活型物种种子重量、最大植株高度和叶片氮、磷含量4个功能性状与基因组大小之间的关系。结果表明, 被子植物最大植株高度和种子重量与基因组大小间的关系在草本和木本植物中存在显著差异。草本植物最大植株高度与基因组大小的关系不显著, 但种子重量与其呈极显著的正相关关系。木本植物最大植株高度与基因组大小显著负相关, 但种子重量与其关系不显著。木本植物叶片氮含量与基因组大小呈显著正相关, 但其他生活型植物的叶片氮、磷含量与基因组大小均无显著相关性。本研究表明被子植物功能性状与基因组大小的相关性在不同生活型间存在差异, 这为深入研究植物多种功能性状和植物生活型与基因组大小的权衡关系在植物演化和生态适应中的作用提供了重要依据。  相似文献   

3.
种子重量的生态学研究进展   总被引:10,自引:4,他引:10       下载免费PDF全文
作为植物生活史中的一个关键性特征,种子重量与其它许多植物性状和生态因子有关,种子重量的分异与其它一些植物性状及环境的变化关系在进化生物学上已经成为一个非常有意义的研究内容,且具有一定的实践意义。种子重量被发现与下列的一些植物学和群落学性状有关:植物的生活型、种子的散布能力、种子的散布方式、植物的高度、植物的冠幅、植物的比叶面积、植物的寿命、动物的捕食、植被中植物的数量或多度、土壤中种子的数量或多度、种子的休眠、种子在土壤中的持久性和植物的净初级生产力等,另外生态因子如降雨、温度、坡向、海拔、经度、纬度、光强和干扰等都影响种子的重量。种子的重量被认为是在大量小种子和少量大种子之间的进化折衷,在一定的能量限度内,较大重量的种子一般具有较少的数量,而较小重量的种子一般数量较多,这是种子重量和数量方面具有的一种反向关系。与其它性状相比,很多研究都表明种子重量和植物的生活型的关系密切。没有散布结构或风散布的种子比以动物和水作为散布媒介的种子重量要小。种子重量与捕食的关系现发现有3种格局。种子重量和形状与种子在土壤中的持久性的关系有4种格局。在干旱和阴暗的环境条件下,种子有变大的趋势。大重量种子比小种子赋予幼苗较优势的竞争地位,其原理尚有争论,尚不清楚是否是幼苗阶段的竞争决定了世界上大部分植被类型的物种组成。未来的研究方向主要有以下几个方面:1) 种子重量与植物系统学相结合,探索种子重量的变化规律;2)调查群落三向(纬度、经度和海拔)性的种子重量谱变化规律;3) 群落演替与群落种子重量谱的变化;4) 种子重量与群落中植物个体和种子的数量的关系及机理研究;5) 微生境、微地形如坡向、坡位和林间隙等对种子重量的影响;6) 全球气候变化和种子重量变化的关系。  相似文献   

4.
青藏高原东缘地区常见植物种子大小变异研究   总被引:5,自引:0,他引:5  
杨霞  梁艳  陈学林 《生态科学》2007,26(6):483-489
以青藏高原东部地区常见10科植物作为研究材料,从种子鲜、干重与海拔、生活型、植物丰富度等方面的相关性研究了其种子大小变异。结果表明:①禾本科和菊科植物是高寒草甸上的优势科,分别占到17.49%和22.76%。常见植物种子重量集中于0.1~10.0mg之间。②从种子大小与植物丰富度来讲,小种子的种类和数量多,大种子种类和数量则少。③不同的科之间、不同的生活型,其种子鲜重与干重之间均存在极显著的相关性。④在典型的高寒草甸上,是以多年生草本为主,占总数的61.61%。从草本、灌木到乔木,其种子重量逐渐增大。⑤从整体上说,种子大小与海拔存在极显著的线性负相关性,植物种子重量与生活型的相关性比种子大小与系统分类学的相关性高。  相似文献   

5.
高黎贡山种子植物物种丰富度沿海拔梯度的变化   总被引:23,自引:4,他引:23  
物种丰富度沿海拔梯度的分布格局成为生物多样性研究的热点。为探讨中尺度区域物种丰富度沿海拔梯度的分布,本文以高黎贡山为研究对象,利用该地区的地方植物志资料,结合通过GIS生成的区域数字高程模型(DEM)数据,分析了该区域全部种子植物和乔木、灌木、草本三种生活型种子植物物种丰富度的垂直分布格局以及物种密度沿海拔梯度的变化特征。结果表明:(1)全部种子植物和不同生活型植物物种丰富度随着海拔的升高呈现先增加后减小的趋势,最大值出现在海拔1500—2000m的范围;(2)物种密度与海拔也呈现单峰曲线关系;(3)物种丰富度和物种密度分布格局的形成主要受海拔所反映的水、热状况组合以及物种分布的边界影响。  相似文献   

6.
该研究通过对甘肃省兴隆山自然保护区进行野外实地调查和相关文献资料收集,依据海拔梯度将保护区划分为6个植被垂直带[草原带(1800~2000 m)、山地灌丛带(2000~2200 m)、亚高山针叶林带(2200~2900 m)、亚高山矮林带(2900~3000 m)、高山灌丛带(3000~3500 m)、高山草甸带(>3500 m)],在整理6个植被垂直带植物名录的基础上,以种子植物为研究对象,对各植被垂直带的种子植物丰富度、生活型、区系成分和系统发育结构进行分析,探讨植物多样性沿植被垂直带海拔升高的垂直变化规律,以揭示植物对环境的生态适应性,为山地植物多样性保护与开发利用提供理论依据。结果表明:(1)按最新的分类系统划分,兴隆山自然保护区种子植物隶属于87科387属889种,植物科、属、种丰富度随植被垂直带海拔升高呈单峰分布格局,在亚高山针叶林带达到峰值(81科304属661种);各植被垂直带间的Jaccard相似性系数呈中等不相似和极不相似水平,海拔越靠近的植被垂直带间相似性系数越高。(2)保护区内种子植物不同生活型的垂直变化格局存在差异,木本植物所占比例沿植被垂直带海拔升高呈先升后降的变化趋势,而草本植物呈相反的变化格局,且各植被垂直带中草本植物所占比例始终高于木本植物。(3)保护区植物在属水平上,热带成分所占比例随植被带海拔升高呈下降的变化趋势,而温带成分占比呈上升的变化趋势。(4)系统发育结构在中低海拔区域的亚高山针叶林带呈发散型,在高海拔区域(>2900 m)的3个植被带中呈聚集型,说明兴隆山自然保护区非随机分布格局在群落构建机制中发挥主要作用。  相似文献   

7.
基于西藏特有种子植物名录,结合物种自然地理分布信息,对西藏特有种子植物科属种多样性组成特征、物种生活型多样性、垂直海拔分布及县域尺度分布格局、属水平植物区系性质进行了分析,并对特有种热点地区进行了识别。结果显示,西藏特有种子植物有1 079种,隶属89科297属,特有性高,其中含20种以上的科为19个,含特有种最多的科为菊科;含10种以上的属有24个,含特有种最多的属为翠雀属(Delphinium)和小檗属(Berberis)。多年生草本植物在特有种中占绝对优势(66.4%)。从区系成分来看,温带性质的属占主导(61.6%)。东南部的墨脱县含特有种数量最多(271种)。总体上,西藏特有种子植物的空间分布格局极不均匀,喜马拉雅东南麓是丰富度最高的区域。西藏特有种子植物的海拔分布范围宽泛,集中分布在3 000~4 500 m,特有种丰富度在海拔梯度上呈单峰分布格局。本研究结果可为将来确定西藏植物多样性保护优先次序、红色名录制定及自然保护体系的建设提供参考。  相似文献   

8.
萌生更新是植物进行自我更新的重要方式之一。为了阐明喀斯特常绿落叶阔叶林植物的萌生特征,基于木论25 hm2动态监测样地的调查数据,分析了木本植物萌生更新数量特征、不同生活型植物萌生能力的差异、萌生能力与地形因子和萌生能力与物种多样性的关系。研究结果表明:样地具有萌生现象的木本植物共有197种,隶属59个科137个属,分别占样地植物科属种的86.8%、93.7%、91.3%。萌生现象在样地内各物种中普遍存在,滇丁香、长管越南茜、火棘、香叶树等物种的萌生能力较强。不同生活型的植物的萌生能力存在显著差异,常绿树种的萌生能力显著高于落叶树种(P<0.001)。萌生物种丰富度比例及萌生物种个体比例都与群落物种多样性呈显著正相关。萌生能力与土层厚度呈显著负相关,与凹凸度呈显著正相关,此外萌生物种丰富度比例还与海拔呈正相关关系,而萌生物种个体比例与岩石出露率和土壤坡度呈正相关关系。由此可见,作为喀斯特森林群落更新中一种占优势的更新方式,萌生更新在一定程度上能够增加群落物种多样性,萌生能力与地形因子存在一定关联。  相似文献   

9.
功能多样性是生物多样性的重要组成部分, 是连接生物多样性和生态系统功能的桥梁。以山西太岳山脱皮榆(Ulmuslamellosa)群落为研究对象, 选取生境类型、种子扩散方式、传粉方式、固氮类型、生活史、生活型、叶型、植物高度、盖度、开花期和花期时长11个功能性状, 采用FAD指数、Rao’s指数、SL指数以及CL指数比较了7个群丛的功能多样性差异, 并分析了脱皮榆群落的功能多样性海拔梯度格局。结果表明: (1) 从群丛I到群丛VII, FAD指数、SL指数以及CL指数减小, Rao’s指数增大, 均表明功能多样性呈下降趋势; (2) 脱皮榆群落的功能多样性海拔梯度格局明显, 海拔升高, 功能多样性降低。  相似文献   

10.
太行山区位于黄土高原与华北平原之间,是我国生物多样性保护的重要优先区之一.本文以广义太行山涉及的108个行政县域为研究区域,基于太行山山地森林群落植物清查数据,系统分析了太行山山地森林群落的科属特征、区系组成、植物多样性地理格局及其丰富度热点地区.结果表明: 调查的778个样地得到太行山山地森林群落种子植物共计100科447属963种,其中,裸子植物3科7属12种,被子植物97科440属951种,生活型以草本植物占优势(71.1%);科的分布区类型以热带分布(38%)和温带分布(24%)为主,属的分布区类型以温带成分占主导(68.7%);太行山山地森林群落植物多样性的水平分布格局呈由西南向东北逐渐递增的趋势,群落物种多样性与经纬度均呈正相关关系,但不同生活型植物的多样性格局不相一致,草本植物多样性与经纬度呈正相关,而木本植物多样性与经纬度则无明显相关性;在垂直梯度上,太行山山地森林群落植物丰富度呈单峰分布,集中分布在400~1800 m的低中海拔地带,在1000~1200 m丰富度最高;基于群落清查数据绘制太行山山地森林群落植物丰富度分布图,鉴别出小五台山、云台山、太岳山、王屋山、中条山等山地为植物丰富度热点地区,应列入太行山优先保护的重点规划区域.  相似文献   

11.
Unlike pollen and seed size, the extent and causes of variation in ovule size remain unexplored. Based on 45 angiosperm species, we assessed whether intra- and interspecific variation in ovule size is consistent with cost minimization during ovule production or allows maternal plants to dominate conflict with their seeds concerning resource investment. Despite considerable intraspecific variation in ovule volume (mean CV = 0.356), ovule production by few species was subject to a size-number trade-off. Among the sampled species, ovule volume varied two orders of magnitude, whereas seed volume varied four orders of magnitude. Ovule volume varied positively among species with flower mass and negatively with ovule number. Tenuinucellate ovules were generally larger that crassinucellate ovules, and species with apical placentation (which mostly have uniovulate ovaries) had smaller ovules than those with other placentation types. Seed volume varied positively among species with fruit mass and seed development time, but negatively with seed number. Seeds grew a median 93-fold larger than the ovules from which they originated. Our results provide equivocal evidence that selection minimizes ovule size to allow efficient resource allocation after fertilization, but stronger evidence that ovule size affords maternal plants an advantage in parent-offspring conflict.  相似文献   

12.
This paper analyses relationships between relative growth rate ( rgr ), seed mass, biomass allocation, photosynthetic rate and other plant traits as well as habitat factors (rainfall and altitude) in 20 wild species of Aegilops L. and one closely related species of Amblyopyrum (Jaub. & Spach) Eig., which differ in ploidy level (diploid, tetraploid and hexaploid). The plants were grown hydroponically for 20 d in a growth chamber. The relationships between parameters were calculated either using the phylogenetic information (phylogenetically independent contrasts, PIC) or without using the phylogenetic information (trait values of taxa, TIP). The results using the two approaches were very similar, but there were a few exceptions in which the results were different (e.g. rgr vs. seed mass). Specific leaf area ( sla ) was positively correlated with leaf area ratio ( lar ) and negatively correlated with net assimilation rate ( nar ), which together resulted in the absence of a correlation between sla and rgr . Leaf photosynthetic rates (expressed on a mass or area basis) showed no correlation with rgr . rgr was positively correlated with the stem mass ratio and negatively with root mass ratio. Species with a lower d. wt percentage have a higher rgr . Aegilops species from locations with higher annual rainfall invested less biomass in roots and more in shoots (leaves and stems) and had a higher rgr . Diploid species had a lower seed mass and initial mass than the hybrids (tetraploid and hexaploid species), but there was no correlation of rgr with ploidy level. Polyploid species, which have higher seed mass, occur at a higher altitude than diploid species. Our results show that variation in rgr in Aegilops and Amblyopyrum spp. is associated mainly with variation in biomass allocation (proportion of biomass in stems and roots) and d. wt percentage, and not with variation in sla , leaf photosynthetic rates or seed mass.  相似文献   

13.
Seed mass is one of the most important plant traits. It is strongly related to plant fitness and life-history strategy, and is one of the key determinants of the ability of plants to spread and thus to respond to changing environments. While substantial empirical work has been devoted to understanding seed-mass variation across species, we know less about seed-mass variation within species, its geographical and ecological differentiation, and the degree to which it is influenced by environmental change. Here, we studied intraspecific variability in seed mass of six common grassland plants (Arrhenatherum elatius, Bromus hordeaceus, Cerastium holosteoides, Heracleum sphondylium, Trifolium repens and Veronica chamaedrys) across three regions in Germany and a broad range of land-use types and intensities. We found substantial seed-mass variation among regions, populations, and individuals within all of the studied species. In five species, seed mass had a strong and consistent geographic component, and in three species we found significant effects of land use – fertilisation, grazing intensity or mowing frequency – on seed mass. In several species, land use and geographic region not only affected mean seed mass, but also the variability of seed mass within populations. Our study demonstrates that seed mass is geographically and ecologically differentiated in common grassland species. It is likely that both phenotypic plasticity and genetic factors contribute to this differentiation. Our results also show that seed mass is a highly variable trait with typically around 10-fold variation within species.  相似文献   

14.
Variation in abiotic conditions along altitudinal gradients may sort plant species from regional species pools according to their seed mass. With increasing elevation, seed mass is expected to be either larger for its advantage during seedling establishment in stressful high‐elevation environments (‘stress‐tolerance’ mechanism), or smaller owing to energy constraints. Using a large trait database involving 1355 species from the northeastern verge of the Tibetan Plateau, we found that, overall, these two opposing mechanisms balanced out one another, resulting in non‐significant seed mass–elevation relationship across all species after controlling for phylogeny. At the same time, we found that the influence of energy constraints on seed mass was indirect and mediated by the variation in plant height. Moreover, our results revealed a mass‐dependent seed mass variation along elevation gradients: with increasing elevation small seeds tended to increase ( supporting stress‐tolerance mechanism) but large seeds tended to decrease (supporting energy‐constraints mechanism). Finally, the seed mass–elevation relationships were significantly different among species with different life forms or different dispersal modes, but statistically similar for anemophilous and entomophilous species. This implies that life‐history cycle, resource allocation pattern and availability of dispersals agents, rather than pollination efficiency, can affect the responses of seed mass to elevation. Together our results suggest that a comprehensive perspective is necessary when interpreting geographic distribution of even a single trait. Synthesis With increasing elevation, seed mass may be either larger for its advantage during seedling establishment (‘stress‐tolerance’ force), or smaller owing to energy constraints. Our paper shows some novel and importance results in the seed mass–elevation relationship in a northeastern Tibetan flora. Firstly, these two opposing forces operate simultaneously but overall balance out one another. Secondly, the balance tends to shift toward increased energy‐constraints (stress‐tolerance) with the increase (decreased) in average seed mass. Thirdly, energy constraints on seed mass is indirect and mediated by the variation in plant height. Finally, plant resource allocation pattern, life‐history cycle, and availability of dispersal agents can affect the responses of seed mass to elevation.  相似文献   

15.
There have been few attempts to examine the relationship between mean seed production of populations and the environmental conditions experienced by these populations. This study uses redundancy, analysis (RDA) to explore which environmental factors influence the patterns of inter-population variation in mean seed production (seed:ovule ratio and seed weight) and mean plant height in 25 alpine populations of Ranunculus acris L at Finse, southwestern Norway. The mean seedrovule ratio and height of the plants differed more than three-fold among populations situated close to each other, whereas mean seed weight showed less variation. In two RDAs differences in site elevation and pH accounted for a substantial part of the among-population variation in mean plant height, seed:ovule ratio, and seed weight. Mean plant height and seed weight were negatively correlated with the altitude of the populations, whereas mean seed:ovule ratio showed a high positive correlation with pH. When pooling all data from the populations, simple linear regressions showed that seed weight was positively correlated with plant height, whereas plant height had little influence on seed:ovule ratio. Seed weight was positively correlated with the numbers of seeds that a flower produced. The results indicate that mean seediovule ratio of a population is influenced primarily by the pH-conditions at the site, whereas mean seed weight and plant height are more strongly influenced by altitude which largely reflects the climatic severity at the site. Inter-population variation in average reproductive success in R. acris at Finse appears to be determined by several environmental and intrinsic factors that interact in a complex fashion.  相似文献   

16.
The diversity of traits associated with plant regeneration is often shaped by functional trade‐offs where plants typically do not excel at every function because resources allocated to one function cannot be allocated to another. By analyzing correlations among seed traits, empirical studies have shown that there is a trade‐off between seedling development and the occupation of new habitats, although only a small range of taxa have been tested; whether such trade‐off exists in a biodiverse and complex landscape remains unclear. Here, we amassed seed trait data of 1,119 species from a biodiversity hotspot of the Mountains of Southwest China and analyzed the relationship between seed mass and the number of seeds and between seed mass and time to germination. Our results showed that seed mass was negatively correlated with seed number but positively correlated with time to germination. The same trend was found regardless of variation in life‐form and phylogenetic conservatism. Furthermore, the relation between seed mass and other seed traits was randomly dispersed across the phylogeny at both the order and family levels. Collectively, results suggest that there is a functional trade‐off between seedling development and new habitat occupation for seed plants in this region. Larger seeds tend to produce fewer seedlings but with greater fitness compared to those produced by smaller seeds, whereas smaller seeds tend to have a larger number of seeds that germinate faster compared to large‐seeded species. Apart from genetic constraints, species that produce large seeds will succeed in sites where resource availability is low, whereas species with high colonization ability (those that produce a high number of seeds per fruit) will succeed in new niches. This study provides a mechanistic explanation for the relatively high levels of plant diversity currently found in a heterogeneous region of the Mountains of Southwest China.  相似文献   

17.
Variation in seed weight is common within and among plant species, but few studies have attempted to document the pattern of seed weight and germination attributes for aquatic macrophytes at a large scale. This study examined within‐species variation in seed weight and germination attributes and the effects of environmental factors on seed traits of the submerged plant Potamogeton pectinatus in the arid zone of northwest China. Our results showed that the average seed weight was 0.24 g per 100 seeds with a coefficient of variation (CV) of 28.4% among the eight P. pectinatus populations. The total germination fraction of seeds of P. pectinatus was relatively poor, less than 35% in seven P. pectinatus populations, and the lowest germination percentage found was only 2%. There were significant differences in seed weight, time to onset of germination, and total germination fraction among the eight different populations. Hierarchical partitioning analysis showed a strongly positive correlation between seed weight and water temperature and pH. Seed weight and the maternal environmental factors significantly affected both time to initiation of germination and total germination fraction. Our results suggest that (1) seed weight variation in P. pectinatus primarily is the result of temperature variation during fruit development; (2) relatively poor germination fraction suggests that seeds are relatively unimportant in the short‐term survival of populations and that it may be another adaptive trait allowing plants to take place in the right place and at the right time, especially in harsh environment; and (3) variation in seed germination traits should be determined by local environmental and intrinsic factors that interact in a complex fashion.  相似文献   

18.
Aims Understanding fluctuations in plant reproductive investment can constitute a key challenge in ecology, conservation and management. Masting events of trees (i.e. the intermittent and synchronous production of abundant seeding material) is an extreme example of such fluctuations. Our objective was to establish the degree of spatial and temporal synchrony in common four masting tree species in boreal Finland and account for potential causal drivers of these patterns.Methods We investigated the spatial intraspecific and temporal interspecific fluctuations in annual seed production of four tree species in Finland, silver birch Betula pendula Roth, downy birch Betula pubescens Ehrh., Norway spruce Picea abies (L.) H.Karst. and rowanberry Sorbus aucuparia L. We also tested to see whether variations in seed production were linked to annual weather conditions. Seeding abundance data were derived from tens of stands per species across large spatial scales within Finland during 1979 to 2014 (for rowanberries only 1986 to 2014).Important findings All species showed spatial synchrony in seed production at scales up to 1000 km. Annual estimates of seed production were strongly correlated between species. Spring and summer temperatures explained most variation in crop sizes of tree species with 0-to 2-year time lags, whereas rainfall had relatively little influence. Warm weather during flowering (May temperature) in the flowering year (Year t) and 2 years before (t ?2) were correlated with seed production. However, high May temperatures during the previous year (t-1) adversely affected seed production. Summer temperatures in Year t-1 was positively correlated with seed production, likely because this parameter enhances the development of flower primordials, but the effect was negative with a time lag of 2 years. The negative feedback in temperature coefficients is also likely due to patterns of resource allocation, as abundant flowering and seed production in these species is thought to reduce the subsequent initiation of potential new flower buds. Since the most important weather variables also showed spatial correlation up to 1000 km, weather parameters likely explain much of the spatial and temporal synchrony in seed production of these four studied tree species.  相似文献   

19.
We examined the patterns of random amplified polymorphic DNA (RAPD) variation among seven Prunus mahaleb (Rosaceae) populations extending over approximately 100 km2 to examine local differentiation in relation to spatial isolation due to both geographical distance and differences in elevation. No less than 51. 4% of the RAPD loci were polymorphic, but very few were fixed and among-population variation accounted for 16.46% of variation in RAPD patterns. Mean gene diversity was 0.1441, with mean Nei's genetic diversity for individual populations ranging between 0.089 and 0.149. Mean GST value across loci was 0.1935 (range, 0.0162-0.4685), giving an average estimate for Nm of 1.191. These results suggest extensive gene flow among populations, but higher GST and lower Nm values relative to other outcrossing, woody species with endozoochorous dispersal, also suggest a process of isolation by distance. The combined effect of both geographical and elevation distances and nonoverlapping flowering and fruiting phenophases on the GST matrix was partially significant, revealing only marginal isolation of the P. mahaleb populations. The matrix correlation between estimated Nm values among populations and the geographical + elevation distance matrices (r = -0.4623, P = 0.07), suggests a marginal trend for more isolated populations to exchange less immigrants. Long-distance seed dispersal by efficient medium-sized frugivorous birds and mammals is most likely associated to the high levels of within-population genetic diversity. However, vicariance factors and demographic bottlenecks (high postdispersal seed and seedling mortality) explain comparatively high levels of local differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号