首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The study of the regulation and cellular dynamics of receptor kinase signaling in plants is a rapidly evolving field that promises to give enormous insights into the molecular control of signal perception. In this study, we have analyzed the behavior of the L1-specific receptor kinase ARABIDOPSIS CRINKLY4 (ACR4) from Arabidopsis thaliana in planta and have shown it to be present in two distinct compartments within cells. These represent protein export bodies and a population of internalized vesicles. In parallel, deletion analysis has shown that a predicted beta-propeller-forming extracellular domain is necessary for ACR4 function. Nonfunctional ACR4 variants with deletions or point mutations in this domain behave differently to wild-type fusion protein in that they are not internalized to the same extent. In addition, in contrast with functional ACR4, which appears to be rapidly turned over, they are stabilized. Thus, for ACR4, internalization and turnover are linked and depend on functionality, suggesting that ACR4 signaling may be subject to damping down via internalization and degradation. The observed rapid turnover of ACR4 sets it apart from other recently studied plant receptor kinases. Finally, ACR4 kinase activity is not required for protein function, leading us to propose, by analogy to animal systems, that ACR4 may hetero-oligomerize with a kinase-active partner during signaling. Plant and animal receptor kinases have distinct evolutionary origins. However, with other recent work, our study suggests that there has been considerable convergent evolution between mechanisms used to regulate their activity.  相似文献   

4.
In higher plants, the outermost cell layer (L1) of the shoot apex gives rise to the epidermis of shoot organs. Our previous study demonstrated that an 8-bp motif named the L1 box functions as a cis-regulatory element for L1-specific gene expression in the shoot system of ARABIDOPSIS: We show here that PROTODERMAL FACTOR2 (PDF2), a member of the HD-GL2 class of homeobox genes, is expressed exclusively in the L1 of shoot meristems and that recombinant PDF2 protein specifically binds to the L1 box in vitro. Although knockout mutants of PDF2 and ATML1, another L1-specific HD-GL2 class gene sharing the highest homology with PDF2, display normal shoot development, the double mutant results in severe defects in shoot epidermal cell differentiation. This suggests that PDF2 and ATML1 are functionally interchangeable and play a critical role in maintaining the identity of L1 cells, possibly by interacting with their L1 box and those of downstream target-gene promoters.  相似文献   

5.
6.
受体样激酶在植物的生长发育中发挥着重要的功能。CRINKLY4(简称CR4)属于生长因子类的受体激酶,包括玉米中的ZmCR4、拟南芥中的ACR4和水稻中的OsCR4,参与了植物细胞的增殖和分化,包括细胞分化命运和发育方向。ZmCR4影响了玉米表皮细胞的形态和糊粉层的发育,ACR4启动拟南芥根中形成层细胞的分化,而且器官发生开始后可以控制细胞分化的数目。本文对植物受体样激酶CR4家族近年的研究进展进行了总结。  相似文献   

7.
8.
9.
10.
11.
Signalling pathways involving histidine kinase receptors (HKRs) are widely used by prokaryotes and fungi to regulate a large palette of biological processes. In plants, HKRs are known to be implicated in cytokinin, ethylene, and osmosensing transduction pathways. In this work, a full length cDNA named CRCIK was isolated from the tropical species CATHARANTHUS ROSEUS (L.) G. Don. It encodes a 1205 amino acid protein that belongs to the hybrid HKR family. The deduced amino acid sequence shows the highest homology with AtHK1, an osmosensing HKR in ARABIDOPSIS THALIANA. In return, CrCIK protein shares very low identity with the other 10 ARABIDOPSIS HKRs. Southern blot analysis indicates that the CRCIK corresponding gene is either present in multiple copies or has very close homologues in the genome of the tropical periwinkle. The gene is widely expressed in the plant. In C. ROSEUS C20D cell suspension, it is slightly induced after exposure to low temperature, pointing to a putative role in cold-shock signal transduction.  相似文献   

12.
13.
In order to examine the spatial organisation of stem cells and their progeny in human epidermis, we developed a method for whole-mount epidermal immunofluorescence labelling using high surface beta1 integrin expression as a stem cell marker. We confirmed that there are clusters of high beta1 integrin-expressing cells at the tips of the dermal papillae in epidermis from several body sites, whereas alpha6 integrin expression is more uniform. The majority of actively cycling cells detected by Ki67 or bromodeoxyuridine labelling were found in the beta1 integrin-dull, transit amplifying population and integrin-negative, keratin 10-positive cells left the basal layer exclusively from this compartment. When we examined p53-positive clones in sun-exposed epidermis, we found two types of clone that differed in size and position in a way that was consistent with the founder cell being a stem or transit amplifying cell. The patterning of the basal layer implies that transit amplifying cells migrate over the basement membrane away from the stem cell clusters. In support of this, isolated beta1 integrin-dull keratinocytes were more motile on type IV collagen than beta1 integrin-bright keratinocytes and EGFP-labelled stem cell clones in confluent cultured sheets were compact, whereas transit amplifying clones were dispersed. The combination of whole-mount labelling and lineage marking thus reveals features of epidermal organisation that were previously unrecognised.  相似文献   

14.
Cao X  Li K  Suh SG  Guo T  Becraft PW 《Planta》2005,220(5):645-657
The maize (Zea mays L.) CRINKLY4 (CR4) gene encodes a serine/threonine receptor-like kinase that controls an array of developmental processes in the plant and endosperm. The Arabidopsis thaliana (L.) Heynh. genome encodes an ortholog of CR4, ACR4, and four CRINKLY4-RELATED (CRR) proteins: AtCRR1, AtCRR2, AtCRR3 and AtCRK1. The available genome sequence of rice (Oryza sativa L.) encodes a CR4 ortholog, OsCR4, and four CRR proteins: OsCRR1, OsCRR2, OsCRR3 and OsCRR4, not necessarily orthologous to the Arabidopsis CRRs. A phylogenetic study showed that AtCRR1 and AtCRR2 form a clade closest to the CR4 group while all the other CRRs form a separate cluster. The five Arabidopsis genes are differentially expressed in various tissues. A construct formed by fusion of the ACR4 promoter and the GUS reporter, ACR4::GUS, is expressed primarily in developing tissues of the shoot. The ACR4 cytoplasmic domain functions in vitro as a serine/threonine kinase, while the AtCRR1 and AtCRR2 kinases are not active. The ability of ACR4 to phosphorylate AtCRR2 suggests that they might function in the same signal transduction pathway. T-DNA insertions were obtained in ACR4, AtCRR1, AtCRR2, AtCRR3 and AtCRK1. Mutations in acr4 show a phenotype restricted to the integuments and seed coat, suggesting that Arabidopsis might contain a redundant function that is lacking in maize. The lack of obvious mutant phenotypes in the crr mutants indicates they are not required for the hypothetical redundant function.  相似文献   

15.
Recent intensive studies have begun to shed light on the molecular mechanisms underlying the plant circadian clock in Arabidopsis thaliana. During the course of these previous studies, the most powerful technique, elegantly adopted, was a real-time bioluminescence monitoring system of circadian rhythms in intact plants carrying a luciferase (LUC) fusion transgene. We previously demonstrated that Arabidopsis cultured cells also retain an ability to generate circadian rhythms, at least partly. To further improve the cultured cell system for studies on circadian rhythms, here we adopted a bioluminescence monitoring system by establishing the cell lines carrying appropriate reporter genes, namely, CCA1::LUC and APRR1::LUC, with which CCA1 (CIRCADIAN CLOCK-ASSOCIATED1) and APRR1 (or TOC1) (ARABIDOPSIS PSEUDO-RESPONSE REGULATORS1 or TIMING OF CAB EXPRESSION1) are believed to be the components of the central oscillator. We report the results that consistently supported the view that the established cell lines, equipped with such bioluminescence reporters, might provide us with an advantageous means to characterize the plant circadian clock.  相似文献   

16.
Actin polymerisation can generate forces that are necessary for cell movement, such as the propulsion of a class of bacteria, including Listeria, and the protrusion of migrating animal cells. Force generation by the actin cytoskeleton in plant cells has not been studied. One process in plant cells that is likely to depend on actin-based force generation is the organisation of the cytoplasm. We compare the function of actin binding proteins of three well-studied mammalian models that depend on actin-based force generation with the function of their homologues in plants. We predict the possible role of these proteins, and thus the role of actin-based force generation, in the production of cytoplasmic organisation in plant cells.  相似文献   

17.
PASTICCINO (PAS) genes are required for coordinated cell division and differentiation during plant development. In loss-of-function pas mutants, plant aerial tissues showed ectopic cell division that was specifically enhanced by cytokinins, leading to disorganized tumor-like tissue. To determine the role of the PAS genes in controlling cell proliferation, we first analyzed the expression profiles of several genes involved in cell division and meristem function. Differentiated and meristematic cells of the pas mutants were more competent for cell division as illustrated by the ectopic and enlarged expression profiles of CYCLIN-DEPENDENT KINASE A and CYCLIN B1. The expression of meristematic homeobox genes KNOTTED-LIKE IN ARABIDOPSIS (KNAT2, KNAT6), and SHOOT MERISTEMLESS was also increased in pas mutants. Moreover, the loss of meristem function caused by shoot meristemless mutation can be suppressed by pas2. The KNAT2 expression pattern defines an enlarged meristematic zone in pas mutants that can be mimicked in wild type by cytokinin treatment. Cytokinin induction of the primary cytokinin response markers, ARABIDOPSIS RESPONSE REGULATOR (ARR5 and ARR6), was enhanced and lasted longer in pas mutants, suggesting that PAS genes in wild type repress cytokinin responses. The expression of the cytokinin-regulated cyclin D, cyclin D3.1, was nonetheless not modified in pas mutants. However, primary auxin response genes were down-regulated in pas mutants, as shown by a lower auxin induction of IAA4 and IAA1 genes, demonstrating that the auxin response was also modified. Altogether, our results suggest that PAS genes are involved in the hormonal control of cell division and differentiation.  相似文献   

18.
The shoot apical meristem of Arabidopsis thaliana consists of three cell layers that proliferate to give rise to the aerial organs of the plant. By labeling cells in each layer using an Ac-based transposable element system, we mapped their contributions to the floral organs, as well as determined the degree of plasticity in this developmental process. We found that each cell layer proliferates to give rise to predictable derivatives: the L1 contributes to the epidermis, the stigma, part of the transmitting tract and the integument of the ovules, while the L2 and L3 contribute, to different degrees, to the mesophyll and other internal tissues. In order to test the roles of the floral homeotic genes in regulating these patterns of cell proliferation, we carried out similar clonal analyses in apetala3-3 and agamous-1 mutant plants. Our results suggest that cell division patterns are regulated differently at different stages of floral development. In early floral stages, the pattern of cell divisions is dependent on position in the floral meristem, and not on future organ identity. Later, during organogenesis, the layer contributions to the organs are controlled by the homeotic genes. We also show that AGAMOUS is required to maintain the layered structure of the meristem prior to organ initiation, as well as having a non-autonomous role in the regulation of the layer contributions to the petals.  相似文献   

19.
Elaboration of size and shape in multicellular organisms involves coordinated cell division and cell growth. In higher plants, continuity of cell layer structures exists from the shoot apical meristem (SAM), where organ primordia arise, to mature aboveground organs. To unravel the extent of inter-cell layer coordination during SAM and aboveground organ development, cell division in the epidermis was selectively restricted by expressing two cyclin-dependent kinase inhibitor genes, KRP1/ICK1 and KRP4, driven by the L1 layer-specific AtML1 promoter. The transgenes conferred reduced plant size with striking, distorted lateral organ shape. While epidermal cell division was severely inhibited with compensatory cell size enlargement, the underlying mesophyll/cortex layer kept normal cell numbers and resulted in small, packed cells with disrupted cell files. Our results demonstrate the autonomy of cell number checkpoint in the underlying tissues when epidermal cell division is restricted. Finally, the L1 layer-specific expression of both KRP1/ICK1 and KRP4 showed no effects on the structure and function of the SAM, suggesting that the effects of these cyclin-dependent kinase inhibitors are context dependent.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号