首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Whole cells of Saccharomyces bayanus, Saccharomyces cerevisiae and Zymomonas mobilis were immobilized by chelation/metal-link processes onto porous inorganic carriers. The immobilized yeast cells displayed much higher sucrose hydrolyzing activities (90–517 U/g) than the bacterial, Z. mobilis, cells (0.76–1.65 U/g). The yeast cells chelated on hydrous metal oxide derivative of pumice stone presented higher initial -d-fructofuranosidase (invertase, EC 3.2.1.26) activity (161–517 U/g) than on other derivatives (90–201 U/g). The introduction of an organic bridge between the cells and the metal activator led to a decrease of the initial activity of the immobilized cells, however S. cerevisiae cells immobilized on the carbonyl derivative of titanium (IV) activated pumice stone, by covalent linkage, displayed a very stable behaviour, which in continuous operation at 30° C show only a slightly decrease on invertase activity for a two month period (half-life=470 days). The continuous hydrolysis of a 2% w/v sucrose solution at 30° C in an immobilized S. cerevisiae packed bed reactor was described by a simple kinetic model developed by the authors (Cabral et al., 1984a), which can also be used to predict the enzyme activity of the immobilized cells from conversion degree data.  相似文献   

2.
The fungus Aspergillus japonicus ATCC 20236 was immobilized in vegetal fiber and used in repeated batch fermentations of sucrose (200 g/l) for the production of β-fructofuranosidases (FFase). The assays were performed during eight consecutive cycles that were completed in a total period of 216 h. After each 24-h cycle of fermentation (except for the first cycle, which lasted 48 h), the fermented broth was replaced by fresh medium, and the FFase activity was determined in the replaced medium. The average value of FFase activity was a constant 40.6 U/ml at the end of the initial seven cycles, but had decreased by 22% at the end of the eighth cycle. Concurrent with these high and constant FFase values, the hydrolyzing activity of this enzyme increased during the cycles, while the transfructosylating activity decreased. As a consequence, the maximum production of fructooligosaccharides of 134.60 g/l observed in the initial 30 h of fermentation (first cycle) had gradually decreased by the end of the subsequent cycles, reaching approximately 23% of this value during cycles 4–8. Based on these results, we conclude that the present immobilization system has a great potential for application in a semi-continuous process for the production of FFase, but further studies are necessary to maintain the FFase transfructosylation activity at high levels during the overall process.  相似文献   

3.
Summary The rate of production ofl-phenylacetyl carbinol bySaccharomyces cerevisiae in reaction mixtures containing benzaldehyde with sucrose or pyruvate as cosubstrate was investigated in short 1 h incubations. The effect of yeast dose rate, sucrose and benzaldehyde concentration and pH on the rate of reaction was determined. Maximum biotransformation rates were obtained with concentrations of benzaldehyde, sucrose and yeast of 6 g, 40 g and 60 g/l, respectively. Negligible biotransformation rates were observed at a concentration of 8 g/l benzaldehyde. The reaction had a pH optimum of 4.0–4.5. Rates of bioconversion of benzaldehyde and selected substituted aromatic aldehydes using both sucrose and sodium pyruvate as cosubstrate were compared. The rate of aromatic alcohol production was much higher when sucrose was used rather than pyruvate.o-Tolualdehyde and 1-chlorobenzaldehyde were poor substrates for aromatic carbinol formation although the latter produced significant aromatic alcohol in sucrose-containing media. Yields of 2.74 and 3.80 g/l phenylacetyl carbinol were produced from sucrose and pyruvate, respectively, in a 1 h reaction period.  相似文献   

4.
Summary The production of high-content fructo-oligosaccharides from sucrose by a crude FTF from a new strain of Penicillium isolated in our Laboratory was investigated. The optimum conditions for the production of the enzyme and for the enzymic reaction have been determined. It has been demonstrated that the crude enzyme acts as a mixed enzyme system of fructosyl transferase (FTF; Class 2 of Enzyme Nomenclature) and glycosidases (Class 3 of Enyme Nomenclature). Under optimum conditions: pH 5.5, temperature 55°C, sucrose concentration 750 g/l, enzyme concentration 5 FTF units/g sucrose, conversion yield up to 80% were obtained and high concentration of nystose (412 g/l) and fructofuranosyl-nystose (176 g/l) were accumulated.  相似文献   

5.
The productivity of the continuous production of fructooligosaccharides from sucrose was investigated by fructosyltransferase immobilized onto a high-porous ion exchange resin was optimal with 600 g sucrose/l at a flow rate of 2.7 h–1 expressed as a superficial space velocity. When the column was operated at 50 °C, about 8% loss of the initial activity of immobilized enzyme was observed after 30 days continuous operation, achieving high productivity of 1174 g/l · h.  相似文献   

6.
 β-Fructofuranosidase was purified from commercial alkaline protease (Aspergillus oryzae origin). The optimal pH of its transfructosylating activity was more alkaline (pH 8) than that of its hydrolyzing activity (pH 5). In the case of a 24-h reaction with sucrose, the hydrolysis and transfructosylation reaction were optimal at pH 4–5 and pH 8, respectively. In the reaction at pH 8 1-kestose and nystose were the main fructooligosaccharides produced. The transfer ratio was hardly different between pH 5 and pH 8 early in the reaction, but the transfer products (1-kestose and nystose) were decreased at pH 5 as the reaction proceeded because of their hydrolysis. Received: 18 January 1995/Received last revision: 23 August 1995/Accepted: 13 September 1995  相似文献   

7.
General patterns of sucrose fermentation by two strains of Zymomonas mobilis, designated Z7 and Z10, were established using sucrose concentrations from 50 to 200 g/liter. Strain Z7 showed a higher invertase activity than Z10. Strain Z10 showed a reduced specific growth rate at high sucrose concentration while Z7 was unaffected. High sucrose hydrolyzing activity in strain Z7 lead to glucose accumulation in the medium at high sucrose concentrations. Ethanol production and fermentation time depend on the rate of catabolism of the products of sucrose hydrolysis, glucose and fructose. The metabolic quotients for sucrose utilization, qs, and ethanol production, qp (g/g·hr), are unsuitable for describing sucrose utilization by Zymomonas mobilis, as the logarithmic phase of growth precedes the phase of highest substrate utilization (g/liter·hr) and ethanol production (g/liter·hr) in batch culture.  相似文献   

8.
Microbial beta-fructofuranosidases with transfructosylating activity can catalyze the transfructosylation of sucrose and synthesize fructooligosaccharides. Aspergillus japonicus NTU-1249 isolated from natural habitat was found to produce a significant amount of beta-fructofuranosidase with high transfructosylating activity and to have the potential for industrial production of fructooligosaccharides. In order to improve it's enzyme productivity, the medium composition and the cultivation conditions for A. japonicus NTU-1249 were studied. A. japonicus NTU-1249 can produce 83.5 units of transfructosylating activity per ml broth when cultivated in a shaking flask at 28 degrees C for 72 hours with a modified medium containing 80 g/l sucrose, 15 g/l soybean flour, 5 g/l yeast extract and 5 g/l NaCl at an initial pH of 6.0. The enzyme productivity was also optimized by submerged cultivation in a 5-litre jar fermentor with aeration at 1.5 vvm and agitation at 500 rpm. Under these operating conditions, the productivity of transfructosylating activity increased to 185.6 U/ml. Furthermore, the transfructosylating activity was improved to 256.1 U/ml in 1,000-litre pilot-scale fermentor. Enzymatic synthesis of fructooligosaccharides by beta-fructofuranosidase from A. japonicus NTU-1249 was performed in batch type by adding 5.6 units of transfructosylating activity per gram of sucrose to a 50% (w/v) sucrose solution at pH 5.0 and 50 degrees C. The yield of fructooligosaccharides was about 60% after reaction for 24 hours, and the syrup produced contained 29.8% (w/v) fructooligosaccharides, 15.2% (w/v) glucose and 5.0% (w/v) sucrose.  相似文献   

9.
Enzymatic fructosylation of organic acceptors other than saccharides brings new possibilities to synthesize molecules that do not exist in nature. The introduction of fructosyl moiety may lead to glycosides possessing enhanced physicochemical and bioactive properties which could be useful in the pharmaceutical and cosmetic industry. In this work, the regioselective synthesis of tyrosol β‐d ‐fructofuranoside (TF) catalyzed by β‐fructofuranosidase is investigated. In the first step, 32 commercial enzyme preparations are screened for fructoside‐hydrolyzing activity. The most active preparations are subsequently examined for fructofuranosyl transfer from sucrose to tyrosol. The best candidate, Novozym 188, is chosen to study the effect of reaction conditions on the product formation in a batch reactor. The effects of substrate concentration, temperature, pH, time, and enzyme dosage on the concentration of TF produced are studied using the design of experiments methodology. The maximal product concentration of 3.8 g L?1 is achieved for the sucrose concentration of 1.5 m , tyrosol concentration of 29 g L?1, temperature of 41 °C, and pH 5.1. Besides the main transfructosylation reaction between sucrose and tyrosol, several side reactions take place. A reaction network includes also the formation of fructooligosaccharides and the hydrolysis of sucrose and all reaction products.  相似文献   

10.
Bacillus cereus ZH14 was previously found to produce a new type of antiviral ribonuclease, which was secreted into medium and active against tobacco mosaic virus. In order to enhance the ribonuclease production, in this study the optimization of culture conditions using response surface methodology was done. The fermentation variables including culture temperature, initial pH, inoculum size, sucrose, yeast extract, MgSO4·7H2O, and KNO3 were considered for selection of significant ones by using the Plackett–Burman design, and four significant variables (sucrose, yeast extract, MgSO4·7H2O, and KNO3) were further optimized by a 24 factorial central composite design. The optimal combination of the medium constituents for maximum ribonuclease production was determined as 8.50 g/l sucrose, 9.30 g/l yeast extract, 2.00 g/l MgSO4·7H2O, and 0.62 g/l KNO3. The enzyme activity was increased by 60%. This study will be helpful to the future commercial development of the new bacteria-based antiviral ribonuclease fermentation process.  相似文献   

11.
Major fructo-oligosaccharides (FOS) produced by levansucrase (EC 2.4.1.10) from Acetobacter diazotrophicus SRT4 were characterised as 1-kestose and nystose by acid hydrolysis and 13C-NMR spectroscopy. The highest yields of 1-kestose (481 mM; 241 g/l) and nystose (81 mM; 54 g/l) were achieved at initial sucrose concentration of 1754 mM (600 g/l), pH 5.5 and 40°C. The synthesized FOS reached 50% (w/w) of total sugars in the reaction mixture, with a conversion efficiency over 70% (w/w) based on the amount of sucrose converted to 1-kestose.  相似文献   

12.
Summary A new single-batch fermentation process for the commercial production of ethanol from refined sucrose, raw sugar, sugar cane juice and sugar cane syrup has been developed using a highly adapted and efficient strain of Zymomonas mobilis. The process gives a 94–98% sucrose hydrolysis efficiency and a 95–98% ethanol conversion efficiency. Within 24–30 h, 200 g/l sucrose is converted to produce 95.5 g/l ethanol. Reinoculation is carried out from the fermented broth without the need for centrifugation or membrane filtration.  相似文献   

13.
Continuous production of fructooligosaccharides (FOS) by Aureobasidium pullulans immobilized on calcium alginate beads with a packed bed was investigated at a plant scale reactor. Optimum conditions were with 770 g sucrose/l, being fed at 200 l/h at 50°C which gave a productivity of 180 g FOS/l h. Initial activity was maintained for more than 100 days. The reactor was successfully scaled up to a production scale of 1.2 m3.  相似文献   

14.
Summary A flocculent strain of Zymomonas mobilis was used for ethanol production from sucrose. Using a fermentor with cell recycle (internal and external settler) high sugar conversion and ethanol productivity were obtained. At a dilution rate of 0.5 h-1 (giving 96% sugar conversion) the ethanol productivity, yield and concentrations respectively were 20 g/l/h, 0.45 g/g and 40 g/l using a medium containing 100 g/l sucrose. At a sucrose concentration of 150 g/l, the ethanol concentration reached 60 g/l. The ethanol yield was 80% theoretical due to levan and fructo-oligomer formation. No sorbitol was detected. This fermentation was conducted at a range of conditions from 30 to 36°C and from pH 4.0 to 5.5.  相似文献   

15.
Exopectinase production by Aspergillus niger was compared in submerged fermentation (SmF) and solid-state fermentation (SSF). SSF was carried out using polyurethane foam (PUF) as the solid support. The purpose was to study the effect of sucrose addition (0 or 40 g/l) and water activity level (A w=0.99 or 0.96) on the level of enzyme activity induced by 15 g/l of pectin. Mycelial growth, as well as extracellular protease production, was also monitored. Sucrose addition in SmF resulted in catabolite repression of exopectinase activity. However, in SSF, an enhancement of enzyme activity was observed. Protease levels were minimal in SSF experiments with sucrose and maximal in SmF without sucrose. Exopectinase yields (IU/g X) were negligible in SmF with sucrose. The high levels of exopectinase with sucrose and high A w in SSF can be explained by a much higher level of biomass production without catabolite repression and with lower protease contamination. Journal of Industrial Microbiology & Biotechnology (2001) 26, 271–275. Received 05 July 2000/ Accepted in revised form 27 January 2001  相似文献   

16.
We developed di-d-fructofranosyl-2,6′:2′,6-anhydride (DFA IV) production system with single culture of Bacillus subtilis directly from sucrose. This system can avoid the purification procedure of levan which organic solvent was used for precipitation. The levan fructotransferase (LFTase) gene was cloned from Arthrobacter nicotinovorans GS-9 (AHU1840, FERM P-15285) and expressed in levan producing B. subtilis 168. LFTase activity was detected in the culture supernatant of the transformant with maximal activity of 0.062 U/ml after 15.5 h post induction. Then sucrose was added as substrate and incubated. About 78 h after addition of sucrose, 20.5 g/l of DFA IV was produced from 139.3 g/l of sucrose consumed. The yield of DFA IV from sucrose was 14.7 wt.%.  相似文献   

17.
An extracellular β-fructofuranosidase from the yeast Rhodotorula dairenensis was characterized biochemically. The enzyme molecular mass was estimated to be 680 kDa by analytical gel filtration and 172 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, of which the N -linked carbohydrate accounts for 16% of the total mass. It displays optimum activity at pH 5 and 55–60 °C. The enzyme shows broad substrate specificity, hydrolyzing sucrose, 1-kestose, nystose, leucrose, raffinose and inulin. Although the main reaction catalyzed by this enzyme is sucrose hydrolysis, it also exhibits transfructosylating activity that, unlike other microbial β-fructofuranosidases, produces a varied type of prebiotic fructooligosaccharides containing β-(2→1)- and β-(2→6)-linked fructose oligomers. The maximum concentration of fructooligosaccharides was reached at 75% sucrose conversion and it was 87.9 g L−1. The 17.0% (w/w) referred to the total amount of sugars in the reaction mixture. At this point, the amounts of 6-kestose, neokestose, 1-kestose and tetrasaccharides were 68.9, 10.6, 2.6 and 12.7 g L−1, respectively.  相似文献   

18.
19.
 The influences of light conditions, sucrose and ethylene on in vitro formation and storability of onion (Allium cepa L.) bulblets were studied in various accessions. Light, sucrose and ethylene influenced bulb formation. Storability was primarily enhanced by a high sucrose concentration (100 g/l) in the culture medium. The bulbing process was characterised by changes in bulbing ratio, leaf length, number of leaves and leaf development time. The viability of bulbs after 1 year of in vitro storage at low temperatures was determined by their growth reaction in subsequent subcultures, growth after transfer into the greenhouse and tetrazolium staining. Sufficient sprouting of bulblets previously stored at –1  °C demonstrated the possibility of storing them in a low-temperature, slow-growth culture. Received: 8 June 2000 / Revision received: 5 October 2000 / Accepted: 5 October 2000  相似文献   

20.
Biofilm is a natural form of cell immobilization in which microorganisms attach onto solid support. In this study, a pigment-reduced pullulan-producing strain, Aureobasidium pullulans (ATCC 201253), was used for continuous pullulan fermentation in a plastic composite support (PCS) biofilm reactor. Optimal conditions for the continuous pullulan production were determined by evaluating the effects of the feeding medium with various concentrations of ammonium sulfate and sucrose and dilution rate. Pullulan concentration and production rate reached maximum (8.3 g/l and 1.33 g/l/h) when 15 g/l of sucrose, 0.9 g/l of ammonium sulfate, and 0.4 g/l of yeast extract were applied in the medium, and the dilution rate was at 0.16 h−1. The purity of produced pullulan was 93.0%. The ratio of hyphal cells of A. pullulans increased when it was grown on the PCS shaft. Overall, the increased pullulan productivity can be achieved through biomass retention by using PCS biofilm reactor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号