首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The functional pathways of nicotinamide adenine dinucleotide (NAD) biosynthesis and their regulation were studied in the dimorphic fungus Candida albicans. The presence of a functional endogenous pathway of NAD biosynthesis from tryptophan was demonstrated. In addition, nicotinamide served as an efficient salvage precursor for NAD biosynthesis but nicotinate was not utilized. The pathway for nicotinamide utilization involved nicotinate and nicotinate nucleotides as intermediates, suggesting that the failure to utilize nicotinate involves a transport defect. The mechanisms that regulate NAD levels during exponential growth operated to maintain constant NAD levels when NAD biosynthesis occurred exclusively from endogenous or salvage pathways or from a combination of the two. The regulation also operated such that the salvage pathway was preferentially utilized.  相似文献   

2.
3.
Neurospora NADP-specific glutamate dehydrogenase that was treated with iodoacetate, iodoacetamide, or N-ethylmaleimide to block the thiol groups was cleaved with cyanogen bromide. Of the expected 10 peptides, based on a methionine content of 9 residues, 8 were obtained in pure form and 2 were handled as a mixture. The fragments ranged in size from 9 to 109 residues. In addition, there were isolated 6 peptides, produced by anomalous cleavage at the carboxyl groups of tryptophan residues, and two by hydrolysis of an aspartyl-proline bond. Preliminary separation of these peptides was accomplished by gel filtration followed by either ion-exchange chromatography of the larger peptides or by paper chromatography and paper electrophoresis of the smaller fragments. Ordering of the CNBr fragments in sequence was based upon sequences of tryptic and chymotryptic peptides obtained in another laboratory. The complete sequence of the protein is presented. The amino acid sequences of the bovine and chicken liver glutamate dehydrogenases previously determined show considerable homology with the NADP-specific enzyme of Neurospora in the NH2-terminal half of the molecule; this includes the region of the specifically reactive lysine residue and the portion of the sequence that has been implicated in coenzyme binding. Particularly striking is the fact that most of the residues conserved among the three homologous proteins would be expected to be important for conformational, rather than catalytic, effects. This implies that the conformation of the Neurospora enzyme must be similar in parts of its structure to the vertebrate enzymes but undoubtedly differs in some regards.  相似文献   

4.
Formate dehydrogenase activity (EC 1.2.1.2) has been demonstrated in cell-free preparations of Mycobacterium phlei by following the reduction of 2,6 dichlorophenolindophenol. thiazolyl blue tetrazolium, or equine cytochrome c. The reduction of equine cytochrome c was inhibited by 2-heptyl-4-hydroxyquinoline-N-oxide. Neither nicotinamide adenine dinucleotide nor nicotinamide adenine dinucleotide phosphate were reduced by this formate dehydrogenase. The enzyme was constitutive and associated with the particular fraction. The greatest level of activity was observed at pH 9.0, with 8 mM formate, and with extracts of cells taken from the log phase of growth. Formaldehyde, hypophosphite, nitrate, and bicarbonate all inhibited the oxidation of formate.  相似文献   

5.
6.
Nicotinamide adenine dinucleotide (NADH) plays a critical role in oxidative phosphorylation as the primary source of reducing equivalents to the respiratory chain. Using a modified fluorescence microscope, we have obtained spectra and images of the blue autofluorescence from single rat cardiac myocytes. The optical setup permitted rapid acquisition of fluorescence emission spectra (390-595 nm) or intensified digital video images of individual myocytes. The spectra showed a broad fluorescence centered at 447 +/- 0.2 nm, consistent with mitochondrial NADH. Addition of cyanide resulted in a 100 +/- 10% increase in fluorescence, while the uncoupler FCCP resulted in a 82 +/- 4% decrease. These two transitions were consistent with mitochondrial NADH and implied that the myocytes were 44 +/- 6% reduced under the resting control conditions. Intracellular fluorescent structures were observed that correlated with the distribution of a mitochondrial selective fluorescent probe (DASPMI), the mitochondrial distribution seen in published electron micrographs, and a metabolic digital subtraction image of the cyanide fluorescence transition. These data are consistent with the notion that the blue autofluorescence of rat cardiac myocytes originates from mitochondrial NADH.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
15.
The subcellular distribution of NADase in splenic and peritoneal macrophages of the mouse has been studied. Conventional procedures for fractionation and isolation of subcellular components demonstrated that the NADase of murine macrophages was localized in the microsomal fraction. By using the diazonium salt of sulfanilic acid, a nonpenetrating reagent known to inactivate ecto-enzymes in intact cells, purified plasma membrane preparations, and marker enzymes, 5′-nucleotidase for plasma membrane and glucose 6-phosphatase for the microsomal fraction, we have shown that: (i) NADase of murine macrophages is a plasma membrane ecto-enzyme and (ii) the microsomal fraction is a mixture of endoplasmic reticulum and plasma membrane elements. At 5 × 10?4 M concentration, the diazonium salt of sulfanilic acid drastically decreased NADase in intact splenic and peritoneal macrophages of the mouse. 5′-Nucleotidase was similarly inhibited by this reagent, whereas the activity of glucose 6-phosphatase remained unaffected. There was a good recovery of NADase of high specific activity in plasma membrane preparations that were characterized by high 5′-nucleotidase and low glucose 6-phosphatase activity.  相似文献   

16.
A structural analog of NAD+, NICOTINAMIDE 3,N-4ethenocytosine dinucleotide (epsilonNCD+), has been synthesized, characterized, and compared in activity with the natural coenzyme in several enzyme systems. The Vmax and apparent Km values were determined for NAD+, epsilonNCD+, and epsilonNAD+ (nicotinamide 1, N6-ethenoadenine dinucleotide) with yeast alcohol, horse liver alcohol, pig heart malate, beef liver glutamate, and rabbit muscle lactate and glyceraldehyde-3-phosphate dehydrogenases. The Vmax for epsilonNCD+ was as great or greater than that obtained for NAD+ with three of the enzymes, 60-80 per cent with two others, and 14 percent with one. EpsilonNCD+ was found to be more active than epsilonNAD+ with all six dehydrogenases. EpsilonNCD+ served as a substrate for Neurospora crassa tnadase, but could not be phosphorylated with pigeon liver NAD+ kinase. NAD+ pyrophosphorylase from pig liver was unable to catalyze the formation of epsilonNCD+ from the triphosphate derivative of epsilon-cytidine and nicotinamide mononucleotide, but was able to slowly catalyze the pyrolytic cleavage of epsilonNCD+. The coenzyme activity of epsilonNCD+ with dehydrogenases can be discussed in terms of the close spatial homology of epsilonNCD+ and NAD+, which may allow similar accommodations within the enzyme binding regions.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号