首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The umbilical cord represents the link between mother and fetus during pregnancy. This cord is usually discarded as a biological waste after the child’s birth; however, its importance as a “store house” of stem cells has been explored recently. We developed a method of simultaneous isolation of endothelial cells (ECs) from the vein and mesenchymal stem cells from umbilical cord Wharton’s jelly of the same cord. The isolation protocol has been simplified, modified, and improvised with respect to choice of enzyme and enzyme mixture, digestion time, cell yield, cell growth, and culture medium. Isolated human umbilical vascular ECs (hUVECs) were positive for von-Willibrand factor, a classical endothelial marker, and could form capillary-like structures when seeded on Matrigel, thus proving their functionality. The isolated human umbilical cord mesenchymal stem cells (hUCMSCs) were found positive for CD44, CD90, CD 73, and CD117 and were found negative for CD33, CD34, CD45, and CD105 surface markers; they were also positive for cytoskeleton markers of smooth muscle actin and vimentin. The hUCMSCs showed multilineage differentiation potential and differentiated into adipogenic, chondrogenic, osteogenic, and neuronal lineages under influence of lineage specific differentiation medium. Thus, isolating endothelial cells as well as mesenchymal cells from the same umbilical cord could lead to complete utilization of the available tissue for the tissue engineering and cell therapy.  相似文献   

2.
Production and characterization of interferon from endothelial cells   总被引:3,自引:0,他引:3  
The capacity of cultured bovine aortic, capillary, and corneal endothelial cells as well as of human umbilical cord endothelial cells to produce interferon (IFN) was investigated. The endothelial cells of the two species produced significant amounts of IFN in response to various viruses and poly (I) poly (C). The IFN produced by human umbilical cord endothelial cells was a mixture of alpha- and beta-IFN, as determined by neutralization with antibodies directed against these two types of IFNs as well as by measuring the antiviral activity on heterologous cells. Bovine endothelial cells also produced a mixture of at least two IFN subspecies, one of them labile at pH 2 and active on human cells and the other stable at pH 2 and inactive on human cells.  相似文献   

3.
The ultrastructure of human umbilical cord vein endothelium in situ, after isolation by collagenase treatment, and in primary culture is described. The cultured cells formed a monolayer with typical "butt" and interdigitated junctions with specialized areas, and contained Weibel-Palade bodies, rod-shaped tubular organelles considered specific of endothelial cells. These morphological features were not present in cultures of human skin fibroblasts and fibroblast-like cells derived from umbilical cords. It is thus concluded that endothelial cells retain their characteristic fine structure in primary culture. Simple ultrastructural studies can thus be used to identify endothelial cells in culture.  相似文献   

4.
Summary A short method is described for obtaining a large number of pure vascular smooth muscle cells in culture. The smooth muscle cells were isolated from human umbilical cord arteries digested twice by an enzyme mixture of collagenase, trypsin, elastase, and DNAase with addition of α-tosyl-lysyl chloromethane. Primary cell culture and first subculture were not contaminated by endothelial cells, no Factor VIII being produced. The cultures consisted of smooth muscle cells as appeared from phase contrast and electron microscopy. Part of this study was supported by a scholarship from the Dutch Ministry of Education and Science and by the Leyden University Foundation.  相似文献   

5.
Hematopoietic stem cells have a remarkable plastic capacity, which allows them to differentiate into various cells, such as immune cells, nervous cells, muscle cells, bone and cartilaginous cells. The aim of this study was to show the capacity of stem cells to differentiate into endothelial cells, in culture, after addition of endothelial cells growth suplement (ECGS). We also compared the behavior of these cells with that of endothelial cells obtained from human umbilical vein (HUVEC). CD34+ cells obtained by immunomagnetic separation from human umbilical cord and placental blood were used. After 12-15 days of culture in a medium containing ECGS, the cells showed morphological changes characteristic to endothelial cells and immunocytochemical analysis revealed the presence of CD31 surface antigen and von Willebrand factor. The flow-cytometric analysis of endothelial cells adhesion molecules (ECAM) showed that endothelial cells derived from CD34+ cells expressed CD54/ICAM-1 9.65 ± 0.2% and CD106/VCAM 7.73±0.3%, values similar to those expressed by HUVECs. After TNF incubation, ECAM expression increased only in HUVECs. These data demonstrate that a fraction of circulating CD34+ cells may develop some endothelial cell characteristics when cultured with ECGS, but they are functionally different from HUVECs.  相似文献   

6.
The hierarchy of endothelial progenitor cells (EPCs) in human umbilical cord blood has been disclosed. In this study we compare, for the first time, the angiogenic potential difference between two types of EPCs. We cultured mononuclear cells (MNCs) isolated from human umbilical cord blood using endothelial cell-conditioned medium and obtained two types of EPCs, referred to as circulating angiogenic cells (CACs) and high proliferative potential endothelial progenitor cells (HPP-EPCs). Both types of cells possess characteristics of EPCs, including expressing CD31, VE-cadherin, KDR and von Willebrand factor, uptake of Ac-LDL and binding to lectin. However, unlike CACs, which express CD14 but not CD133, HPP-EPCs express CD133 but not CD14. Also, unlike CACs, HPP-EPCs display stronger proliferation and clonogenic potential in vitro and show stronger ability to promote vascular growth in the hind-limb model of ischemia in mice (BALB/C-nu) in vivo.  相似文献   

7.
The successful use of tissue-engineered transplants is hampered by the need for vascularization. Recent advances have made possible the using of stem cells as cell sources for therapeutic angiogenesis, including the vascularization of engineered tissue grafts. The goal of this study was to examine the endothelial potential of human umbilical cord-derived stem (UCDS) cells. UCDS cells were initially characterized and differentiated in an endothelial differentiation medium containing VEGF and bFGF. Differentiation into endothelial cells was determined by acetylated low-density lipoprotein incorporation and expression of endothelial-specific proteins, such as PECAM and CD34. In vivo, the transplanted UCDS cells were sprouting from local injection and differentiated into endothelial cells in a hindlimb ischemia mouse model. These findings indicate the presence of a cell population within the human umbilical cord that exhibits characteristics of endothelial progenitor cells. Therefore, human umbilical cord might represent a source of stem cells useful for therapeutic angiogenesis and re-endothelialization of engineered tissue grafts.  相似文献   

8.
The culture of endothelial progenitor cells (EPC) provides an excellent tool to research on EPC biology and vascular regeneration and vasculogenesis. The use of different protocols to obtain EPC cultures makes it difficult to obtain comparable results in different groups. This work offers a systematic comparison of the main variables of most commonly used protocols for EPC isolation, culture and functional evaluation. Peripheral blood samples from healthy individuals were recovered and mononuclear cells were cultured. Different recovery and culture conditions were tested: blood volume, blood anticoagulant, coating matrix and percentage of foetal bovine serum (FBS) in culture media. The success of culture procedure, first colonies of endothelial cells appearance time, correlation with number of circulating EPC (cEPC) and functional comparison with human umbilical vein endothelial cells (HUVEC) were studied. The use of heparin, a minimum blood volume of 30 ml, fibronectin as a coating matrix and endothelial growing media‐2 supplemented with 20% FBS increased the success of obtaining EPC cultures up to 80% of the processed samples while reducing EPC colony appearance mean time to a minimum of 13 days. Blood samples exhibiting higher cEPC numbers resulted in reduced EPC colony appearance mean time. Cells isolated by using this combination were endothelial cell‐like EPCs morphological and phenotypically. Functionally, cultured EPC showed decreased growing and vasculogenic capacity when compared to HUVEC. Thus, above‐mentioned conditions allow the isolation and culture of EPC with smaller blood volumes and shorter times than currently used protocols.  相似文献   

9.
In order to investigate the effects of human yolk sac-derived endothelial cells (hYSECs) on the expansion of human hematopoietic stem/progenitor cells (HS/PCs) from umbilical cord blood (UCB) in vitro, we purified hYSEC-like cells from 4-5 week human yolk sacs, which were morphologically similar to endothelial cells and expressed CD31, CD144 and vWF characteristics of endothelial cells. Then we isolated CD34(+) cells from UCB in culture under three different conditions: with hematopoietic cytokines (CKs), contact-coculture or noncontact-coculture with hYSECs supplemented with CKs, and found that the contact-coculture system had the strongest expansion efficiency in the total cells' (TCs) ability to form HPP-CFCs. Erythroid burst-forming units (BFU-E) increased 52.35-fold, 20.26-fold and 27.77-fold, respectively, compared with pre-expansion. We detected that the mRNA of Notch ligands such as Jagged1, Delta1 and Delta4 could express in hYSECs after contacted culture with UCB-CD34(+) cells but not the noncontacted cells by RT-PCR analysis. Therefore, we concluded that the contact-coculture system supplemented with CKs could support the expansion of UCB-HS/PCs in vitro, especially high potential proliferative colony-forming cells (HPP-CFC) and BFU-E, perhaps owing to Notch signal pathway.  相似文献   

10.
11.
目的:脐带血来源的内皮克隆形成细胞具有高度增殖、自我更新和血管生成的能力,是再生医学和母胎医学领域研究的热点。本研究旨在提出一种有效的、可靠的人脐带血中内皮克隆形成细胞分离和培养方法。方法:取抗凝脐血,采用密度梯度离心法分离单核细胞并进行贴壁培养,在细胞克隆形成但未融合成片时,进行单克隆的挑取再培养,最后对所得细胞进行表型和功能的鉴定。结果:所获细胞增殖能力强,形态单一,呈鹅卵石样,连续传代8次,未见细胞性状改变。接种到基质胶上,细胞可连接为管状、网状结构。能摄取培养液中的低密度脂蛋白并结合荆豆凝集素,细胞免疫荧光显示其表达典型的内皮细胞标志性分子CD31、e NOS、VE-Cadherin、v WF。结论:通过本研究的方法,我们从脐带血中获得足够数量和高纯度的内皮克隆形成细胞,这为进一步的实验研究提供了可靠的基础。  相似文献   

12.
Human umbilical vein endothelial cells (HUVECS) are used as an irreplaceable tool for the study of vascular diseases. However, the technicians who isolate HUVECs are largely exposed to potential infectious threats. Here we report the development of a specialized instrument to protect researchers from known or unknown infectious agents when they operate on human umbilical cords. This instrument can be assembled by common laboratory supplies and adapted to accommodate umbilical cords of different lengths. When the cord is enclosed within the instrument, the risk of sample contamination and operator infection is greatly reduced. Using our instrument, endothelial cells were successfully isolated from human umbilical veins without contamination. The cells were verified by their cobblestone-like morphology and by immunofluorescence staining (Factor VIII and CD31 positivity and α-SMA negativity). Our instrument simplifies and optimizes the cell extraction process, and most importantly elevates the biosafety to a higher level during the isolation of human umbilical vein endothelial cells.  相似文献   

13.
We have used cytokine protein array to analyze the secretion of cytokines from an osteoblastic clone derived from human umbilical cord blood mesenchymal stem cells (MSCs) cultured in an osteogenic differentiation medium. The analysis demonstrated the unexpected ability of osteoblast committed cells and their early progenitors to produce significant amounts of a range of soluble immune mediators without in vitro exposure to clinically relevant bacterial pathogens. The cells were expanded and their osteogenic potential analyzed over 45 days of culture was revealed by the expression of osteoblast-specific markers (alkaline phosphatase and Runx2), and by matrix mineralization. Over this culture period, the cells secreted particularly high levels of IL-8, MCP-1 and VEGF, but did not express IL-2, IL-7, IL-17, eotaxin, G-CSF and IFN-gamma. These findings should encourage the use of human umbilical cord blood as a potential stem cells source for bone regeneration.  相似文献   

14.
Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) hold great potential for their therapeutic use in various clinical diseases. Many publications have reported on human blood-derived alternatives to animal serum for culturing mesenchymal stem cells, such as human serum, allogenic umbilical cord blood serum, and human platelet derivatives. However, it is not clear whether human umbilical cord blood plasma (UCBP), as the surplusage of umbilical cord blood mesenchymal stem cell extraction, could be used. In this study, in order to make the best of umbilical cord blood, the human UCBP was dialyzed to replace fetal bovine serum (FBS) in the culture medium. hUC-MSCs were cultured in the new medium. Cell growth rate, specific biomarkers, and differentiation properties were detected to characterize the cell proliferation and MSC-specific properties. The hUC-MSCs cultured in such derived medium were verified with proliferation rate, cluster differentiation markers, cell cycle, as well as differentiation capabilities. Such dialyzed human UCBP is fully comparable with, if not superior to, FBS in deriving and culturing hUC-MSCs.  相似文献   

15.
Various types of microcarriers were tested as growth substrate for the cultivation of either endothelial cells from human umbilical cord veins or of EA. hy926, an immortalized cell line of endothelial origin. Cell growth was tested on microcarriers in tissue culture flasks and spinner flasks. Solid (Cytodex type I, II, III, Gelibeads, Mica) and macroporous (Polyhipe, CultiSpher GL, PolyporE type I) microcarriers were tested. For the solid carriers the best results were obtained with Mica and for the macroporous carriers with CultiSpher GL.Abbreviations DAPI 4,6-diamidino-2-phenylindole-di-hydrochloride - DEAE diethylaminoethyl - EC vascular endothelial cells - FGF fibroblast growth factor - HUVEC vascular endothelial cells from human umbilical cord veins - IF 11 mixture of Iscove's MDM and F12 basal media - NCS newborn calf serum - PBS phosphate buffered saline - TE 0.05% (w/v) trypsin, 0.02% (w/v) EDTA in PBS  相似文献   

16.
Human endothelial cells were obtained from the umbilical cord veins of 16 newborns by methods previously described and tested for HL-A antigens by a microcytotoxicity method. HL-A antigens were present on all endothelial cell lines tested. When the HL-A phenotypes of fresh endothelial cells and autologous fetal lymphocytes were compared, a concordance of 70% was observed. When the HL-A phenotypes of maternal lymphocytes and fresh endothelial cells were compared, a maternal contribution to the endothelial cell phenotype was evident in 72% of the possible commmon antigens. Some HL-A antigens were deleted from 11 of 16 endothelial cell lines that were re-typed after 2 weeks in tissue culture. The majority (90%) of deleted antigens were from the second HL-A locus. When three lines of endothelials cells were again re-typed after 6 weeks in culture, no further changes in antigenicity were noted. These findings: a) demonstrate that HL-A antigens are present on human endothelium and suggest that endothelial cells are actively involved in establishing the immunogenicity of a graft, and b) demonstrate that the HL-A antigens on human endothelial cells may be modulated by in vitro culture.  相似文献   

17.
In the pathogenesis of atherosclerosis the interplay of endothelial cells (ECs) and smooth muscle cells (SMCs) is disturbed. Oxidatively modified low-density lipoproteins (oxLDLs), important stimulators of atherosclerotic plaque formation in vessels, modify the growth response of both cell types. To compare growth responses of ECs and SMCs of the same vessel with oxLDLs, we developed a method to isolate both cell types from the vessel walls of umbilical cords by enzymatic digestion. The method further allowed the simultaneous isolation of venous and arterial cells from a single umbilical cord. In culture, venous ECs showed an elongated appearance compared with arterial ECs, whereas SMCs of artery and vein did not look different. Smooth muscle cells of both vessel types responded to oxLDLs (60 microg/ml) with an increase in their [(3)H]-thymidine incorporation into DNA. On the contrary, ECs of artery or vein decreased [(3)H]-thymidine incorporation and cell number in the presence of oxLDLs (60 microg/ml) of increasing oxidation grade. Thus, human umbilical SMCs and ECs of the same vessel show a disparate growth response toward oxLDLs. But the physiologically more relevant minimal oxLDLs did not decrease proliferation in venous ECs but only in arterial ECs. This difference in tolerance toward minimal oxLDLs should be taken into account while using venous or arterial ECs of umbilical cord for research in atherosclerosis. Further differences of venous and arterial ECs in tolerance toward minimal oxLDLs could be of clinical relevance for coronary artery bypass grafts.  相似文献   

18.
Ha JM  Kim MR  Oh HK  Lee BH  Ahn HY  Shin JC  Baek SH  Joe YA 《FEBS letters》2007,581(14):2663-2669
Outgrowing endothelial progenitor-derived cells (EPDCs) originate from a novel hierarchy of endothelial progenitor cells. In this study, EPDCs isolated from human cord blood were examined for phenotype and functional features upon aging. Young or aged EPDCs were similar to human umbilical vein endothelial cells (HUVECs), in exhibiting typical endothelial phenotypes. However, EPDCs were more sensitive to angiogenesis inducers or inhibitors in proliferation and migration. In addition, EPDCs underwent senescence markedly slowly with sustained endothelial NO synthase expression and activation, and their ability to undergo capillary morphogenesis was retained throughout longterm culture. Thus, these results suggest that a homogenous population of EPDCs derived from clonogenic expansion may provide an effective vasculogenesis tool.  相似文献   

19.
Human umbilical vein endothelial cells (HUVECs) cultured in vitro are a commonly used experimental system. When properly differentiated they acquire the so-called cobblestone phenotype; thereby mimicking an endothelium in vivo that can be used to shed light on multiple endothelial-related processes. In the present paper we report a simple, flexible, fast and reproducible method for an efficient isolation of viable HUVECs. The isolation is performed by sequential short trypsinization steps at room temperature. As umbilical cords are often damaged during labor, it is noteworthy that this new method can be applied even to short pieces of cord with success. In addition, we describe how to culture HUVECs as valid cobblestone cells in vitro on different types of extracellular matrix (basement membrane matrix, fibronectin and gelatin). We also show how to recognize mature cobblestone HUVECs by ordinary phase contrast microscopy. Our HUVEC model is validated as a system that retains important features inherent to the human umbilical vein endothelium in vivo. Phase contrast microscopy, immuno-fluorescence and electron microscopy reveal a tight cobblestone monolayer. Therein cells show Weibel-Palade bodies, caveolae and junctional complexes (comparable to the in vivo situation, as also shown in this study) and can internalize human low density lipoprotein. Isolation and culture of HUVECs as reported in this paper will result in an endothelium-mimicking experimental model convenient for multiple research goals.  相似文献   

20.
Among the many tissue stem or progenitor cells recently being unveiled, endothelial progenitor cells (EPCs) have attracted particular attention, not only because of their cardinal role in vascular biology and embryology but also because of their potential use in the therapeutic development of a variety of postnatal diseases, including cardiovascular and peripheral vascular disorders and cancer. The aim of this study is to provide some basic and comprehensive information on gene expression of EPCs to characterize the cells in molecular terms. Here, we focus on EPCs derived from CD34-positive mononuclear cells of human umbilical cord blood. The EPCs were purified and expanded in culture and analyzed by a high-density oligonucleotide microarray and real-time RT-PCR analysis. We identified 169 up-regulated and 107 down-regulated genes in the EPCs compared with three differentiated endothelial cells of human umbilical vein endothelial cells (HUVEC), human lung microvascular endothelial cells (LMEC) and human aortic endothelial cells (AoEC). It is expected that the obtained list include key genes which are critical for EPC function and survival and thus potential targets of EPC recognition in vivo and therapeutic modulation of vasculogenesis in cancer as well as other diseases, in which de novo vasculogenesis plays a crucial role. For instance, the list includes Syk and galectin-3, which encode protein tyrosine kinase and β-galactoside-binding protein, respectively, and are expressed higher in EPCs than the three control endothelial cells. In situ hybridization showed that the genes were expressed in isolated cells in the fetal liver at E11.5 and E14.5 of mouse development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号