首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The gas-liquid mass transfer coefficient K(L)a in the fermenter is a strong function of mode of energy dissipation and physico-chemical properties of the liquid media. A combination of disc turbine (DT) and pitched blade turbine down flow (PTD) impellers has been tested in laboratory bioreactor for gas hold-up and gas-liquid mass transfer performance for the growth and biotransformation medium for an yeast isolate VS1 capable of biotransforming benzaldehyde to L-phenyl acetyl carbinol (L-PAC) and compared with those in water.Correlations have been developed for the prediction of the fractional gas hold-up and gas-liquid mass transfer coefficient for the above media. The mass transfer coefficient and respiration rate have been determined in the shake flask for the growth as well as for biotransformation medium. These results, then have been used to optimize the operating parameters (impeller speed and aeration) for growth and biotransformation in a laboratory bioreactor. The comparison of cell mass production and L-PAC production in the bioreactor has been done with that obtained in shake flask studies.  相似文献   

2.
Macrophytic marine red algae are a diverse source of bioactive natural compounds. "Microplantlet" suspension cultures established from red algae are potential platforms for biosynthesis of these compounds, provided suitable bioreactor configurations for mass culture can be identified. The stirred tank bioreactor offers high rates of gas-liquid mass transfer, which may facilitate the delivery of the CO(2) in the aeration gas to the phototrophic microplantlet suspension culture. Therefore, the effects of impeller speed and CO(2) delivery on the long-term production of microplantlet biomass of the model red alga Agardhiella subulata was studied within a stirred tank photobioreactor equipped with a paddle blade impeller (D(i)/D(T) = 0.5). Nutrient medium replacement was required for sustained biomass production, and the biomass yield coefficient based on nitrate consumption was 1.08 +/- 0.09 g dry biomass per mmol N consumed. Biomass production went through two exponential phases of growth, followed by a CO(2) delivery limited growth phase. The CO(2)-limited growth phase was observed only if the specific growth rate in the second exponential phase of growth was at least 0.03 day(-)(1), the CO(2) delivery rate was less than 0.258 mmol CO(2) L(-)(1) culture h(-)(1), and the plantlet density was at least 10 g fresh mass L(-)(1). Increasing the aeration gas CO(2) partial pressure from 0.00035 to 0.0072 atm decreased the cultivation pH from 8.8 to 7.8, prolonged the second exponential phase of growth by increasing the CO(2) delivery rate, and also increased the photosynthetic oxygen evolution rate. Impeller speeds ranging from 60 to 250 rpm, which generated average shear rates of 2-10 s(-)(1), did not have a significant effect on biomass production rate. However, microplantlets cultivated in a stirred tank bioreactor ultimately assumed compact spherical shape, presumably to minimize exposure to hydrodynamic stress.  相似文献   

3.
Dependence of mycelial morphology on impeller type and agitation intensity   总被引:8,自引:0,他引:8  
The influence of the agitation conditions on the morphology of Penicillium chrysogenum (freely dispersed and aggregated forms) was examined using radial (Rushton turbines and paddles), axial (pitched blades, propeller, and Prochem Maxflow T), and counterflow impellers (Intermig). Culture broth was taken from a continuous fermentation at steady state and was agitated for 30 min in an ungassed vessel of 1.4-L working volume. The power inputs per unit volume of liquid in the tank, P/V(L), ranged from 0.6 to 6 kW/m(3). Image analysis was used to measure mycelial morphology. To characterize the intensity of the damage caused by different impellers, the mean total hyphal length (freely dispersed form) and the mean projected area (all dispersed types, i.e., also including aggregates) were used. [In this study, breakage of aggregates was taken into account quantitatively for the first time.]At 1.4-L scale and a given P/V(L), changes in the morphology depended significantly on the impeller geometry. However, the morphological data (obtained with different geometries and various P/V(L)) could be correlated on the basis of equal tip speed and two other, less simple, mixing parameters. One is based on the specific energy dissipation rate in the impeller region, which is simply related to P/V(L) and particular impeller geometrical parameters. The other which is developed in this study is based on a combination of the specific energy dissipation rate in the impeller swept volume and the frequency of mycelial circulation through that volume. For convenience, the function arising from this concept is called the "energy dissipation/circulation" function.To test the broader validity of these correlations, scale-up experiments were carried out in mixing tanks of 1.4, 20, and 180 L using a Rushton turbine and broth from a fed-batch fermentation. The energy dissipation/circulation function was a reasonable correlating parameter for hyphal damage over this range of scales, whereas tip speed, P/V(L), and specific energy dissipation rate in the impeller region were poor. Two forms of the energy dissipation/circulation function were considered, one of which additionally allowed for the numbers of vortices behind the blades of each impeller type. Although both forms were successful at correlating the data for the standard impeller designs considered here, there was preliminary evidence that allowing for the vortices would be valuable. (c) 1996 John Wiley & Sons, Inc.  相似文献   

4.
Mass transfer and shear force have significant effects on nemadectin production by Streptomyces cyaneogriseus ssp. noncyanogenus. They are always the conflict-ridden problems in nemadectin fermentation process. In this study, the flow field characteristics under different impeller combinations were quantitatively evaluated in 5 L stirred-tank bioreactor through the laser particle image velocimetry (PIV) system. Results demonstrated that the radial-axial impeller combinations with the time average velocity at 0.38-0.54 Utip, the turbulent kinetic energy dissipation rate at 6.4–10.6 ε/N3D2, and the shear stress rate was 40-150 s−1, were more conductive to cell growth, nemadectin biosynthesis, cell’s activity, respiratory metabolism than other combinations. The highest nemadectin yield was evaluated up to 1543.3 ± 18.5 μg/mL, which was 31.68 % higher than that of the radial flow impeller combinations. This study provided the important guideline for the selection impeller combinations’ on large-scale nemadectin production.  相似文献   

5.
Y Yang  J Xia  J Li  J Chu  L Li  Y Wang  Y Zhuang  S Zhang 《Journal of biotechnology》2012,161(3):250-256
Effects of impeller configuration on fungal physiology and cephalosporin C production were investigated by an industrial strain Acremonium chrysogenum in a 12m(3) bioreactor equipped with conventional and novel impeller configuration, respectively. The cell growth and oxygen uptake rate (OUR) profiles were little affected by the impeller configurations. However, differing impeller combinations significantly affected the morphology, which in turn influenced cephalosporin C production. Under the novel impeller configuration, the production of cephalosporin C was 10% higher and an excessive amount of dispersed arthrospores was also observed. Computational fluid dynamics (CFD) simulation further revealed that poor mass and energy exchange as well as inhomogeneous environment existed in the bioreactor equipped with conventional impeller configuration. For equivalent power dissipation, the volume oxygen transfer coefficient (K(L)a) could be enhanced by 15% compared with that of conventional impeller configuration. Power consumption was dramatically decreased by 25% by using novel impeller configuration.  相似文献   

6.
Summary The effects of agitation and aeration on the growth of carrot hairy roots were investigated. When hydrodynamic stress index was above 0.001 cm/s, the growth rate of hairy roots decreased sharply. When volumetric O2 transfer coefficient was high, the specific growth rate was also high. However, the specific growth rate approached the maximum value when the volumetric O2 transfer coefficient was over 4 h–1 . It is therefore necessary to maintain low hydrodynamic stress and high volumetric oxygen transfer for high density culture of hairy roots. By considering hydrodynamic stress and oxygen transfer, a novel bioreactor type was suggested for hairy roots cultivation.This research was supported in part by the Genetic Engineering Research Fund Korean Ministry of Education  相似文献   

7.
For mammalian cell culture, getting a continuous supply of oxygen and extracting carbon dioxide are primary challenges even in the most modern biopharmaceutical manufacturing plants, due to the low oxygen solubility and excessive carbon dioxide accumulation. In addition, various independent flow and mass transfer characteristics in the culture tanks vessel make scale-up extremely difficult. One method for overcoming these and providing rational optimization is solving the fluid and mass transport equations by numerical simulation. To develop a simulation program, it is decisively important to know mass transfer coefficients of gaseous species in the culture tank. In this study, oxygen mass transfer coefficients are measured using a beaker with a sparger and impellers. In order to investigate the formulation of the mass transfer coefficients, the turbulent flow statistics is calculated by a CFD code for all cases, and the expressions of the mass transfer coefficients are established as functions of the statistics. Until now, the expression by Kawase is known in this field. This expression becomes a function only of energy dissipation rate epsilon. It does not coincide with the conventional experimental fact that mass transfer coefficient is proportional power 0.5 of impeller rotation speed. The new mass transfer coefficient is dependent on both of energy dissipation rate epsilon and turbulent flow energy k. It satisfies the relation of power of 0.5 of impeller rotation speed.  相似文献   

8.
Efficient regeneration of NAD(P)+ cofactors is essential for large-scale application of alcohol dehydrogenases due to the high cost and chemical instability of these cofactors. NAD(P)+ can be regenerated effectively using NAD(P)H oxidases (NOXs) that require molecular oxygen as a cosubstrate. In large-scale biocatalytic processes, agitation and aeration are needed for sufficient oxygen transfer into the liquid phase, both of which have been shown to significantly increase the rate of enzyme deactivation. As such, the aim of this study was to identify the existence of a correlation between enzyme stability and gas–liquid interfacial area inside the bioreactor. This was done by measuring gas–liquid interfacial areas inside an aerated stirred reactor, using an in situ optical probe, and simultaneously measuring the kinetic stability of NOXs. Following enzyme incubation at various power inputs and gas-phase compositions, the residual activity was assessed and video samples were analyzed through an image processing algorithm. Enzyme deactivation was found to be proportional to an increase in interfacial area up to a certain limit, where power input appears to have a higher impact. Furthermore, the presence of oxygen increased enzyme deactivation rates at low interfacial areas. The areas were validated with defined glass beads and found to be in the range of those in large-scale bioreactors. Finally, a correlation between the enzyme half-life and specific interfacial area was obtained. Therefore, we conclude that the method developed in this contribution can help to predict the behavior of biocatalyst stability under industrially relevant conditions, concerning specific gas–liquid interfacial areas.  相似文献   

9.
Performance of mammalian cell culture bioreactor with a new impeller design   总被引:3,自引:0,他引:3  
To improve the oxygen transfer in a mammalian cell bioreactor, a new type of impeller consisting of a double-screen concentric cylindrical cage impeller (annular cage impeller in short) was designed and its mass transfer rate evaluated. This new impeller design increases the specific screen area, and the convective mass transfer rate through the annular cage was significantly increased. The oxygen transfer rates with the new impeller and the commercially available cell-lift impeller (CelliGen by New Brunswick Scientific Co.) were evaluated and their performance compared at various rates of aeration and agitation. The results showed that with the new impeller, the oxygen transfer rate was increased by 19% in water and 21% in cell-free culture medium supplemented with 10% horse serum, the total hybridoma cell concentration was increased to 3.4 x 10(7) cells/mL, and the IgG(1) subtype monoclonal antibody (MAb) product concentration was also increased to 512 mg/L in perfusion culture of murine hybridoma cell line 62'D3. These improvements in oxygen transfer rate, cell concentration, and MAb product concentration are all very significant. The mass transfer resistance in the cell-lift impeller system was found to be mainly due to the surface area of the single-screen cage impeller. The new annular cage impeller not only provided the increased surface area for convective oxygen transfer but also protected cells from hydrodynamic shear damage, thereby achieving a significant bioprocess improvement in terms of higher viable cell concentration, higher product concentration, and higher oxygen transfer rate in the mammalian cell bioreactor system.  相似文献   

10.
The effects of the impeller configuration, aeration rate, and agitation speed on oxygen transfer coefficient K(L)a were studied in a newly designed centrifugal impeller bioreactor (5-L). The oxygen transfer rates in the novel bioreactor were also compared with those in a cell-lift bioreactor with comparable dimensions. The cell-lift impeller produced much higher surface oxygen transfer rates than the centrifugal one at an agitation speed over 200 rpm. This result was in good agreement with our observation that the cell-lift impeller produced much higher unfavorable turbulence. In addition, the experiments using granulated agar particles as pseudo plant cells indicated that the K(L)a value decreased steadily with an increase in agar particle concentration, and the centrifugal impeller still demonstrated a larger K(L)a than the cell lift up to a high pseudo cell concentration of 19.5 g dry weight (DW)/L (under 150 rpm and 0.20 vvm) or 22.3 g DW/L (under 200 rpm and 0.20 vvm). Furthermore, the correlation between power number and impeller Reynolds number for both the centrifugal and the cell-lift impellers was successfully obtained, which could be used for predicting the power input required by each impeller. From the results obtained, the centrifugal impeller bioreactor is expected to have great potential in its application to shear-sensitive biological systems.  相似文献   

11.
The objective of the present study was to investigate the effect of hydrodynamic stress heterogeneity on metabolism and productivity of an industrial mammalian cell line. For this purpose, a novel Lobed Taylor-Couette (LTC) mixing unit combining a narrow distribution of hydrodynamic stresses and a membrane aeration system to prevent cell damage by bubble bursting was developed. A hydrodynamic analysis of the LTC was developed to reproduce, in a uniform hydrodynamic environment, the same hydrodynamic stress encountered locally by cells in a stirred tank, particularly at the large scale, e.g., close and far from the impeller. The developed LTC was used to simulate the stress values near the impeller of a laboratory stirred tank bioreactor, equal to about 0.4 Pa, which is however below the threshold value leading to cell death. It was found that the cells actively change their metabolism by increasing lactate production and decreasing titer while the consumption of the main nutrients remains substantially unchanged. When considering average stress values ranging from 1 to 10 Pa found by other researchers to cause physiological response of cells to the hydrodynamic stress in heterogeneous stirred vessels, our results are close to the lower boundary of this interval.  相似文献   

12.
The design of a continuous multistage tower fermentor is described. The fermentor consists of five stages separated by perforated plates. Each stage includes mechanical mixing provided by two disc turbine impellers and has its own impeller shaft with bearing assembly and flexible coupling that enables the operation of an arbitrary number of stages. The normal operation of this system enables the co-current flow of gas and liquid, but the system can function countercurrently as well. The purpose of this study was to examine the hydrodynamic performance, i.e., the pressure gradient along the tower, the mixing time, gas holdup, the residence lime distribution of the continuous phase, the value of the backflow coefficient, and the oxygen transfer rate under conditions usually used during fermentations. From the interrelations between parameters influencing the proper performance of this system, an optimal design of plate geometry for processes requiring high oxygen transfer rate was formulated.  相似文献   

13.
Orbitally shaken cylindrical bioreactors [OrbShake bioreactors (OSRs)] without an impeller or sparger are increasingly being used for the suspension cultivation of mammalian cells. Among small volume OSRs, 50‐mL tubes with a ventilated cap (OSR50), originally derived from standard laboratory centrifuge tubes with a conical bottom, have found many applications including high‐throughput screening for the optimization of cell cultivation conditions. To better understand the fluid dynamics and gas transfer rates at the liquid surface in OSR50, we established a three‐dimensional simulation model of the unsteady liquid forms (waves) in this vessel. The studies verified that the operating conditions have a large effect on the interfacial surface. The volumetric mass transfer coefficient (kLa) was determined experimentally and from simulations under various working conditions. We also determined the liquid‐phase mass transfer coefficient (kL) and the specific interfacial area (a) under different conditions to demonstrate that the value of a affected the gas transfer rate more than did the value of kL. High oxygen transfer rates, sufficient for supporting the high‐density culture of mammalian cells, were found. Finally, the average axial velocity of the liquid was identified to be an important parameter for maintaining cells in suspension. Overall these studies provide valuable insights into the preferable operating conditions for the OSR50, such as those needed for cell cultures requiring high oxygen levels. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:192–200, 2017  相似文献   

14.
The influence of hydrodynamic conditions on the dissolution rate of crystalline naphthalene as a model polycyclic aromatic hydrocarbon (PAH) was studied in stirred batch reactors with varying impeller speeds. Mass transfer from naphthalene melts of different surface areas to the aqueous phase was measured and results were modeled according to the film theory. Results were generalized using dimensionless numbers (Reynolds, Schmidt, and Sherwood). In combined mass transfer and biodegradation experiments, the effect of hydrodynamic conditions on the degradation rate of naphthalene by Pseudomonas 8909N was studied. Experimental results were mathematically described using mass-transfer and microbiological models. The experiments allowed determination of mass-transfer and microbiological parameters separately in a single run. The biomass formation rate under mass transfer limited conditions, which is related to the naphthalene biodegradation rate, was correlated to the dimensionless Reynolds number, indicating increased bioavailability at increased mixing in the reactor liquid. The methodology presented in which mass transfer processes are quantified under sterile conditions followed by a biodegradation experiment can also be adapted to more complex and realistic systems, such as particulate, suspended PAH solids or soils with intrapartically sorbed contaminants when the appropriate mass-transfer equations are incorporated.  相似文献   

15.
Baker’s yeast was disrupted in a 1.4-L stainless steel horizontal bead mill under a continuous recycle mode using 0.3 mm diameter zirconia beads as abrasive. A single pass in continuous mode bead mill operation liberates half of the maximally released protein. The maximum total protein release can only be achieved after passaging the cells 5 times through the disruption chamber. The degree of cell disruption was increased with the increase in feeding rate, but the total protein release was highest at the middle range of feeding rate (45 L/h). The total protein release was increased with an increase in biomass concentration from 10 to 50% (w/v). However, higher heat dissipation as a result of high viscosity of concentrated biomass led to the denaturation of labile protein such as glucose 6-phosphate dehydrogenase (G6PDH). As a result the highest specific activity of G6PDH was achieved at biomass concentration of 20% (ww/v). Generally, the degree of cell disruption and total protein released were increased with an increase in impeller tip speed, but the specific activity of G6PDH was decreased substantially at higher impeller tip speed (14 m/s). Both the degree of cell disruption and total protein release increased, as the bead loading increased from 75 to 85% (v/v). Hence, in order to obtain a higher yield of labile protein such as G6PDH, the yeast cell should not be disrupted at biomass concentration and impeller tip speed higher than 20% (w/v) and 10 m/s, respectively.  相似文献   

16.
Baker’s yeast was disrupted in a 1.4-L stainless steel horizontal bead mill under a continuous recycle mode using 0.3 mm diameter zirconia beads as abrasive. A single pass in continuous mode bead mill operation liberates half of the maximally released protein. The maximum total protein release can only be achieved after passaging the cells 5 times through the disruption chamber. The degree of cell disruption was increased with the increase in feeding rate, but the total protein release was highest at the middle range of feeding rate (45 L/h). The total protein release was increased with an increase in biomass concentration from 10 to 50% (w/v). However, higher heat dissipation as a result of high viscosity of concentrated biomass led to the denaturation of labile protein such as glucose 6-phosphate dehydrogenase (G6PDH). As a result the highest specific activity of G6PDH was achieved at biomass concentration of 20% (ww/v). Generally, the degree of cell disruption and total protein released were increased with an increase in impeller tip speed, but the specific activity of G6PDH was decreased substantially at higher impeller tip speed (14 m/s). Both the degree of cell disruption and total protein release increased, as the bead loading increased from 75 to 85% (v/v). Hence, in order to obtain a higher yield of labile protein such as G6PDH, the yeast cell should not be disrupted at biomass concentration and impeller tip speed higher than 20% (w/v) and 10 m/s, respectively.  相似文献   

17.
Using Cudrania tricuspidata cells as model plant cells which have high sensitivity to hydrodynamic stress, technological problems in the cultivation of the plant cells at high density were investigated. Using "shake" flasks on a reciprocal shaker and Erlenmeyer flasks on a rotary shaker and with a high supply of oxygen in order to obtain high cell densities in shaken cultures, particle breakdown and damage to the largest cell aggregate group (above 1981 microm in diameter) occurred and normal cell growth became impeded. The mass-transfer coefficient (K) for a model solid-liquid system (beta-naphthol particles and water) in place of a system of plant cells and a liquid medium was proposed as an intensity index of hydrodynamic stress effects on plant cells in suspension cultures under various conditions in the bioreactor systems. Normal cell growth was obtained under culture conditions for K values less than about 4.4 x 10(-3) cm/sec. The characteristics of various bioreactors used until now were investigated by considering the three main technological factors (capacity of oxygen supply, intensity of hydrodynamic stress effects on plant cells, and intensity of culture broth mixing and air-bubble dispersion). The most suitable bioreactor for culturing plant cells at high density was a jar fermentor with a modified paddle-type impeller (J-M). The yield of cell mass in the 10-liter J-M (working volume 5 liter) was about 30 g dry weight per liter of medium.  相似文献   

18.
In the present study the oxygen mass transfer from the gas to the aqueous phase in a Three-Phase Inverse Fluidized Bed (TPIFB) has been studied. A pilot scale TPIFB has been designed and constructed. For determination of the volumetric oxygen mass transfer coefficient the elegant dynamic method, described by Dang et al. (1977) was used. The influence of hydrodynamic parameters, e.g., superficial velocities of the gas and liquid phases on the mass transfer rate was studied. In the range of variables covered, it was found that the superficial liquid velocity had a weak effect on the mass transfer whereas the gas flowrate affects the mass transfer positively. The results for the volumetric oxygen transfer coefficient in the TPIFB were compared to reported values of that coefficient, measured in a classic three-phase fluidised bed under similar hydrodynamic conditions and solid phase properties. The comparison demonstrated a two-fold increase of the oxygen transfer rate in the inverse bed over that in the classic one.  相似文献   

19.
Summary Partition coefficients of distribution of proteins were measured in two systems: i) 3-phenoxy-2-hydroxypropyl derivatives of bead cellulose (PHPC)/water solution — coefficients P; and ii) Aqueous polyethylene glycol (PEG)/dextran (DXT) two-phase system — coefficient K. Following proteins were used for the measurements: lysozyme, trypsin, chymotrypsin, ovalbumin, bovine serum albumin and immunoglobulin G. The obtained P and K values were correlated with previous data about hydrophobicity of the above proteins available in the literature. The literary data concerned: i) the efficacy of energy transfer from tryptophan residues of proteins to cis-parinaric acid applied as hydrophobic probe, estimated by fluorescent spectroscopy; ii) the hydrophobic ratio indicating the ratio between the hydrophobic and hydrophilic parts (in volumes) of protein molecules deduced from their primary structure; and iii) the interfacial tension at 0.2% protein-water solution/corn oil interface. Significant corrlations were obtained for P and efficacy of energy transfer (r=0.964; p<0.01) and for K and interfacial tension (r=0.936; p<0.05). When P and K were fitted as exponential function of three independent variables (i.e., efficacy of energy transfer, hydrophobic ratio and interfacial tension) good agreement between the measured and computed data was obtained. The increases in efficacy of energy transfer, hydrophobic ratio and decrease in interfacial tension were found to be accompanied by increase in P. In contrary, K behaved always similarly as efficacy of energy transfer, hydrophobic ratio and interfacial tension.  相似文献   

20.
Large scale production of monoclonal antibodies has been accomplished using bioreactors with different length to diameter ratios, and diverse impeller and sparger designs. The differences in these physical attributes often result in dissimilar mass transfer, mechanical stresses due to turbulence and mixing inside the bioreactor that may lead to disparities in cell growth and antibody production. A rational analysis of impeller design parameters on cell growth, protein expression levels and subsequent antibody production is needed to understand such differences. The purpose of this study was to examine the impact of Rushton turbine and marine impeller designs on Chinese hamster ovary (CHO) cell growth and metabolism, and antibody production and quality. Experiments to evaluate mass transfer and mixing characteristics were conducted to determine if the nutrient requirements of the culture would be met. The analysis of mixing times indicated significant differences between marine and Rushton turbine impellers at the same power input per unit volume of liquid (P/V). However, no significant differences were observed between the two impellers at constant P/V with respect to oxygen and carbon dioxide mass transfer properties. Experiments were conducted with CHO cells to determine the impact of different flow patterns arising from the use of different impellers on cell growth, metabolism and antibody production. The analysis of cell culture data did not indicate any significant differences in any of the measured or calculated variables between marine and Rushton turbine impellers. More importantly, this study was able to demonstrate that the quality of the antibody was not altered with a change in the impeller geometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号