首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
2.
3.
4.
5.
6.
Hepatic SR-BI mediates uptake of circulating cholesterol into liver hepatocytes where a part of the cholesterol is metabolised to bile acids. In the hepatocytes, bile acids reduce their own synthesis by a negative feedback loop to prevent toxic high levels of bile acids. Bile acid-activated FXR/RXR represses expression of CYP7A1, the rate-limiting enzyme during bile acid synthesis, by inducing the expression of SHP, which inhibits LXR/RXR and LRH-1-transactivation of CYP7A1. The present paper presents data indicating that CDCA suppresses SR-BI expression by the same pathway. As previously reported, LRH-1 induces SR-BI promoter activity. Here we show that CDCA or over-expression of SHP inhibit this transactivation. No FXR-response element was identified in the bile acid-responsive region of the SR-BI promoter (-1200bp/-937bp). However, a binding site for LRH-1 was characterised and shown to specifically bind LRH-1. The present study shows that also the SR-BI-mediated supply of cholesterol, the substrate for bile acid synthesis, is feedback regulated by bile acids.  相似文献   

7.
8.
9.
10.
We investigated how cholesterol feeding regulates cholesterol 7alpha-hydroxylase (CYP7A1) via the nuclear receptors farnesoid X receptor (FXR) and liver X receptor alpha (LXRalpha) in New Zealand white rabbits. After 1 day of 2% cholesterol feeding, when the bile acid pool size had not expanded, mRNA levels of the FXR target genes short-heterodimer partner (SHP) and sterol 12alpha-hydroxylase (CYP8B) were unchanged, indicating that FXR activation remained constant. In contrast, the mRNA levels of the LXRalpha target genes ATP binding cassette transporter A1 (ABCA1) and cholesteryl ester transfer protein (CETP) increased 5-fold and 2.3-fold, respectively, associated with significant increases in hepatic concentrations of oxysterols. Activity and mRNA levels of CYP7A1 increased 2.4 times and 2.2 times, respectively. After 10 days of cholesterol feeding, the bile acid pool size increased nearly 2-fold. SHP mRNA levels increased 4.1-fold while CYP8B declined 64%. ABCA1 mRNA rose 8-fold and CETP mRNA remained elevated. Activity and mRNA of CYP7A1 decreased 60% and 90%, respectively. Feeding cholesterol for 1 day did not enlarge the ligand pool size or change FXR activation, while LXRalpha was activated highly secondary to increased hepatic oxysterols. As a result, CYP7A1 was up-regulated. After 10 days of cholesterol feeding, the bile acid (FXR ligand) pool size increased, which activated FXR and inhibited CYP7A1 despite continued activation of LXRalpha. Thus, in rabbits, when FXR and LXRalpha are activated simultaneously, the inhibitory effect of FXR overrides the stimulatory effect of LXRalpha to suppress CYP7A1 mRNA expression.  相似文献   

11.
12.
13.
14.
15.
SHP (small heterodimer partner, NR1I0) is an atypical orphan member of the nuclear receptor subfamily in that it lacks a DNA-binding domain. It is mostly expressed in the liver, where it binds to and inhibits the function of nuclear receptors. SHP is up-regulated by primary bile acids, through the activation of their receptor farnesoid X receptor, leading to the repression of cholesterol 7alpha-hydroxylase (CYP7alpha) expression, the rate-limiting enzyme in bile acid production from cholesterol. PXR (pregnane X receptor, NR1I2) is a broad-specificity sensor that recognizes a wide variety of synthetic drugs as well as endogenous compounds such as bile acid precursors. Upon activation, PXR induces CYP3A and inhibits CYP7alpha, suggesting that PXR can act on both bile acid synthesis and elimination. Indeed, CYP7alpha and CYP3A are involved in biochemical pathways leading to cholesterol conversion into primary bile acids, whereas CYP3A is also involved in the detoxification of toxic secondary bile acid derivatives. Here, we show that PXR is a target for SHP. Using pull-down assays, we show that SHP interacts with both murine and human PXR in a ligand-dependent manner. From transient transfection assays, SHP is shown to be a potent repressor of PXR transactivation. Furthermore, we report that chenodeoxycholic acid and cholic acid, two farnesoid X receptor ligands, induce up-regulation of SHP and provoke a repression of PXR-mediated CYP3A induction in human hepatocytes as well as in vivo in mice. These results reveal an elaborate regulatory cascade, tightly controlled by SHP, for both the maintenance of bile acid production and detoxification in the liver.  相似文献   

16.
17.
18.
Multiple studies suggest increased conversion of cholesterol to bile acids by cholesterol 7alpha-hydroxylase (CYP7A1) protects against dyslipidemia and atherosclerosis. CYP7A1 expression is repressed by the sequential activity of two nuclear hormone receptors, farnesoid X receptor (FXR) and small heterodimer partner (SHP). Here we demonstrate 129 strain SHP(-/-) mice are protected against hypercholesterolemia resulting from either a cholesterol/cholic acid (chol/CA) diet or from hypothyroidism. In a mixed 129-C57Bl/6 background, LDLR(-/-) and LDLR(-/-)SHP(-/-) mice had nearly identical elevations in hepatic cholesterol content and repression of cholesterol regulated genes when fed a Western diet. However, the LDLR(-/-)SHP(-/-) mice had greatly reduced elevations in serum VLDL and LDL cholesterol levels and triglyceride (TG) levels as compared with LDLR(-/-) mice. Additionally, the hepatic inflammation produced by the Western diet in the LDLR(-/-) mice was abolished in the LDLR(-/-)SHP(-/-) mice. CYP7A1 expression was induced 10-fold by the Western diet in the LDLR(-/-)SHP(-/-) mice but not in the LDLR(-/-) mice. Finally, hepatocyte-specific deletion of SHP expression was also protective against dyslipidemia induced by either a chol/CA diet or by hypothyroidism. While no antagonist ligands have yet been identified for SHP, these results suggest selective inhibition of hepatic SHP expression may provide protection against dyslipidemia.  相似文献   

19.
孤儿受体与胆固醇及胆汁酸的代谢调节   总被引:1,自引:0,他引:1  
30多年前,已经发现体内胆固醇及胆汁酸在转录水平受反馈激活或反馈抑制的调节,其机理不清楚。最近,随着孤儿受体LXR基因的克隆及其功能的研究,逐步认识到包括LXR在内的几种孤儿受体作为体内胆固醇及胆汁酸的感受器,在转录水平调节体内胆固醇及胆汁酸的代谢平衡。这4类孤儿受体在胆固醇及其代谢产物与自身代谢平衡之间建立了直接的联系。综述了4类孤儿受体的研究进展,特别是它们和胆固醇及胆汁酸代谢平衡的关系。  相似文献   

20.
The in vivo role of the nuclear receptor SHP in feedback regulation of bile acid synthesis was examined. Loss of SHP in mice caused abnormal accumulation and increased synthesis of bile acids due to derepression of rate-limiting CYP7A1 and CYP8B1 hydroxylase enzymes in the biosynthetic pathway. Dietary bile acids induced liver damage and restored feedback regulation. A synthetic agonist of the nuclear receptor FXR was not hepatotoxic and had no regulatory effects. Reduction of the bile acid pool with cholestyramine enhanced CYP7A1 and CYP8B1 expression. We conclude that input from three negative regulatory pathways controls bile acid synthesis. One is mediated by SHP, and two are SHP independent and invoked by liver damage and changes in bile acid pool size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号