首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Osteoclasts are highly specialized, multinucleated cells responsible for the selective resorption of the dense, calcified bone matrix. Microtubules (MTs) contribute to the polarization and trafficking events involved in bone resorption by osteoclasts; however, the origin of these elaborate arrays is less clear. Osteoclasts arise through cell fusion of precursor cells. Previous studies have suggested that centrosome MT nucleation is lost during this process, with the nuclear membrane and its surrounding Golgi serving as the major MT organizing centers (MTOCs) in these cells. Here we reveal that precursor cell centrosomes are maintained and functional in the multinucleated osteoclast and interestingly form large MTOC clusters, with the clusters organizing significantly more MTs compared with individual centrosomes. MTOC cluster formation requires dynamic MTs and minus-end directed MT motor activity. Inhibition of these centrosome clustering elements had a marked impact on both F-actin ring formation and bone resorption. Together these findings show that multinucleated osteoclasts employ unique centrosomal clusters to organize the extensive MTs during bone attachment and resorption.  相似文献   

2.
Cytoplasmic dynein is known to be involved in the establishment of radial microtubule (MT) arrays. During mitosis, dynein activity is required for tethering of the MTs at the spindle poles. In interphase cells, dynein inhibitors induce loss of radial MT organization; however, the exact role of dynein in the maintenance of MT arrays is unclear. Here, we examined the effect of dynein inhibitors on MT distribution and the centrosome protein composition in cultured fibroblasts. We found that while these inhibitors induced rapid ( t 1/2 ∼ 20 min) loss of radial MT organization, the levels of key centrosomal proteins or the rates of MT nucleation did not change significantly in dynein-inhibited cells, suggesting that the loss of dynein activity does not affect the structural integrity of the centrosome or its capacity to nucleate MTs. Live observations of the centrosomal activity showed that dynein inhibition enhanced the detachment of MTs from the centrosome. We conclude that the primary role of dynein in the maintenance of a radial MT array in interphase cells consists of retention of MTs at the centrosome and hypothesize that dynein has a role in the MT retention, separate from the delivery to the centrosome of MT-anchoring proteins.  相似文献   

3.
In migrating cells, force production relies essentially on a polarized actomyosin system, whereas the spatial regulation of actomyosin contraction and substrate contact turnover involves a complex cooperation between the microtubule (MT) and the actin filament networks (Goode, B.L., D.G. Drubin, and G. Barnes. 2000. Curr. Opin. Cell Biol., 12:63-71). Targeting and capture of MT plus ends at the cell periphery has been described, but whether or not the minus ends of these MTs are anchored at the centrosome is not known. Here, we show that release of short MTs from the centrosome is frequent in migrating cells and that their transport toward the cell periphery is blocked when dynein activity is impaired. We further show that MT release, but not MT nucleation or polymerization dynamics, is abolished by overexpression of the centrosomal MT-anchoring protein ninein. In addition, a dramatic inhibition of cell migration was observed; but, contrary to cells treated by drugs inhibiting MT dynamics, polarized membrane ruffling activity was not affected in ninein overexpressing cells. We thus propose that the balance between MT minus-end capture and release from the centrosome is critical for efficient cell migration.  相似文献   

4.
The central spindle forms between segregating chromosomes during anaphase and is required for cytokinesis. Although anaphase-specific bundling and stabilization of interpolar microtubules (MTs) contribute to formation of the central spindle, it remains largely unknown how these MTs are prepared. Using live imaging of MT plus ends and an MT depolymerization and regrowth assay, we show that de novo MT generation in the interchromosomal region during anaphase is important for central spindle formation in human cells. Generation of interchromosomal MTs and subsequent formation of the central spindle occur independently of preanaphase MTs or centrosomal MT nucleation but require augmin, a protein complex implicated in nucleation of noncentrosomal MTs during preanaphase. MTs generated in a hepatoma up-regulated protein (HURP)-dependent manner during anaphase also contribute to central spindle formation redundantly with preanaphase MTs. Based on these results, a new model for central spindle assembly is proposed.  相似文献   

5.
The anchoring of microtubules (MTs) to subcellular structures is critical for cell shape, polarity, and motility. In mammalian cells, the centrosome is a prominent MT anchoring structure. A number of proteins, including ninein, p150Glued, and EB1, have been implicated in centrosomal MT anchoring, but the process is far from understood. Here we show that CAP350 and FOP (FGFR1 oncogene partner) form a centrosomal complex required for MT anchoring. We show that the C-terminal domain of CAP350 interacts directly with FOP and that both proteins localize to the centrosome throughout the cell cycle. FOP also binds to EB1 and is required for localizing EB1 to the centrosome. Depletion of either CAP350, FOP, or EB1 by siRNA causes loss of MT anchoring and profound disorganization of the MT network. These results have implications for the mechanisms underlying MT anchoring at the centrosome and they attribute a key MT anchoring function to two novel centrosomal proteins, CAP350 and FOP.  相似文献   

6.
In centrosome-containing cells, microtubules utilized in spindle formation are thought to be nucleated at the centrosome. However, spindle formation can proceed following experimental destruction of centrosomes or in cells lacking centrosomes, suggesting that non-centrosome-associated microtubules may contribute to spindle formation, at least when centrosomes are absent. Direct observation of prometaphase cells expressing GFP-alpha-tubulin shows that peripheral, non-centrosome-associated microtubules are utilized in spindle formation, even in the presence of centrosomes. Clusters of peripheral microtubules moved into the centrosomal region, demonstrating that a centrosomal microtubule array can be composed of both centrosomally nucleated and peripheral microtubules. Peripheral bundles also moved laterally into the forming spindle between the spindle poles; 3D reconstructions of fixed cells reveal interactions between peripheral and centrosome-associated microtubules. The spindle pole component NuMA and gamma-tubulin were present at the foci of peripheral microtubule clusters, indicating that microtubules moved into the spindle with minus ends leading. Photobleach- and photoactivation-marking experiments of cells expressing GFP-tubulin or a photoactivatable variant of GFP-tubulin, respectively, demonstrate that microtubule motion into the forming spindle results from transport and sliding interactions, not treadmilling. Our results directly demonstrate that non-centrosome-associated microtubules contribute to spindle formation in centrosome-containing cells.  相似文献   

7.
A shared feature among all microtubule (MT)-dependent processes is the requirement for MTs to be organized in arrays of defined geometry. At a fundamental level, this is achieved by precisely controlling the timing and localization of the nucleation events that give rise to new MTs. To this end, MT nucleation is restricted to specific subcellular sites called MT-organizing centres. The primary MT-organizing centre in proliferating animal cells is the centrosome. However, the discovery of MT nucleation capacity of the Golgi apparatus (GA) has substantially changed our understanding of MT network organization in interphase cells. Interestingly, MT nucleation at the Golgi apparently relies on multiprotein complexes, similar to those present at the centrosome, that assemble at the cis-face of the organelle. In this process, AKAP450 plays a central role, acting as a scaffold to recruit other centrosomal proteins important for MT generation. MT arrays derived from either the centrosome or the GA differ in their geometry, probably reflecting their different, yet complementary, functions. Here, I review our current understanding of the molecular mechanisms involved in MT nucleation at the GA and how Golgi- and centrosome-based MT arrays work in concert to ensure the formation of a pericentrosomal polarized continuous Golgi ribbon structure, a critical feature for cell polarity in mammalian cells. In addition, I comment on the important role of the Golgi-nucleated MTs in organizing specialized MT arrays that serve specific functions in terminally differentiated cells.  相似文献   

8.
Microtubule nucleation and release from the neuronal centrosome   总被引:12,自引:7,他引:5       下载免费PDF全文
We have proposed that microtubules (MTs) destined for axons and dendrites are nucleated at the centrosome within the cell body of the neuron, and are then released for translocation into these neurites (Baas, P. W., and H. C. Joshi. 1992. J. Cell Biol. 119:171-178). In the present study, we have tested the capacity of the neuronal centrosome to act as a generator of MTs for relocation into other regions of the neuron. In cultured sympathetic neurons undergoing active axonal outgrowth, MTs are present throughout the cell body including the region around the centrosome, but very few (< 10) are directly attached to the centrosome. These results indicate either that the neuronal centrosome is relatively inactive with regard to MT nucleation, or that most of the MTs nucleated at the centrosome are rapidly released. Treatment for 6 h with 10 micrograms/ml nocodazole results in the depolymerization of greater than 97% of the MT polymer in the cell body. Within 5 min after removal of the drug, hundreds of MTs have assembled in the region of the centrosome, and most of these MTs are clearly attached to the centrosome. A portion of the MTs are not attached to the centrosome, but are aligned side-by-side with the attached MTs, suggesting that the unattached MTs were released from the centrosome after nucleation. In addition, unattached MTs are present in the cell body at decreasing levels with increasing distance from the centrosome. By 30 min, the MT array of the cell body is indistinguishable from that of controls. The number of MTs attached to the centrosome is once again diminished to fewer than 10, suggesting that the hundreds of MTs nucleated from the centrosome after 5 min were subsequently released and translocated away from the centrosome. These results indicate that the neuronal centrosome is a highly potent MT- nucleating structure, and provide strong indirect evidence that MTs nucleated from the centrosome are released for translocation into other regions of the neuron.  相似文献   

9.
While microtubule (MT) arrays in cells are often focused at the centrosome, a variety of cell types contain a substantial number of non-centrosomal MTs. Epithelial cells, neurons, and muscle cells all contain arrays of non-centrosomal MTs that are critical for these cells' specialized functions. There are several routes by which non-centrosomal MTs can arise, including release from the centrosome, cytoplasmic assembly, breakage or severing, and stabilization from non-centrosomal sites. Once formed, MTs that are not tethered to the centrosome must be organized, which can be accomplished by means of self-organization or by capture and nucleation of MTs where they are needed. The presence of free MTs requires stabilization of minus ends, either by MT-associated proteins or by an end-capping complex. Although some of the basic elements of free MT formation and organization are beginning to be understood, a great deal of work is still necessary before we have a complete picture of how non-centrosomal MT arrays are assembled in specific cell types.  相似文献   

10.
Efficient intracellular transport of the capsid of alphaherpesviruses, such as herpes simplex virus 1 (HSV-1), is known to be dependent upon the microtubule (MT) network. Typically, the MT network radiates from an MT-organizing center (MTOC), which is, in most cases, the centrosome. During herpesvirus egress, it has been assumed that capsids travel first from the nucleus to the centrosome and then from the centrosome to the site of envelopment. Here we report that the centrosome is no longer a primary MTOC in HSV-1-infected cells, but it retains this function in cells infected by another alphaherpesvirus, pseudorabies virus (PrV). As a result, MTs formed at late times after infection with PrV grow from a major, centralized MTOC, while those formed after HSV-1 infection arise from dispersed locations in the cytoplasm, indicating the presence of alternative and minor MTOCs. Thus, loss of the principal MT nucleating center in cells following HSV-1 infection raises questions about the mechanism of HSV-1 capsid egress. It is possible that, rather than passing via the centrosome, capsids may travel directly to the site of envelopment after exiting the nucleus. We suggest that, in HSV-1-infected cells, the disruption of centrosomal functions triggers reorganization of the MT network to favor noncentrosomal MTs and promote efficient viral spread.  相似文献   

11.
The remodeling capacity of microtubules (MT) is essential for their proper function. In mammals, MTs are predominantly formed at the centrosome, but can also originate from non-centrosomal sites, a process that is still poorly understood. We here show that the small heat shock protein HSPB1 plays a role in the control of non-centrosomal MT formation. The HSPB1 expression level regulates the balance between centrosomal and non-centrosomal MTs. The HSPB1 protein can be detected specifically at sites of de novo forming non-centrosomal MTs, while it is absent from the centrosomes. In addition, we show that HSPB1 binds preferentially to the lattice of newly formed MTs in vitro, suggesting that its function occurs by stabilizing MT seeds. Our findings open new avenues for the understanding of the role of HSPB1 in the development, maintenance and protection of cells with specialized non-centrosomal MT arrays.  相似文献   

12.
We have discovered several novel features exhibited by microtubules (MTs) in migrating newt lung epithelial cells by time-lapse imaging of fluorescently labeled, microinjected tubulin. These cells exhibit leading edge ruffling and retrograde flow in the lamella and lamellipodia. The plus ends of lamella MTs persist in growth perpendicular to the leading edge until they reach the base of the lamellipodium, where they oscillate between short phases of growth and shortening. Occasionally “pioneering” MTs grow into the lamellipodium, where microtubule bending and reorientation parallel to the leading edge is associated with retrograde flow. MTs parallel to the leading edge exhibit significantly different dynamics from MTs perpendicular to the cell edge. Both parallel MTs and photoactivated fluorescent marks on perpendicular MTs move rearward at the 0.4 μm/min rate of retrograde flow in the lamella. MT rearward transport persists when MT dynamic instability is inhibited by 100-nM nocodazole but is blocked by inhibition of actomyosin by cytochalasin D or 2,3-butanedione–2-monoxime. Rearward flow appears to cause MT buckling and breaking in the lamella. 80% of free minus ends produced by breakage are stable; the others shorten and pause, leading to MT treadmilling. Free minus ends of unknown origin also depolymerize into the field of view at the lamella. Analysis of MT dynamics at the centrosome shows that these minus ends do not arise by centrosomal ejection and that ~80% of the MTs in the lamella are not centrosome bound. We propose that actomyosin-based retrograde flow of MTs causes MT breakage, forming quasi-stable noncentrosomal MTs whose turnover is regulated primarily at their minus ends.  相似文献   

13.
The position of the centrosome is actively maintained at the cell center, but the mechanisms of the centering force remain largely unknown. It is known that centrosome positioning requires a radial array of cytoplasmic microtubules (MTs) that can exert pushing or pulling forces involving MT dynamics and the activity of cortical MT motors. It has also been suggested that actomyosin can play a direct or indirect role in this process. To examine the centering mechanisms, we introduced an imbalance of forces acting on the centrosome by local application of an inhibitor of MT assembly (nocodazole), and studied the resulting centrosome displacement. Using this approach in combination with microinjection of function-blocking probes, we found that a MT-dependent dynein pulling force plays a key role in the positioning of the centrosome at the cell center, and that other forces applied to the centrosomal MTs, including actomyosin contractility, can contribute to this process.  相似文献   

14.
Assembly of an integral Golgi complex is driven by microtubule (MT)-dependent transport. Conversely, the Golgi itself functions as an unconventional MT-organizing center (MTOC). This raises the question of whether Golgi assembly requires centrosomal MTs or can be self-organized, relying on its own MTOC activity. The computational model presented here predicts that each MT population is capable of gathering Golgi stacks but not of establishing Golgi complex integrity or polarity. In contrast, the concerted effort of two MT populations would assemble an integral, polarized Golgi complex. Indeed, while laser ablation of the centrosome did not alter already-formed Golgi complexes, acentrosomal cells fail to reassemble an integral complex upon nocodazole washout. Moreover, polarity of post-Golgi trafficking was compromised under these conditions, leading to strong deficiency in polarized cell migration. Our data indicate that centrosomal MTs complement Golgi self-organization for proper Golgi assembly and motile-cell polarization.  相似文献   

15.
In living cells microtubules (MTs) continuously grow and shorten. This feature of MTs was discovered in vitro and named dynamic instability. Comparison of dynamic instability of MTs in vitro and in vivo shows a number of differences. MTs in vivo rapidly grow (up to 20 microns/min), duration of their shortening is small (on average 15-20 s), and pauses are prominent. In different animal cells MTs grow from the centrosome and form a radial array. In such cells growth of MTs is persistent, i.e. undergo without interruptions until plus end of a MT reaches cell margin. Analysis of literature and original data shows that interconvertion between phases of growth, shortening and pause is asymmetric: growth often converts into pause, while shortening always converts into growth without pause. We suggest dynamic instability described near the cell margin in numerous publications results not only from intrinsic properties of MTs, but also because of the external obstacles for their growth. MT behavior in the cells with radial array of long MTs could be treated as dynamic instability with boundary conditions. One boundary is the centrosome responsible for rapid initiation of MT growth. Another boundary is cell margin limiting MT elongation. MT growth occurs with constant mean velocity, and potential duration of growth phase might exceed cell radius. MT shortening is usually smaller than MT length however velocity of shortening increases with time. Random episodes of rapid shortening are sufficient for the exchange of MTs in 10-20 min in the cells not more than 40-50 microns in diameter. Experimental data show that similar rate of exchange of MTs is in the large cells. This is achieved employing another mechanism, namely release of MTs and depolymerization from the minus end. In the minus end pathway time required for the exchange of MTs does not depend on cell radius and is determined primarily by the frequency of releases. Thus a small number of free MTs with metastable minus ends significantly reduce time required for the renovation of the radial MT array. Summarizing all experimental data we suggest the life cycle scheme for the MT in a cell. MT is initiated at the centrosome and grows rapidly until it reaches cell margin. At the margin the plus end oscillates, and finally MT depolimerizes. MT "death" comes from a random catastrophe (shortening from the plus end) in small cells or from release and depolymerization of the minus end in large cells.  相似文献   

16.
During anaphase, distinct populations of microtubules (MTs) form by either centrosome-dependent or augmin-dependent nucleation. It remains largely unknown whether these different MT populations contribute distinct functions to cytokinesis. Here we show that augmin-dependent MTs are required for the progression of both furrow ingression and abscission. Augmin depletion reduced the accumulation of anillin, a contractile ring regulator at the cell equator, yet centrosomal MTs were sufficient to mediate RhoA activation at the furrow. This defect in contractile ring organization, combined with incomplete spindle pole separation during anaphase, led to impaired furrow ingression. During the late stages of cytokinesis, astral MTs formed bundles in the intercellular bridge, but these failed to assemble a focused midbody structure and did not establish tight linkage to the plasma membrane, resulting in furrow regression. Thus augmin-dependent acentrosomal MTs and centrosomal MTs contribute to nonredundant targeting mechanisms of different cytokinesis factors, which are required for the formation of a functional contractile ring and midbody.  相似文献   

17.
Molecular motors transport the axis-determining mRNAs oskar, bicoid and gurken along microtubules (MTs) in the Drosophila oocyte. However, it remains unclear how the underlying MT network is organized and how this transport takes place. We have identified a centriole-containing centrosome close to the oocyte nucleus. Remarkably, the centrosomal components, gamma-tubulin and Drosophila pericentrin-like protein also strongly accumulate at the periphery of this nucleus. MT polymerization after cold-induced disassembly in wild type and in gurken mutants suggests that in the oocyte the centrosome-nucleus complex is an active center of MT polymerization. We further report that the MT network comprises two perpendicular MT subsets that undergo dynamic rearrangements during oogenesis. This MT reorganization parallels the successive steps in localization of gurken and oskar mRNAs. We propose that in addition to a highly polarized microtubule scaffold specified by the cortex oocyte, the repositioning of the nucleus and its tightly associated centrosome could control MT reorganization and, hence, oocyte polarization.  相似文献   

18.
We report that microtubule (MT) nucleation at the Golgi apparatus requires AKAP450, a centrosomal γ‐TuRC‐interacting protein that also forms a distinct network associated with the Golgi. Depletion of AKAP450 abolished MT nucleation at the Golgi, whereas depletion of the cis‐Golgi protein GM130 led to the disorganisation of AKAP450 network and impairment of MT nucleation. Brefeldin‐A treatment induced relocalisation of AKAP450 to ER exit sites and concomitant redistribution of MT nucleation capacity to the ER. AKAP450 specifically binds the cis‐side of the Golgi in an MT‐independent, GM130‐dependent manner. Short AKAP450‐dependent growing MTs are covered by CLASP2. Like for centrosome, dynein/dynactin complexes are necessary to anchor MTs growing from the Golgi. We further show that Golgi‐associated AKAP450 has a role in cell migration rather than in cell polarisation of the centrosome–Golgi apparatus. We propose that the recruitment of AKAP450 on the Golgi membranes through GM130 allows centrosome‐associated nucleating activity to extend to the Golgi, to control the assembly of subsets of MTs ensuring specific functions within the Golgi or for transporting specific cargos to the cell periphery.  相似文献   

19.
A popular hypothesis for centrosome separation during spindle formation and anaphase is that pushing forces are generated between interacting microtubules (MTs) of opposite polarity, derived from opposing centrosomes. However, this mechanism is not consistent with the observation that centrosomes in vertebrate cells continue to separate during prometaphase when their MT arrays no longer overlap (i.e., during anaphase-like prometaphase). To evaluate whether centrosome separation during prophase/prometaphase, anaphase-like prometaphase and anaphase is mediated by a common mechanism we compared their behavior in vivo at a high spatial and temporal resolution. We found that the two centrosomes possess a considerable degree of independence throughout all stages of separation, i.e., the direction and migration rate of one centrosome does not impart a predictable behavior to the other, and both exhibit frequent and rapid (4-6 microns/min) displacements toward random points within the cell including the other centrosome. The kinetic behavior of individual centrosomes as they separate to form the spindle is the same whether or not their MT arrays overlap. The characteristics examined include, e.g., total displacement per minute, the vectorial rate of motion toward and away from the other centrosome, the frequency of toward and away motion as well as motion not contributing to separation, and the rate contributed by each centrosome to the separation process. By contrast, when compared with prometaphase, anaphase centrosomes separated at significantly faster rates even though the average vectorial rate of motion away from the other centrosome was the same as in prophase/prometaphase. The difference in separation rates arises because anaphase centrosomes spend less time moving toward one another than in prophase/prometaphase, and at a significantly slower rate. From our data we conclude that the force for centrosome separation during vertebrate spindle formation is not produced by MT-MT interactions between opposing asters, i.e., that the mechanism is intrinsic to each aster. Our results also strongly support the contention that forces generated independently by each aster also contribute substantially to centrosome separation during anaphase, but that the process is modified by interactions between opposing astral MTs in the interzone.  相似文献   

20.
Tight regulation of centrosome duplication is critical to ensure that centrosome number doubles once and only once per cell cycle. Superimposed onto this centrosome duplication cycle is a functional centrosome cycle in which they alternate between phases of quiescence and robust microtubule (MT) nucleation and MT-anchoring activities. In vertebrate cycling cells, interphase centrioles accumulate less pericentriolar material (PCM), reducing their MT nucleation capacity. In mitosis, centrosomes mature, accumulating more PCM to increase their nucleation and anchoring capacities to form robust MT asters. Interestingly, functional cycles of centrosomes can be altered to suit the cell's needs. Some interphase centrosomes function as a microtubule-organizing center by increasing their ability to anchor MTs to form centrosomal radial arrays. Other interphase centrosomes maintain their MT nucleation capacity but reduce/eliminate their MT-anchoring capacity. Recent work demonstrates that Drosophila cells take this to the extreme, whereby centrioles lose all detectable PCM during interphase, offering an explanation as to how centrosome-deficient flies develop to adulthood. Drosophila stem cells further modify the functional cycle by differentially regulating their two centrioles – a situation that seems important for stem cell asymmetric divisions, as misregulation of centrosome duplication in stem/progenitor cells can promote tumor formation. Here, we review recent findings that describe variations in the functional cycle of centrosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号