首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Transferase I from rat liver extracted with iso-octane binds significantly less aminoacyl-tRNA than the non-extracted enzyme. The original activity can be fully restored by the addition of cholesteryl 14-methylhexadecanoate. The binding capacity for GTP is not affected by the extraction. 2. In the presence of extracted transferase I the binding of aminoacyl-tRNA to ribosomes is decreased to 11-26% and the simultaneous binding of GTP to 32-43%. Cholesteryl 14-methylhexadecanoate induces a full reactivation of the extracted enzyme in both respects. 3. Extracted complexes A (aminoacyl-tRNA-GTP-transferase I) become bound to ribosomes to the same extent as the corresponding non-extracted preparations. 4. It is concluded that cholesteryl 14-methylhexadecanoate interacts with the binding site of transferase I for aminoacyl-tRNA and secondarily with that for GTP. It does not affect the binding site for ribosomes.  相似文献   

2.
The binding of [3H]cholesteryl 14-methylhexadecanoate by a highly purified peptide elongation factor 1 from rabbit reticulocytes is significantly enhanced by GTP and CTP, much less by guanosine 5'-[beta, gamma-methylene]-triphosphate and not at all by ATP or UTP. Removal of endogenous cholesteryl 14-methylhexadecanoate present in the molecule of the factor [Hradec, J. et al. (1971) Biochem. J. 123, 959-966] by digestion with immobilized cholesterol esterase resulted in an almost complete loss of GTPase activity and this could be restored to nearly normal values by the addition of the ester. The same holds true for the GTP-dependent autophosphorylation of the protein-synthesis factor. Cholesteryl 14-methylhexadecanoate was bound only by the beta subunit of the factor. Addition of the alpha subunit, which was inactive on its own, stimulated the binding of the ester to the beta subunit in a sigmoid dependence. The binding of the ester was significantly stimulated by aminoacyl-tRNA but this effect was fully abolished by sodium fluoride, indicating a relation of cholesteryl 14-methylhexadecanoate to the dephosphorylation of the peptide elongation factor. Treatment of the factor with cholesterol esterase decreased its activity in the poly(U)-dependent binding of phenylalanyl-tRNA to ribosome and this activity was again restored by the addition of cholesteryl 14-methylhexadecanoate. The ester thus interacts with the GTP-dependent autophosphorylation of peptide elongation factor 1 and in this way modulates the activity of the factor. A putative scheme is presented explaining the mode of action of cholesteryl 14-methylhexadecanoate.  相似文献   

3.
1. Peptide-elongation factors were purified from rat liver and treated with cholesterol esterase and phospholipase A2 immobilized on Sepharose 4B. 2. Binding of L-[3H]-phenylalanyl-tRNA to 40S ribosomal subunits was decreased by approx. 70% and to polyribosomes by 30% in the presence of the binding factor incubated with cholesterol esterase. Treatment of this factor with immobilized phospholipase A2 decreased the binding to smaller ribosomal subunits by only about 15%. 3. Poly(U)-dependent phenylalanine polymerization by ribosomal subunits was decreased to approx. 30% of its original value by treatment of both elongation factors with cholesterol esterase. 4. The normal activity of esterase-treated elongation factor in both the binding reaction and peptide-elongation assay was fully recovered by the addition of cholesteryl 14-methyl-hexadecanoate. 5. Different classes of lipids present in peptide-elongation factor 1 have apparently different functions. Whereas phospholipids are required to maintain the strcture of heavy aggregates of this factor, the presence of cholesteryl 14-methylhexadecanoate is obviously necessary for the normal function of peptide-elongation factors.  相似文献   

4.
1. Peptide-elongation factors were purified from rat liver and human tonsils and the contents of cholesteryl 14-methylhexadecanoate were determined in fractions obtained during enzyme purification. The relative contents of this compound in purified enzyme preparations was several times higher than that in the crude starting material. Elongation factors from human tonsils contained a significantly larger quantity of the cholesteryl ester than enzyme from rat liver. 2. Transfer enzymes extracted with various organic solvents showed variable decreased activities in both binding and peptidization assay. The decrease of enzymic activity was proportional to the amount of cholesteryl 14-methylhexadecanoate extracted from a given enzymic preparation. In systems containing both extracted elongation factors the polyphenylalanine synthesis was limited by the residual activity of the less active transfer factor. 3. The original enzymic activity of extracted transferases was fully recovered by the addition of pure cholesteryl 14-methylhexadecanoate in quantities corresponding to those extracted. 4. Increase of the relative contents of this cholesteryl ester during enzyme purification, decrease of the enzymic activity after the extraction and its recovery by the addition of this compound indicates that the presence of this ester in elongation factors is essential for the normal function of these enzymes.  相似文献   

5.
1. l-Tyrosine-, l-alanine-, l-tryptophan- and l-threonine-tRNA ligases (where tRNA is transfer RNA) were purified from mammalian tissues and the relative contents of cholesteryl 14-methylhexadecanoate were determined in fractions obtained during the isolation. Purified enzymes were extracted with various organic solvents. 2. Cholesteryl 14-methylhexadecanoate contents in purified ligases were up to 210-fold that in the starting material. Different enzymes showed different contents of this cholesteryl ester. 3. Extracted enzymes lost in most cases their ability to catalyse formation of the aminoacylhydroxamate and aminoacyl-tRNA complexes. Enzymes extracted with various solvents showed a variable decreased activity. 4. The original activity could be restored to 70-100% by the addition of cholesteryl 14-methylhexadecanoate. Cholesteryl palmitate, cholesteryl margarate and cholesteryl stearate were inactive in this respect. 5. Incubation mixtures of extracted enzymes with cholesteryl 14-methylhexadecanoate added showed an initial delay in the time-course of both reactions assayed. 6. It is concluded that the effect of cholesteryl 14-methylhexadecanoate on the activity of amino acid-tRNA ligases seems to be specific and that this compound may play some role in the function of these enzymes.  相似文献   

6.
The catalytic site of the ribosome, the peptidyl transferase centre, is located on the large (50S in bacteria) ribosomal subunit. On the basis of results obtained with small substrate analogues, isolated 50S subunits seem to be less active in peptide bond formation than 70S ribosomes by several orders of magnitude, suggesting that the reaction mechanisms on 50S subunits and 70S ribosomes may be different. Here we show that with full-size fMet-tRNA(fMet) and puromycin or C-puromycin as peptide donor and acceptor substrates, respectively, the reaction proceeds as rapidly on 50S subunits as on 70S ribosomes, indicating that the intrinsic activity of 50S subunits is not different from that of 70S ribosomes. The faster reaction on 50S subunits with fMet-tRNA(fMet), compared with oligonucleotide substrate analogues, suggests that full-size transfer RNA in the P site is important for maintaining the active conformation of the peptidyl transferase centre.  相似文献   

7.
70-S ribosomes and 50-S ribosomal subunits from Escherichia coli D10 were treated with proteinase K for increasing periods of time. Peptidyl transferase activity and sparsomycin-induced binding of (U)C-A-C-C-A-[3H]Leu-Ac were tested in the treated particles, the binding of the substrate being more sensitive to the protease than peptide bond formation. Comparison of the amounts of proteins present in the treated particles with the residual activity indicates that only proteins L3 and L14 are released at a similar rate to that at which peptidyl transferase activity is lost. Proteins related to this ribosomal activity by other techniques are lost at a faster rate than the activity itself. In addition, the results indicate that sparsomycin stimulates the binding of the substrate by a different mechanism from that which inhibits peptide bond formation.  相似文献   

8.
The three-dimensional structure of the large (50S) ribosomal subunit from Escherichia coli has been determined from electron micrographs of negatively stained specimens. A new method of three-dimensional reconstruction was used which combines many images of individual subunits recorded at a single high tilt angle. A prominent feature of the reconstruction is a large groove on the side of the subunit that interacts with the small ribosomal subunit. This feature is probably of functional significance as it includes the regions where the peptidyl transferase site and the binding locations of the elongation factors have been mapped previously by immunoelectron microscopy.  相似文献   

9.
Ribosomal proteins previously inactivated by treatment with fluorescein isothiocyanate have been incorporated into 50-S ribosomal subunits during reconstitution from particles disassembled by 2 M LiCl in the presence of an excess of the modified proteins. The reconstituted particles show alterations in some functional activities resulting from the incorporation of the inactive ribosomal proteins added exogenously. Of the fluorescein-isothiocyanate-treated proteins incorporated, L24 and L25 drastically affect all the activities tested and these proteins possibly play a fundamental role in determining the overall structure of the particle. Proteins L16 and L10 are apparently involved both in the GTP hydrolysis dependent on elongation factor G and in peptidyl transferase activity but the modified protein L11 only affects GTPase activity indirectly and interferes with the ribosome assembly process involving proteins L7 and L12. Protein L1 may be involved with peptidyl transferase activity while proteins L7 and L12, in agreement with many reports in the literature, affect the factor-dependent hydrolysis of GTP.  相似文献   

10.
Functional large ribosomal subunits of Thermus aquaticus can be reconstituted from ribosomal proteins and either natural or in vitro transcribed 23 S and 5 S rRNA. Omission of 5 S rRNA during subunit reconstitution results in dramatic decrease of the peptidyl transferase activity of the assembled subunits. However, the presence of some ribosome-targeted antibiotics of the macrolide, ketolide or streptogramin B groups during 50 S subunit reconstitution can partly restore the activity of ribosomal subunits assembled without 5 S rRNA. Among tested antibiotics, macrolide RU69874 was the most active: activity of the subunits assembled in the absence of 5 S rRNA was increased more than 30-fold if antibiotic was present during reconstitution procedure. Activity of the subunits assembled with 5 S rRNA was also slightly stimulated by RU69874, but to a much lesser extent, approximately 1.5-fold. Activity of the native T. aquaticus 50 S subunits incubated in the reconstitution conditions in the presence of RU69874 was, in contrast, slightly decreased. The presence of antibiotics was essential during the last incubation step of the in vitro assembly, indicating that drugs affect one of the last assembly steps. The 5 S rRNA was previously shown to form contacts with segments of domains II and V of 23 S rRNA. All the antibiotics which can functionally compensate for the lack of 5 S rRNA during subunit reconstitution interact simultaneously with the central loop in domain V (which is known to be a component of peptidyl transferase center) and a loop of the helix 35 in domain II of 23 S rRNA. It is proposed that simultaneous interaction of 5 S rRNA or of antibiotics with the two domains of 23 S rRNA is essential for the successful assembly of ribosomal peptidyl transferase center. Consequently, one of the functions of 5 S rRNA in the ribosome can be that of assisting the assembly of ribosomal peptidyl transferase by correctly positioning functionally important segments of domains II and V of 23 S rRNA.  相似文献   

11.
B Nag  D S Tewari  R R Traut 《Biochemistry》1987,26(2):461-465
Two monoclonal antibodies against different epitopes in Escherichia coli ribosomal protein L7/L12, one within residues 74-120 and the other within residues 1-73, shown before to inhibit the binding of EF-G, have been tested for their effects on the binding to E. coli ribosomes of EF-Tu-aminoacyl-tRNA-GTP ternary complex and on peptidyl transferase activity. Both antibodies inhibit the binding of ternary complex and EF-Tu-dependent GTPase but have no inhibitory effect on peptidyl transferase activity. The inhibition of binding of both elongation factors is indicative of overlapping binding sites for EF-G and EF-Tu. The inhibition by both antibodies implies the contribution of both domains of L7/L12 to this binding site. This implies the location of one or more of the C-terminal domains of L7/L12 on the body of the 50S subunit. The absence of any inhibition of peptidyl transferase activity shows distinct separation of this site from the factor binding site.  相似文献   

12.
Translational release factors decipher stop codons in mRNA and activate hydrolysis of peptidyl-tRNA in the ribosome during translation termination. The mechanisms of these fundamental processes are unknown. Here we have mapped the interaction of bacterial release factor RF1 with the ribosome by directed hydroxyl radical probing. These experiments identified conserved domains of RF1 that interact with the decoding site of the 30S ribosomal subunit and the peptidyl transferase site of the 50S ribosomal subunit. RF1 interacts with a binding pocket formed between the ribosomal subunits that is also the interaction surface of elongation factor EF-G and aminoacyl-tRNA bound to the A site. These results provide a basis for understanding the mechanism of stop codon recognition coupled to hydrolysis of peptidyl-tRNA, mediated by a protein release factor.  相似文献   

13.
Thiopeptin, a sulfur-containing antibiotic, was found to inhibit protein synthesis in a bacterial ribosomal system. The pretreatment of ribosomal subunits with the antibiotic revealed that thiopeptin may act on the 50 S ribosomal subunit. The elongation of peptide chain on the ribosome is more profoundly blocked by the antibiotic than the initiation of protein synthesis. It was demonstrated that thiopeptin inhibits elongation factor (EF)-Tu-dependent GTP hydrolysis and binding of aminoacyl-tRNA to the ribosome. The peptidyl transferase-catalyzed puromycin reaction is not significantly affected by the antibiotic. Thiopeptin inhibits EF-G-associated GTPase reaction, and translocation of peptidyl-tRNA and mRNA from the acceptor site to the donor site. Protein synthesis in ribosomal systems, obtained from rat liver and rabbit reticulocytes are insensitive to the antibiotic.  相似文献   

14.
Tetrahymena pyriformis ribosomal subunits were obtained by incubation of post-mitochondrial supernatant in the presence of 0.2 mM GTP and 0.1 mM puromycin for 45 min at 28 degrees C, followed by sucrose density gradient centrifugation. Isolated 40-S subunits were able to reassociate in vitro in the presence of 5 mM MgCl2 and 50 mM KCl and to perform poly(U)-dependent protein synthesis. The 60-S subunit carries the peptidyl transferase activity. The number of proteins in T. pyriformis ribosomal subunits was determined by two-dimensional polyacrylamide gel electrophoresis. The 40-S subunit contains 30 different protein species (including two acidic proteins). The 60-S subunit contains 35 different protein species (including two acidic proteins). The proteins were numbered following the system of Kaltschmidt and Wittmann.  相似文献   

15.
Polacek N  Swaney S  Shinabarger D  Mankin AS 《Biochemistry》2002,41(39):11602-11610
The key enzymatic activity of the ribosome is catalysis of peptide bond formation. This reaction is a target for many clinically important antibiotics. However, the molecular mechanisms of the peptidyl transfer reaction, the catalytic contribution of the ribosome, and the mechanisms of antibiotic action are still poorly understood. Here we describe a novel, simple, convenient, and sensitive method for monitoring peptidyl transferase activity (SPARK). In this method, the ribosomal peptidyl transferase forms a peptide bond between two ligands, one of which is tritiated whereas the other is biotin-tagged. Transpeptidation results in covalent attachment of the biotin moiety to a tritiated compound. The amount of the reaction product is then directly quantified using the scintillation proximity assay technology: binding of the tritiated radioligand to the commercially available streptavidin-coated beads causes excitation of the bead-embedded scintillant, resulting in detection of radioactivity. The reaction is readily inhibited by known antibiotics, inhibitors of peptide bond formation. The method we developed is amenable to simple automation which makes it useful for screening for new antibiotics. The method is useful for different types of ribosomal research. Using this method, we investigated the effect of mutations at a universally conserved nucleotide of the active site of 23S rRNA, A2602 (Escherichia coli numbering), on the peptidyl transferase activity of the ribosome. The activities of the in vitro reconstituted mutant subunits, though somewhat reduced, were comparable with those of the subunits assembled with the wild-type 23S rRNA, indicating that A2602 mutations do not abolish the ability of the ribosome to catalyze peptide bond formation. Similar results were obtained with double mutants carrying mutations at A2602 and another universally conserved nucleotide in the peptidyl transferase center, A2451. The obtained results agree with our previous conclusion that the ribosome accelerates peptide bond formation primarily through entropic rather than chemical catalysis.  相似文献   

16.
Photochemical oxidation of Escherichia coli 50 S ribosomal subunits in the presence of methylene blue or Rose Bengal causes rapid loss of peptidyl transferase activity. Reconstitution experiments using mixtures of components from modified and unmodified ribosomes reveal that both RNA and proteins are affected, and that among the proteins responsible for inactivation there are both LiCl-split and core proteins. The proteins L2 and L16 from the split fraction and L4 from the core fraction of unmodified ribosomes were together nearly as effective as total unmodified proteins in restoring peptidyl transferase activity to reconstituted ribosomes when added with proteins from modified ribosomes. These three proteins are therefore the most important targets identified as responsible for loss of peptidyl transferase activity on photo-oxidation of 50 S ribosomal subunits.  相似文献   

17.
Virginiamycin M (VM) was previously shown to interfere with the function of both the A and P sites of ribosomes and to inactivate tRNA-free ribosomes but not particles bearing peptidyl-tRNA. To explain these findings, the shielding ability afforded by tRNA derivatives positioned at the A and P sites against VM-produced inactivation was explored. Unacylated tRNA(Phe) was ineffective, irrespective of its position on the ribosome. Phe-tRNA and Ac-Phe-tRNA provided little protection when bound directly to the P site but were active when present at the A site. Protection by these tRNA derivatives was markedly enhanced by the formation of the first peptide bond and increased further upon elongation of peptide chains. Most of the shielding ability of Ac-Phe-tRNA and Phe-tRNA positioned at the A site was conserved when these tRNAs were translocated to the P site by the action of elongation factor G and GTP. Thus, a 5-10-fold difference in the protection afforded by these tRNAs was observed, depending on their mode of entry to the P site. This indicates the occurrence of two types of interaction of tRNA derivatives with the donor site of peptidyl transferase: one shared by acylated tRNAs directly bound to the ribosomal P site (no protection against VM) and the other characteristic of aminoacyl- or peptidyl-tRNA translocated from the A site (protection of peptidyl transferase against VM). To explain these data and previous observations with other protein synthesis inhibitors, a new model of peptidyl transferase is proposed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Viomycin was observed to inhibit poly[U]- or f2 RNA-directed protein synthesis in an E. coli cell-free system. The former was more profoundly affected than the latter. Both initiation complex formation on the 30S ribosomal subunit and on 70S ribosomes were prevented by the antibiotic. In the peptide chain elongation process, viomycin did not significantly affect aminoacyl-tRNA binding to ribosomes and the peptidyl transferase reaction, but markedly inhibit translocation of peptidyl-tRNA from the acceptor site to the donor site. The mechanism of action of the drug appeared to be unique.  相似文献   

19.
L2, L3, L4, L16 and L20 are proteins of the 50S ribosomal subunit of Escherichia coli which are essential for the assembly and activity of the peptidyl transferase centre. These proteins have been modified with the histidine-specific reagent, diethylpyrocarbonate, while L17 and L18 were treated as controls. Each modified protein tested was able to participate in the reconstitution of a 50S particle when replacing its normal counterpart, although the particles assembled with modified L2 were heterogeneous. However, although they could support assembly, modified L16 and L20 were not themselves reconstituted stably, and modified L2 and L3 were found in less than stoichiometric amounts. Particles assembled in the presence of modified L16 retained significant peptidyl transferase activity (60-70% at 10 mM diethylpyrocarbonate) whereas those reconstituted with modified L2, L3, L4 or L20 had low activity (10-30% at 10 mM diethylpyrocarbonate). The particles assembled with the modified control protein, L17, retained 80% of their peptidyl transferase activity under the same conditions. The histidine residues within the essential proteins therefore contribute to ribosome structure and function in three significant ways; in the correct assembly of the ribosomal subunit (L2), for the stable assembly of the proteins within the ribosomal particle (L20 and L16 in particular), and directly or indirectly for the subsequent activity of the peptidyl transferase centre (L2, L3, L4 and L20). The essential nature of the unmodified histidines for assembly events precludes the use of the chemical-modification strategy to test the proposal that a histidine on one of the proteins might participate in the catalytic activity of the centre.  相似文献   

20.
A sophisticated interplay between the static properties of the ribosomal exit tunnel and its functional role in cotranslational processes is revealed by constraint counting on topological network representations of large ribosomal subunits from four different organisms. As for the global flexibility characteristics of the subunit, the results demonstrate a conserved stable structural environment of the tunnel. The findings render unlikely that deformations of the tunnel move peptides down the tunnel in an active manner. Furthermore, the stable environment rules out that the tunnel can adapt widely so as to allow tertiary folding of nascent chains. Nevertheless, there are local zones of flexible nucleotides within the tunnel, between the peptidyl transferase center and the tunnel constriction, and at the tunnel exit. These flexible zones strikingly agree with previously identified folding zones. As for cotranslational elongation regulation, flexible residues in the β-hairpin of the ribosomal L22 protein were verified, as suggested previously based on structural results. These results support the hypothesis that L22 can undergo conformational changes that regulate the tunnel voyage of nascent polypeptides. Furthermore, rRNA elements, for which conformational changes have been observed upon interaction of the tunnel wall with a nascent SecM peptide, are less strongly coupled to the subunit core. Sequences of coupled rigid clusters are identified between the tunnel and some of these elements, suggesting signal transmission by a domino-like mechanical coupling. Finally, differences in the flexibility of the glycosidic bonds of bases that form antibiotics-binding crevices within the peptidyl transferase center and the tunnel region are revealed for ribosomal structures from different kingdoms. In order to explain antibiotics selectivity, action, and resistance, according to these results, differences in the degrees of freedom of the binding regions may need to be considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号