首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study investigates changes of adenylyl cyclase activity in the heart of young and adult Wistar rats exposed to experimental conditions simulating high altitude hypoxia as a model for interpretation of some adaptive changes of adenylyl cyclase observed in human. The exposure of rats to intermittent high altitude (IHA) hypoxia (5000 m) showed significant adaptive changes. The right ventricular weight and the ratio of right/left ventricular weights of adult rats exposed to IHA were significantly increased when compared to appropriate controls; adaptive changes of cardiac adenylyl cyclase being dependent on the age of the animals. The isoprenaline-stimulated activity was higher in the left than in the right ventricle, and in both ventricles it was higher in young rats than in adult rats. When compared to controls, isoprenaline stimulation was decreased in the right ventricles of adapted young rats and, by contrast, it was increased in the left ventricles of adapted adult rats. This decrease and increase of adenylyl cyclase activity evoked by isoprenaline was paralleled by forskolin-induced adenylyl cyclase activity in these experimental groups. It seems therefore that the changes in the pattern of total adenylyl cyclase activity observed under IHA hypoxia may at least be partially explained by the changes of beta-adrenergic receptor susceptibility following IHA hypoxia.  相似文献   

2.
Abstract

This study investigates changes of adenylyl cyclase activity in the heart of young and adult Wistar rats exposed to experimental conditions simulating high altitude hypoxia as a model for interpretation of some adaptive changes of adenylyl cyclase observed in human. The exposure of rats to intermittent high altitude (IHA) hypoxia (5000 m) showed significant adaptive changes. The right ventricular weight and the ratio of right/left ventricular weights of adult rats exposed to IHA were significantly increased when compared to appropriate controls; adaptive changes of cardiac adenylyl cyclase being dependent on the age of the animals. The isoprenaline‐stimulated activity was higher in the left than in the right ventricle, and in both ventricles it was higher in young rats than in adult rats. When compared to controls, isoprenaline stimulation was decreased in the right ventricles of adapted young rats and, by contrast, it was increased in the left ventricles of adapted adult rats. This decrease and increase of adenylyl cyclase activity evoked by isoprenaline was paralleled by forskolin‐induced adenylyl cyclase activity in these experimental groups. It seems therefore that the changes in the pattern of total adenylyl cyclase activity observed under IHA hypoxia may at least be partially explained by the changes of beta‐adrenergic receptor susceptibility following IHA hypoxia.  相似文献   

3.
Hypoxia-induced downregulation of beta-adrenergic receptors in rat heart.   总被引:5,自引:0,他引:5  
To test the desensitization hypothesis of cardiac beta-adrenergic receptors (beta-AR) in chronic hypoxia, the effect of 1, 3, 7, 15, and 21 days of exposure to hypobaric hypoxia (380 Torr) was evaluated in Wistar rats. Exposure to hypoxia for 1-15 days did not induce any change in right and left ventricular beta-AR density (Bmax) determined with [125I]iodocyanopindolol or in antagonist affinity. After 21 days, Bmax decreased by 24% in the left ventricle. In contrast, no change in beta-AR was shown in the right hypertrophied ventricle. Agonist affinity in the left ventricle was not altered, as shown by the analysis of displacement curves of isoproterenol (normoxia 185 +/- 26 nM, hypoxia 170 +/- 11 nM). Moreover, there was no significant decrease in adenylate cyclase activity (pmol.mg-1.min-1) in the left ventricle. In the right ventricle, a 21-day exposure to hypoxia led to a decrease in basal and maximal activity when stimulated by isoproterenol. A decrease in tissue norepinephrine content was observed after 7 days of hypoxia. In conclusion, these data support the beta-AR downregulation hypothesis as one of the mechanisms of myocardial adaptation to high altitude occurring after 2-3 wk of exposure to hypoxia. The regulation pathways of beta-AR may differ between left nonhypertrophied and right hypertrophied ventricles. No evidence of profound abnormality of signal transduction was shown.  相似文献   

4.
缺氧对右心室最大心肌血流量的影响   总被引:4,自引:0,他引:4  
为了探讨缺氧对冠状血管贮备力的影响,我们观察了缺氧时大鼠血流动力学及右心室最大心肌血流量的变化。结果表明,急性缺氧引起PaO2、心输出量及氧运送量降低,但右心室心肌血流量增加,右心室最大与安静血流量比值降低。慢性缺氧时PaO2降低,血球比积和右心室重量指数增加,氧运送量和右心室血流量正常,但最大血流量降低,小动脉增厚、外膜胶元增加。以上结果提示,慢性缺氧对冠状血管贮备减少可能是小动脉壁增厚、外膜胶元增加和血液粘滞性增加及右心室肥大的结果。  相似文献   

5.
We administered antifibrotic agent beta-aminopropionitrile (BAPN) to rats exposed to 10% O2-90% N2 for 3 wk to prevent excess vascular collagen accumulation. Groups of Sprague-Dawley rats studied were air breathing, hypoxic, and hypoxic treated with BAPN, 150 mg/kg twice daily intraperitoneally. After the 3-wk period, we measured mean right ventricular pressure (RVP), the ratio of weight of right ventricle to left ventricle plus septum (RV/LV + S), and hydroxyproline content of the main pulmonary artery (PA) trunk. Hypoxia increased RVP from 14 to 29 mmHg; RVP was 21 mmHg in hypoxic BAPN-treated animals. Hypoxia increased the RV/LV + S ratio from 0.28 to 0.41; the ratio was 0.32 in hypoxic BAPN-treated animals. Hypoxia increased PA hydroxyproline from 20 to 239 micrograms/artery; hydroxyproline was 179 micrograms/artery in hypoxic BAPN-treated animals. Thus BAPN prevented pulmonary hypertension, right ventricular hypertrophy, and excess vascular collagen produced by hypoxia. We conclude that vascular collagen contributes to the maintenance of chronic hypoxic pulmonary hypertension.  相似文献   

6.
The matching of energy supply and demand under hypoxic conditions is critical for sustaining myocardial function. Numerous reports indicate that basal energy requirements and ion handling may differ between the ventricles. We hypothesized that ventricular response to hypoxia shows interventricular differences caused by the heterogeneity in glucose metabolism and expression and activity of ion transporters. Thus we assessed glucose utilization rate, ATP, sodium and potassium concentrations, Na, K-ATPase activity, and tissue reduced:oxidized glutathione (GSH/GSSG) content in the right and left ventricles before and after the exposure of either the whole animals or isolated blood-perfused hearts to hypoxia. The hypoxia-induced boost in glucose utilization was more pronounced in the left ventricle compared with the right one. ATP levels in the right ventricle of hypoxic heart were lower than those in the left ventricle. Left ventricular sodium content was higher, and hydrolytic Na, K-ATPase activity was reduced compared with the right ventricle. Administration of the Na, K-ATPase blocker ouabain caused rapid increase in the right ventricular Na(+) and elimination of the interventricular Na(+) gradients. Exposure of the hearts to hypoxia made the interventricular heterogeneity in the Na(+) distribution even more pronounced. Furthermore, systemic hypoxia caused oxidative stress that was more pronounced in the right ventricle as revealed by GSH/GSSG ratios. On the basis of these findings, we suggest that the right ventricle is more prone to hypoxic damage, as it is less efficient in recruiting glucose as an alternative fuel and is particularly dependent on the efficient Na, K-ATPase function.  相似文献   

7.
Long-lasting cardioprotection may be attained by chronic hypoxia. The basal parameters of contractile function and their response to hypoxia/reoxygenation were measured under isometric conditions, in papillary muscles isolated from left ventricle of rats that were submitted to 53.8 kPa in a hypobaric chamber from 7 wk of age and for their lifetime and of their siblings kept at 101.3 kPa. During acclimatization, hematocrit increased, body weight gain decreased, and heart weight increased with right ventricle hypertrophy. Papillary muscle cross-sectional area was similar in both control and hypoxic groups up to 45 wk of exposure. Developed tension (DT) was 34-64% higher in rats exposed to hypoxia for 10, 26, and 45 wk than in their age-matched controls, whereas resting tension was unchanged. Maximal rates of contraction and relaxation showed a similar pattern of changes as DT. Recovery of DT and maximal rates of contraction and relaxation after 60-min hypoxia and 30-min reoxygenation was also improved in adult hypoxic rats to values similar to those of young rats. Heart acclimatization was lost after 74 wk of exposure. Results are consistent with the development of cardioprotection during high-altitude acclimatization and provide an experimental model to study the mechanisms involved, which are addressed in the accompanying paper.  相似文献   

8.
In the present study the effect of thyroxine treatment on the development of cardiomegaly was compared in young (10-day-old) and adult (12-week-old) rats. L-thyroxine was administered subcutaneously in a dose of 1 mg per kg b.w. for 5 days. In young thyroxine-treated rats the heart weight increased by 79% in comparison with the control rats. The number of blood capillaries and muscle fibres per mm2 remained unchanged. The concentration of hydroxyproline was even lower than in control animals. The number of 3H-thymidine-labelled muscle cell nuclei was significantly higher both in the left and right ventricles of thyroxine treated rats. The density of capillaries and muscle fibres was significantly lower in adult rats than in the group of young animals. In adult thyroxine-treated animals the heart weight was higher by 36%, the number of capillaries and muscle fibres as well as the concentration of hydroxyproline was unchanged. Thyroxine induced significant increase in the number of DNA synthesizing nuclei of muscle cells in the left ventricle while the change in the right ventricular myocardium was not statistically significant. The present data indicate that a hyperplastic response of cardiac muscle cells to thyroxine occurs in both ventricles of young rats and also in the left ventricle of adult animals.  相似文献   

9.
Intermittent high altitude (IHA) hypoxia (7000 m) increased the wet weight of the right ventricular myocardium of 30-day-old rats after two 4 h/day exposures. During the same period the number of DNA-synthesizing nuclei of both muscle and non-muscle cell types increased proportionally. After 4 such exposures to hypoxia the number of 3H-thymidine-labelled nuclei in both cell types increased further. In addition, the number of labelled nuclei increased significantly in the yet un-enlarged left ventricle. While there was no difference in the number of DNA-synthesizing cells between the right and left ventricles in control animals, a significant increase in the number of cells involved in DNA synthesis in the right ventricle was found in both groups of animals exposed to IHA hypoxia. These results show that DNA synthesis in myonuclei of the ventricular myocardium can be stimulated in 30-day-old rats, i.e. at the very end of the weaning period.  相似文献   

10.
Chronic hypoxia has been shown to stimulate myocardial microvascular growth and improve cardiac ischemic tolerance in young and adult rats. The aim of this study was to determine whether the ANG II type 1 receptor (AT(1)) pathway was involved in these processes. Newborn Wistar rats, exposed to chronic intermittent hypoxia (8 h/day) for 10 days, were simultaneously treated with AT(1) receptor blocker irbesartan and compared with untreated animals. The major finding is that chronic hypoxia increased the capillary supply of myocardial tissue, which was even more pronounced in hypertrophied right ventricle, whereas increased arteriolar supply was found only in the left ventricle. This angiogenic response was completely prevented by irbesartan. Moreover, chronic hypoxia improved the postischemic recovery of cardiac contractile function during reperfusion, and this protective effect was also completely abolished by irbesartan. Chronic hypoxia increased the myocardial density of AT(1) but not of ANG II type 2 receptor subtypes, whereas the effect of irbesartan was not significant. The expression of caveolin-1alpha markedly increased in response to chronic hypoxia, and irbesartan prevented this effect. Neither hypoxia nor irbesartan treatment altered the expression of nitric oxide synthase 3, heat shock protein 90, and VEGF. It is concluded that the AT(1) receptor pathway plays an important role in coronary angiogenesis and improved cardiac ischemic tolerance induced in neonatal rats by chronic hypoxia.  相似文献   

11.
缺氧对右心室最大心肌心血流量的影响   总被引:3,自引:0,他引:3  
为了探讨氧对冠状血管贮备方法的影响,我们观察了缺氧对血流动力学及右心室最大心肌血汉量的变化。结果表明,急性缺氧引起的PaO2、心输出量及氧运送量降低,但右心室心肌血流量增加,右心室最大与安静血流量比值降低,生缺氧时PaO2降低,血球比积和右心室生理指数增加,氧运送量和右心室血流量正常,但最大血流量降低,小动脉增厚、外胶元增加,以上结果提示,慢性缺氧对冠状血管贮备减少可能是小动脉壁增厚、外胶元增加和  相似文献   

12.
We hypothesized that disrupted alveolarization and lung vascular growth caused by brief perinatal hypoxia would predispose infant rats to higher risk for developing pulmonary hypertension when reexposed to hypoxia. Pregnant rats were exposed to 11% inspired oxygen fraction (barometric pressure, 410 mmHg; inspired oxygen pressure, 76 mmHg) for 3 days before birth and were maintained in hypoxia for 3 days after birth. Control rats were born and raised in room air. At 2 wk of age, rats from both groups were exposed to hypoxia for 1 wk or kept in room air. We found that brief perinatal hypoxia resulted in a greater increase in right ventricular systolic pressure and higher ratio of right ventricle to left ventricle plus septum weights after reexposure to hypoxia after 2 wk of age. Moreover, perinatal hypoxic rats had decreased radial alveolar counts and reduced pulmonary artery density. We conclude that brief perinatal hypoxia increases the severity of pulmonary hypertension when rats are reexposed to hypoxia. We speculate that disrupted alveolarization and lung vascular growth following brief perinatal hypoxia may increase the risk for severe pulmonary hypertension with exposure to adverse stimuli later in life.  相似文献   

13.
将大鼠置于不同模拟海拔高度低压舱内4d,观察其左、右心室功能代偿与失代偿的某些生物化学基础。结果表明,5000m中度缺氧4d使左、右心室功能、重量、心肌蛋白含量及Ca~(2 )-ATP酶活性均有不同程度的增高。提示机体在整体、心脏器官及心肌细胞分子各个水平的代偿机制均有加强。8000m重度缺氧4d后,左室重量增加,dp/dt_(max)与蛋白含量均下降,肌原纤维ATP酶活性则保持中度缺氧的代偿水平,提示左心功能似已受到损害。与此同时,右室蛋白含量虽也明显减少,但其ATP酶活性则继续增高,dp/dt_(max)未出现下降,表明右心功能仍具有相当的代偿能力。从而支持我们关于在短期内因供氧严重不足而造成的左室心肌的直接损伤作用大于右室心肌的推论。  相似文献   

14.
15.
Norepinephrine (NE)-induced desensitization of the adrenergic receptor pathway may mimic the effects of hypoxia on cardiac adrenoceptors. The mechanisms involved in this desensitization were evaluated in male Wistar rats kept in a hypobaric chamber (380 Torr) and in rats infused with NE (0.3 mg. kg(-1). h(-1)) for 21 days. Because NE treatment resulted in left ventricular (LV) hypertrophy, whereas hypoxia resulted in right (RV) hypertrophy, the selective hypertrophic response of hypoxia and NE was also evaluated. In hypoxia, alpha(1)-adrenergic receptors (AR) density increased by 35%, only in the LV. In NE, alpha(1)-AR density decreased by 43% in the RV. Both hypoxia and NE decreased beta-AR density. No difference was found in receptor apparent affinity. Stimulated maximal activity of adenylate cyclase decreased in both ventricles with hypoxia (LV, 41%; RV, 36%) but only in LV with NE infusion (42%). The functional activities of G(i) and G(s) proteins in cardiac membranes were assessed by incubation with pertussis toxin (PT) and cholera toxin (CT). PT had an important effect in abolishing the decrease in isoproterenol-induced stimulation of adenylate cyclase in hypoxia; however, pretreatment of the NE ventricle cells with PT failed to restore this stimulation. Although CT attenuates the basal activity of adenylate cyclase in the RV and the isoproterenol-stimulated activity in the LV, pretreatment of NE or hypoxic cardiac membranes with CT has a less clear effect on the adenylate cyclase pathway. The present study has demonstrated that 1) NE does not mimic the effects of hypoxia at the cellular level, i.e., hypoxia has specific effects on cardiac adrenergic signaling, and 2) changes in alpha- and beta-adrenergic pathways are chamber specific and may depend on the type of stimulation (hypoxia or adrenergic).  相似文献   

16.
Chronic hypoxia induces pulmonary arterial remodeling, resulting in pulmonary hypertension and right ventricular hypertrophy. Hypoxia has been implicated as a physiological stimulus for p53 induction and hypoxia-inducible factor-1α (HIF-1α). However, the subcellular interactions between hypoxic exposure and expression of p53 and HIF-1α remain unclear. To examine the role of p53 and HIF-1α expression on hypoxia-induced pulmonary arterial remodeling, wild-type (WT) and p53 knockout (p53KO) mice were exposed to either normoxia or hypoxia for 8 wk. Following chronic hypoxia, both genotypes demonstrated elevated right ventricular pressures, right ventricular hypertrophy as measured by the ratio of the right ventricle to the left ventricle plus septum weights, and vascular remodeling. However, the right ventricular systolic pressures, the ratio of the right ventricle to the left ventricle plus septum weights, and the medial wall thickness of small vessels were significantly greater in the p53KO mice than in the WT mice. The p53KO mice had lower levels of p21 and miR34a expression, and higher levels of HIF-1α, VEGF, and PDGF expression than WT mice following chronic hypoxic exposure. This was associated with a higher proliferating cell nuclear antigen expression of pulmonary artery in p53KO mice. We conclude that p53 plays a critical role in the mitigation of hypoxia-induced small pulmonary arterial remodeling. By interacting with p21 and HIF-1α, p53 may suppress hypoxic pulmonary arterial remodeling and pulmonary arterial smooth muscle cell proliferation under hypoxia.  相似文献   

17.
Prolonged hypoxia leads to the development of pulmonary hypertension. Recent reports have suggested enhancement of heme oxygenase (HO), the major source of intracellular carbon monoxide (CO), prevents hypoxia-induced pulmonary hypertension and vascular remodeling in rats. Therefore, we hypothesized that inhibition of HO activity by tin protoporphyrin (SnPP) would exacerbate the development of pulmonary hypertension. Rats were injected weekly with either saline or SnPP (50 micromol/kg) and exposed to hypobaric hypoxia or room air for 5 wk. Pulmonary and carotid arteries were catheterized, and animals were allowed to recover for 48 h. Pulmonary and systemic pressures, along with cardiac output, were recorded during room air and acute 10% O2 breathing in conscious rats. No difference was detected in pulmonary artery pressure between saline- and SnPP-treated animals in either normoxic or hypoxic groups. However, blockade of HO activity altered both systemic and pulmonary vasoreactivity to acute hypoxic challenge. Despite no change in baseline pulmonary artery pressure, all rats treated with SnPP had decreased ratio of right ventricular (RV) weight to left ventricular (LV) plus septal (S) weight (RV/LV + S) compared with saline-treated animals. Echocardiograms suggested dilatation of the RV and decreased RV function in hypoxic SnPP-treated rats. Together these data suggest that inhibition of HO activity and CO production does not exacerbate pulmonary hypertension, but rather that HO and CO may be involved in mediating pulmonary and systemic vasoreactivity to acute hypoxia and hypoxia-induced RV function.  相似文献   

18.
目的: 探讨模拟海拔7 000 m低压低氧环境对大鼠心脏结构和功能的影响。方法: 96只雄性SD大鼠随机分为常压常氧对照组(对照组)和高原低压低氧组(低氧组)。低氧组大鼠放置于大型多因素复合环境模拟实验舱内,模拟海拔7 000 m高原环境饲养。实验舱运行时间23 h/d,控制昼夜比大约12 h∶12 h;对照组置于相同条件的常压常氧环境下饲养。低氧组又根据低氧时间不同分为3 d组、7 d组、14 d组和28 d组,同时设置与各低氧组相对应的对照组,每组均12只大鼠。应用超声心动图、心电图、血常规、血生化综合评价高原低压低氧环境下大鼠心脏结构和功能变化,心肌组织HE染色分析心肌组织病理变化。结果: 与相同时间点对照组比较①随着低压低氧暴露时间延长,大鼠体质量增长明显缓慢,动脉血氧饱和度14 d和28 d显著降低(P<0.05)。②低氧组大鼠左心室舒张末期前壁厚度(LVAWD)及左心室舒张末期后壁厚度(LVPWD)于28 d时显著升高(P<0.05)。舒张末期左心室腔直径(LVIDD)及收缩末期左心室腔直径(LVIDS)于28 d时明显降低(P<0.05,P<0.01)。左心室射血分数(EF%)、左室短轴缩短率(FS%)、肺静脉血流峰值速度(PV peak velocity)及肺静脉血流峰梯度(PV peak gradient)于低氧7 d 下降明显(P<0.05,P<0.01),低氧14 d 及低氧28 d 恢复。③低氧组大鼠心电图QRS间期与QT间期在14 d 及28 d 显著延长(P<0.05,P<0.01)。ST段3 d和7 d显著压低(P<0.05,P<0.01)。R波振幅于 7 d、14 d 及28 d 显著降低(P<0.05,P<0.01)。④低氧各组大鼠红细胞计数(RBC)、血红蛋白(HGB)、红细胞分布宽度(RDW)均明显升高(P<0.01)。血小板计数(PLT)于14 d 及28 d 明显下降(P<0.01)。血肌酐(CR)于14 d及28 d显著升高(P<0.05)。⑤心肌病理提示,低氧3 d 和7 d 可见心肌水肿、肌浆凝聚,横纹不清,灶状变性和坏死伴炎性细胞浸润。低氧14 d 和28 d 心肌组织炎症性病理损伤逐渐减少。心肌细胞逐渐肥大,成纤维细胞逐渐增生。心肌间质胶原纤维逐渐增多等心肌代偿修复性病理变化显著。结论: 暴露于模拟海拔7 000 m低压低氧环境下3 d大鼠心功能明显降低,7 d最为显著。  相似文献   

19.
Gong YS  Fan XF  Wu XM  Hu LG  Tang CS  Pang YZ  Qi YF 《生理学报》2007,59(2):210-214
本研究探讨了新发现的小分子生物活性肽intermedin/adrenomedullin 2(IMD/ADM2)及其受体在慢性低氧性肺动脉高压大鼠右心室中的变化和可能作用。用放射免疫分析法测定正常对照组和常压低氧4周组Sprague-Dawley大鼠血浆、右心室匀浆IMD/ADM2和肾上腺髓质素(adrenomednllin,ADM)蛋白水平;逆转录-多聚酶链反应法测定右心室IMD/ADM2、ADM及受体:降钙素受体样受体(calcitonin receptor-like receptor,CRLR)、受体活性修饰蛋白1,2,3(receptor activity modifying protein 1,2,3,RAMP1,RAMP2,RAMP3)mRNA表达。结果显示:低氧组平均肺动脉压、右心室与左心室加室间隔重量比[RV/(LV+S)]显著高于对照组(均P〈0.01);低氧组血浆和右心室组织匀浆ADM水平比对照组分别高1.26倍和1.68倍(P〈0.01),IMD/ADM2水平则较对照组分别高0.90倍和1.19倍(P〈0.01);与对照组相比,低氧组右心室IMD/ADM2、ADM mRNA表达均上调(P〈0.01),RAMP2 mRNA表达增强(P〈0.05),而两组间CRLR、RAMP1、RAMP3 mRNA的表达水平无显著性差异。结果表明,慢性低氧性肺动脉高压大鼠IMD/ADM2表达水平升高。  相似文献   

20.
Right ventricular myocardial hypertrophy during hypoxic pulmonary hypertension is associated with local renin-angiotensin system activation. The expression of angiotensin II type 1 (AT(1)) and type 2 (AT(2)) receptors in this setting has never been investigated. We have therefore examined the chronic hypoxia pattern of AT(1) and AT(2) expression in the right and left cardiac ventricles, using in situ binding and RT-PCR assays. Hypoxia produced right, but not left, ventricular hypertrophy after 7, 14, and 21 days, respectively. Hypoxia for 2 days was associated in each ventricle with a simultaneous and transient increase (P < 0.05) in AT(1) binding and AT(1) mRNA levels in the absence of any significant change in AT(2) expression level. Only after 14 days of hypoxia, AT(2) binding increased (P < 0.05) in the two ventricles, concomitantly with a right ventricular decrease (P < 0.05) in AT(2) mRNA. Along these data, AT(1) and AT(2) binding remained unchanged in both the left and hypertrophied right ventricles from rats treated with monocrotaline for 30 days. These results indicate that chronic hypoxia induces modulations of AT(1) and AT(2) receptors in both cardiac ventricles probably through direct and indirect mechanisms, respectively, which modulations may participate in myogenic (at the level of smooth or striated myocytes) rather than in the growth response of the heart to hypoxia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号