首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
We have engineered enhanced DNA-binding function into the a1 homeodomain by making changes in a loop distant from the DNA-binding surface. Comparison of the free and bound a1 structures suggested a mechanism linking van der Waals stacking changes in this loop to the ordering of a final turn in the DNA-binding helix of a1. Inspection of the protein sequence revealed striking differences in amino acid identity at positions 24 and 25 compared to related homeodomain proteins. These positions lie in the loop connecting helix-1 and helix-2, which is involved in heterodimerization with the alpha 2 protein. A series of single and double amino acid substitutions (a1-Q24R, a1-S25Y, a1-S25F and a1-Q24R/S25Y) were engineered, expressed and purified for biochemical and biophysical study. Calorimetric measurements and HSQC NMR spectra confirm that the engineered variants are folded and are equally or more stable than the wild-type a1 homeodomain. NMR analysis of a1-Q24R/S25Y demonstrates that the DNA recognition helix (helix-3) is extended by at least one turn as a result of the changes in the loop connecting helix-1 and helix-2. As shown by EMSA, the engineered variants bind DNA with enhanced affinity (16-fold) in the absence of the alpha 2 cofactor and the variant alpha 2/a1 heterodimers bind cognate DNA with specificity and affinity reflective of the enhanced a1 binding affinity. Importantly, in vivo assays demonstrate that the a1-Q24R/S25Y protein binds with fivefold greater affinity than wild-type a1 and is able to partially suppress defects in repression by alpha 2 mutants. As a result of these studies, we show how subtle differences in residues at a surface distant from the functional site code for a conformational switch that allows the a1 homeodomain to become active in DNA binding in association with its cofactor alpha 2.  相似文献   

4.
5.
The phage Mu transposase (MuA) binds to the ends of the Mu genome during the assembly of higher order nucleoprotein complexes. We investigate the structure and function of the MuA end-binding domain (Ibetagamma). The three-dimensional solution structure of the Ibeta subdomain (residues 77-174) has been determined using multidimensional NMR spectroscopy. It comprises five alpha-helices, including a helix-turn-helix (HTH) DNA-binding motif formed by helices 3 and 4, and can be subdivided into two interacting structural elements. The structure has an elongated disc-like appearance from which protrudes the recognition helix of the HTH motif. The topology of helices 2-4 is very similar to that of helices 1-3 of the previously determined solution structure of the MuA Igamma subdomain and to that of the homeodomain family of HTH DNA-binding proteins. We show that each of the two subdomains binds to one half of the 22 bp recognition sequence, Ibeta to the more conserved Mu end distal half (beta subsite) and Igamma to the Mu end proximal half (gamma subsite) of the consensus Mu end-binding site. The complete Ibetagamma domain binds the recognition sequence with a 100- to 1000-fold higher affinity than the two subdomains independently, indicating a cooperative effect. Our results show that the Mu end DNA-binding domain of MuA has a modular organization, with each module acting on a specific part of the 22 bp binding site. Based on the present binding data and the structures of the Ibeta and Igamma subdomains, a model for the interaction of the complete Ibetagamma domain with DNA is proposed.  相似文献   

6.
7.
8.
9.
Saccharomyces cerevisiae mating pheromones function by binding to cell surface receptors and activating signal transduction processes which regulate gene expression. In this report, we have analyzed the minimum sequence requirements for conferring both a and alpha mating pheromone inducibilities onto a heterologous promoter. Here we show that the repetitive pheromone response element (PRE) which binds to STE12 protein is sufficient to confer pheromone responsiveness only when present in multiple copies. Moreover, by itself, it is preferentially responsive to alpha factor in a cells. In contrast, a single copy of the PQ box of the STE3 upstream activation sequence (UAS) is sufficient to confer a-factor responsiveness in alpha cells. The PQ box binds both MCM1 and MAT alpha 1 in a cooperative manner, and neither the P nor Q site alone is sufficient to confer a-factor responsiveness. In a cells, however, even multiple copies of the PQ box fail to confer alpha-factor responsiveness. Therefore, the PRE and the PQ box are functionally distinct pheromone-responsive elements with opposite cell type specificities. Moreover, these results indicate that the MCM1 protein functions in a signal transduction pathway in a manner analogous to that of its mammalian homolog, the serum response factor, which regulates the expression of the c-fos proto-oncogene in mammals.  相似文献   

10.
Long-term repression of homeotic genes in the fruit fly is accomplished by proteins of the Polycomb Group, acting at Polycomb response elements (PREs). Here we use gene conversion to mutate specific DNA motifs within a PRE to test their relevance, and we exchange PREs to test their specificity. Previously we showed that removal of a 185 bp core sequence from the bithoraxoid PRE of the bithorax complex results in posteriorly directed segmental transformations. Mutating multiple binding sites for either the PHO or the GAF proteins separately in the core bithoraxoid PRE resulted in only rare and subtle transformations in adult flies. However, when both sets of sites were mutated, the transformations were similar in strength and penetrance to those caused by the deletion of the 185 bp core region. In contrast, mutating the singly occurring binding site of another DNA-binding protein, DSP1 (reportedly essential for PRE-activity), had no similar effect in combination with mutated PHO or GAF sites. Two minimal PREs from other segment-specific regulatory domains of the bithorax complex could substitute for the bithoraxoid PRE core. Our in situ analysis suggests that core PREs are interchangeable, and the cooperation between PHO and GAF binding sites is indispensable for silencing.  相似文献   

11.
12.
13.
Polycomb group response elements (PREs) play an essential role in gene regulation by the Polycomb group (PcG) repressor proteins in Drosophila. PREs are required for the recruitment and maintenance of repression by the PcG proteins. PREs are made up of binding sites for multiple DNA-binding proteins, but it is still unclear what combination(s) of binding sites is required for PRE activity. Here we compare the binding sites and activities of two closely linked yet separable PREs of the Drosophila engrailed (en) gene, PRE1 and PRE2. Both PRE1 and PRE2 contain binding sites for multiple PRE–DNA-binding proteins, but the number, arrangement, and spacing of the sites differs between the two PREs. These differences have functional consequences. Both PRE1 and PRE2 mediate pairing-sensitive silencing of mini-white, a functional assay for PcG repression; however, PRE1 requires two binding sites for Pleiohomeotic (Pho), whereas PRE2 requires only one Pho-binding site for this activity. Furthermore, for full pairing-sensitive silencing activity, PRE1 requires an AT-rich region not found in PRE2. These two PREs behave differently in a PRE embryonic and larval reporter construct inserted at an identical location in the genome. Our data illustrate the diversity of architecture and function of PREs.  相似文献   

14.
The DNA-binding domain (DBD) of progesterone receptor (PR) is bipartite containing a zinc module core that interacts with progesterone response elements (PRE), and a short flexible carboxyl terminal extension (CTE) that interacts with the minor groove flanking the PRE. The chromosomal high-mobility group B proteins (HMGB), defined as DNA architectural proteins capable of bending DNA, also function as auxiliary factors that increase the DNA-binding affinity of PR and other steroid receptors by mechanisms that are not well defined. Here we show that the CTE of PR contains a specific binding site for HMGB that is required for stimulation of PR-PRE binding, whereas the DNA architectural properties of HMGB are dispensable. Specific PRE DNA inhibited HMGB binding to the CTE, indicating that DNA and HMGB–CTE interactions are mutually exclusive. Exogenous CTE peptide increased PR-binding affinity for PRE as did deletion of the CTE. In a PR-binding site selection assay, A/T sequences flanking the PRE were enriched by HMGB, indicating that PR DNA-binding specificity is also altered by HMGB. We conclude that a transient HMGB–CTE interaction alters a repressive conformation of the flexible CTE enabling it to bind to preferred sequences flanking the PRE.  相似文献   

15.
We have determined the solution structure of the PABC domain from Saccharomyces cerevisiae Pab1p and mapped its peptide-binding site. PABC domains are peptide binding domains found in poly(A)-binding proteins (PABP) and are a subset of HECT-family E3 ubiquitin ligases (also known as hyperplastic discs proteins (HYDs)). In mammals, the PABC domain of PABP functions to recruit several different translation factors to the mRNA poly(A) tail. PABC domains are highly conserved, with high specificity for peptide sequences of roughly 12 residues with conserved alanine, phenylalanine, and proline residues at positions 7, 10, and 12. Compared with human PABP, the yeast PABC domain is missing the first alpha helix, contains two extra amino acids between helices 2 and 3, and has a strongly bent C-terminal helix. These give rise to unique peptide binding specificity wherein yeast PABC binds peptides from Paip2 and RF3 but not Paip1. Mapping of the peptide-binding site reveals that the bend in the C-terminal helix disrupts binding interactions with the N terminus of peptide ligands and leads to greatly reduced binding affinity for the peptides tested. No high affinity or natural binding partners from S. cerevisiae could be identified by sequence analysis of known PABC ligands. Comparison of the three known PABC structures shows that the features responsible for peptide binding are highly conserved and responsible for the distinct but overlapping binding specificities.  相似文献   

16.
17.
18.
Polycomb group proteins are required for long-term repression of many genes in Drosophila and all metazoans. In Drosophila, DNA fragments called Polycomb-group response elements (PREs) have been identified that mediate the action of Polycomb-group proteins. Previous studies have shown that a 2 kb fragment located from -2.4 kb to -395 bp upstream of the Drosophila engrailed promoter contains a multipartite PRE that can mediate mini-white silencing and act as a PRE in an Ubx-reporter construct. Here, we study the role of this 2 kb fragment in the regulation of the engrailed gene itself. Our results show that within this 2 kb fragment, there are two subfragments that can act as PREs in embryos. In addition to their role in gene silencing, these two adjacent PRE fragments can facilitate the activation of the engrailed promoter by distant enhancers. The repressive action of the engrailed PRE can also act over a distance. A 181 bp subfragment can act as a PRE and also mediate positive effects in an enhancer-detector construct. Finally, a deletion of 530 bp of the 2 kb PRE fragment within the endogenous engrailed gene causes a loss-of-function phenotype, showing the importance of the positive regulatory effects of this PRE-containing fragment. Our data are consistent with the model that engrailed PREs bring chromatin together, allowing both positive and negative regulatory interactions between distantly located DNA fragments.  相似文献   

19.
S Y Tsai  M J Tsai  B W O'Malley 《Cell》1989,57(3):443-448
We demonstrated previously that two molecules of steroid hormone receptor bound efficiently to a single hormone response element (GRE/PRE) of the tyrosine aminotransferase gene (Tsai et al., 1988). Here, we show that two tandemly linked GRE/PREs conferred progesterone inducibility synergistically to a heterologous TK-CAT fusion gene. Binding studies demonstrated that occupation of one GRE/PRE site by a progesterone receptor dimer increased the binding affinity of receptors for the second GRE/PRE site 100-fold. Thus, the observed synergistic induction of TK-CAT may result from cooperative binding of receptor dimers to the two GRE/PRE sites.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号