首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eukaryotic cells encode two homologs of Escherichia coli RecA protein, Rad51 and Dmc1, which are required for meiotic recombination. Rad51, like E.coli RecA, forms helical nucleoprotein filaments that promote joint molecule and heteroduplex DNA formation. Electron microscopy reveals that the human meiosis-specific recombinase Dmc1 forms ring structures that bind single-stranded (ss) and double-stranded (ds) DNA. The protein binds preferentially to ssDNA tails and gaps in duplex DNA. hDmc1-ssDNA complexes exhibit an irregular, often compacted structure, and promote strand-transfer reactions with homologous duplex DNA. hDmc1 binds duplex DNA with reduced affinity to form nucleoprotein complexes. In contrast to helical RecA/Rad51 filaments, however, Dmc1 filaments are composed of a linear array of stacked protein rings. Consistent with the requirement for two recombinases in meiotic recombination, hDmc1 interacts directly with hRad51.  相似文献   

2.
The eukaryotic RecA homologs Rad51 and Dmc1 are essential for strand exchange between homologous chromosomes during meiosis. All members of the RecA family of recombinases polymerize on DNA to form helical nucleoprotein filaments, which is the active form of the protein. Here we compare the filament structures of the Rad51 and Dmc1 proteins from both human and budding yeast. Previous studies of Dmc1 filaments suggested that they might be structurally distinct from filaments of other members of the RecA family, including Rad51. The data presented here indicate that Rad51 and Dmc1 filaments are essentially identical with respect to several structural parameters, including persistence length, helical pitch, filament diameter, DNA base pairs per helical turn and helical handedness. These data, together with previous studies demonstrating similar in vitro recombinase activity for Dmc1 and Rad51, support the view that differences in the meiotic function of Rad51 and Dmc1 are more likely to result from the influence of distinct sets of accessory proteins than from intrinsic differences in filament structure.  相似文献   

3.
The human Dmc1 protein, a RecA/Rad51 homolog, is a meiosis-specific DNA recombinase that catalyzes homologous pairing. RecA and Rad51 form helical filaments, while Dmc1 forms an octameric ring. In the present study, we crystallized the full-length human Dmc1 protein and solved the structure of the Dmc1 octameric ring. The monomeric structure of the Dmc1 protein closely resembled those of the human and archaeal Rad51 proteins. In addition to the polymerization motif that was previously identified in the Rad51 proteins, we found another hydrogen bonding interaction at the polymer interface, which could explain why Dmc1 forms stable octameric rings instead of helical filaments. Mutagenesis studies identified the inner and outer basic patches that are important for homologous pairing. The inner patch binds both single-stranded and double-stranded DNAs, while the outer one binds single-stranded DNA. Based on these results, we propose a model for the interaction of the Dmc1 rings with DNA.  相似文献   

4.
Homologous recombination is important for the repair of double-strand breaks during meiosis. Eukaryotic cells require two homologs of Escherichia coli RecA protein, Rad51 and Dmc1, for meiotic recombination. To date, it is not clear, at the biochemical level, why two homologs of RecA are necessary during meiosis. To gain insight into this, we purified Schizosaccharomyces pombe Rad51 and Dmc1 to homogeneity. Purified Rad51 and Dmc1 form homo-oligomers, bind single-stranded DNA preferentially, and exhibit DNA-stimulated ATPase activity. Both Rad51 and Dmc1 promote the renaturation of complementary single-stranded DNA. Importantly, Rad51 and Dmc1 proteins catalyze ATP-dependent strand exchange reactions with homologous duplex DNA. Electron microscopy reveals that both S. pombe Rad51 and Dmc1 form nucleoprotein filaments. Rad51 formed helical nucleoprotein filaments on single-stranded DNA, whereas Dmc1 was found in two forms, as helical filaments and also as stacked rings. These results demonstrate that Rad51 and Dmc1 are both efficient recombinases in lower eukaryotes and reveal closer functional and structural similarities between the meiotic recombinase Dmc1 and Rad51. The DNA strand exchange activity of both Rad51 and Dmc1 is most likely critical for proper meiotic DNA double-strand break repair in lower eukaryotes.  相似文献   

5.
The role of Dmc1 as a meiosis-specific general recombinase was first demonstrated in Saccharomyces cerevisiae. Progress in understanding the biochemical mechanism of ScDmc1 has been hampered by its tendency to form inactive aggregates. We have found that the inclusion of ATP during protein purification prevents Dmc1 aggregation. ScDmc1 so prepared is capable of forming D-loops and responsive to its accessory factors Rad54 and Rdh54. Negative staining electron microscopy and iterative helical real-space reconstruction revealed that the ScDmc1-ssDNA nucleoprotein filament harbors 6.5 protomers per turn with a pitch of ~106 Å. The ScDmc1 purification procedure and companion molecular analyses should facilitate future studies on this recombinase.  相似文献   

6.
Dmc1 is specifically required for homologous recombination during meiosis. Here we report that the calcium ion enabled Dmc1 from budding yeast to form regular helical filaments on single-stranded DNA (ssDNA) and activate its strand assimilation activity. Relative to magnesium, calcium increased the affinity of Dmc1 for ATP and but reduces its DNA-dependent ATPase activity. These effects, together with previous studies of other RecA-like recombinases, support the view that ATP binding to Dmc1 protomers is required for functional filament structure. The helical pitch of the Saccharomyces cerevisiae Dmc1-ssDNA helical filament was estimated to be 13.4 +/- 2.5 nm. Analysis of apparently "complete" Dmc1-ssDNA filaments indicated a stoichiometry of 24 +/- 2 nucleotides per turn of the Dmc1 helix. This finding suggests that the number or protomers per helical turn and/or the number of nucleotides bound per Dmc1 protomer differs from that reported previously for Rad51 and RecA filaments. Our data support the view that the active form of Dmc1 protein is a helical filament rather than a ring. We speculate that Ca(2+) plays a significant role in regulating meiotic recombination.  相似文献   

7.
Meiotic recombination in eukaryotic cells requires two homologs of E. coli RecA protein, Rad51 and Dmc1. Until recently, the role of Dmc1 in meiotic recombination was mostly attributed to genetic studies as purified Dmc1 was found to be a much weaker recombinase than Rad51 in the test tube. Now, Sehorn and colleagues1 have reported that, like Rad51, human Dmc1 is an efficient recombinase in vitro. Dmc1 forms helical nucleoprotein filaments--the signature of classical recombinases such as Rad51. These observations reveal a high level of similitude between the Dmc1 and the Rad51 family of recombination enzymes in higher eukaryotes.  相似文献   

8.
In eukaryotes, meiotic recombination is a major source of genetic diversity, but its defects in humans lead to abnormalities such as Down''s, Klinefelter''s and other syndromes. Human Dmc1 (hDmc1), a RecA/Rad51 homologue, is a recombinase that plays a crucial role in faithful chromosome segregation during meiosis. The initial step of homologous recombination occurs when hDmc1 forms a filament on single-stranded (ss) DNA. However the structure of this presynaptic complex filament for hDmc1 remains unknown. To compare hDmc1-ssDNA complexes to those known for the RecA/Rad51 family we have obtained electron microscopy (EM) structures of hDmc1-ssDNA nucleoprotein filaments using single particle approach. The EM maps were analysed by docking crystal structures of Dmc1, Rad51, RadA, RecA and DNA. To fully characterise hDmc1-DNA complexes we have analysed their organisation in the presence of Ca2+, Mg2+, ATP, AMP-PNP, ssDNA and dsDNA. The 3D EM structures of the hDmc1-ssDNA filaments allowed us to elucidate the principles of their internal architecture. Similar to the RecA/Rad51 family, hDmc1 forms helical filaments on ssDNA in two states: extended (active) and compressed (inactive). However, in contrast to the RecA/Rad51 family, and the recently reported structure of hDmc1-double stranded (ds) DNA nucleoprotein filaments, the extended (active) state of the hDmc1 filament formed on ssDNA has nine protomers per helical turn, instead of the conventional six, resulting in one protomer covering two nucleotides instead of three. The control reconstruction of the hDmc1-dsDNA filament revealed 6.4 protein subunits per helical turn indicating that the filament organisation varies depending on the DNA templates. Our structural analysis has also revealed that the N-terminal domain of hDmc1 accomplishes its important role in complex formation through domain swapping between adjacent protomers, thus providing a mechanistic basis for coordinated action of hDmc1 protomers during meiotic recombination.  相似文献   

9.
Proteins in the RecA/Rad51/RadA family form nucleoprotein filaments on DNA that catalyze a strand exchange reaction as part of homologous genetic recombination. Because of the centrality of this system to many aspects of DNA repair, the generation of genetic diversity, and cancer when this system fails or is not properly regulated, these filaments have been the object of many biochemical and biophysical studies. A recent paper has argued that the human Dmc1 protein, a meiotic homolog of bacterial RecA and human Rad51, forms filaments on single-stranded DNA with ∼ 9 subunits per turn in contrast to the filaments formed on double-stranded DNA with ∼ 6.4 subunits per turn and that the stoichiometry of DNA binding is different between these two filaments. We show using scanning transmission electron microscopy that the Dmc1 filament formed on single-stranded DNA has a mass per unit length expected from ∼ 6.5 subunits per turn. More generally, we show how ambiguities in helical symmetry determination can generate incorrect solutions and why one sometimes must use other techniques, such as biochemistry, metal shadowing, or scanning transmission electron microscopy, to resolve these ambiguities. While three-dimensional reconstruction of helical filaments from EM images is a powerful tool, the intrinsic ambiguities that may be present with limited resolution are not sufficiently appreciated.  相似文献   

10.
The process of homologous recombination is indispensable for both meiotic and mitotic cell division, and is one of the major pathways for double-strand break (DSB) repair. The human Rad54B protein, which belongs to the SWI2/SNF2 protein family, plays a role in homologous recombination, and may function with the Dmc1 recombinase, a meiosis-specific Rad51 homolog. In the present study, we found that Rad54B enhanced the DNA strand-exchange activity of Dmc1 by stabilizing the Dmc1–single-stranded DNA (ssDNA) complex. Therefore, Rad54B may stimulate the Dmc1-mediated DNA strand exchange by stabilizing the nucleoprotein filament, which is formed on the ssDNA tails produced at DSB sites during homologous recombination.  相似文献   

11.
Nucleoprotein filaments made up of Rad51 or Dmc1 recombinases, the core structures of recombination, engage in ATP-dependent DNA-strand exchange. The ability of recombinases to form filaments is enhanced by recombination factors termed 'mediators'. Here, we show that the Schizosaccharomyces pombe Swi5-Sfr1 complex, a conserved eukaryotic protein complex, at substoichiometric concentrations stimulates strand exchange mediated by Rhp51 (the S. pombe Rad51 homolog) and Dmc1 on long DNA substrates. Reactions mediated by both recombinases are completely dependent on Swi5-Sfr1, replication protein A (RPA) and ATP, although RPA inhibits the reaction when it is incubated with single-stranded DNA (ssDNA) before the recombinase. The Swi5-Sfr1 complex overcomes, at least partly, the inhibitory effect of RPA, representing a novel class of mediator. Notably, the Swi5-Sfr1 complex preferentially stimulates the ssDNA-dependent ATPase activity of Rhp51, and it increases the amounts of Dmc1 bound to ssDNA.  相似文献   

12.
The Archaeal protein RadA, a RecA/Rad51 homolog, is able to promote pairing and exchange of DNA strands with homologous sequences. Here, we have expressed, purified, and crystallized the catalytically active RadA protein from Sulfolobus solfataricus (Sso). Preliminary X-ray analysis indicated that Sso RadA protein likely forms helical filament in protein crystals. Using atomic force microscopy with a carbon nanotube (CNT) tip for high-resolution imaging, we demonstrated that Sso RadA protein indeed forms fine helical filaments up to 1 microm in length ( approximately 10nm pitch) in the absence of DNA and nucleotide cofactor. We also observed that Sso RadA protein helical filament could dissemble upon incubation with ssDNA, and then the proteins associate with ssDNA to form nucleoprotein filament.  相似文献   

13.
Dmc1 and Rad51 are eukaryotic RecA homologues that are involved in meiotic recombination. The expression of Dmc1 is limited to meiosis, whereas Rad51 is expressed in mitosis and meiosis. Dmc1 and Rad51 have unique and overlapping functions during meiotic recombination. Here we report the purification of the Dmc1 protein from the budding yeast Saccharomyces cerevisiae and present basic characterization of its biochemical activity. The protein has a weak DNA-dependent ATPase activity and binds both single-strand DNA (ssDNA) and double-strand DNA. Electrophoretic mobility shift assays suggest that DNA binding by Dmc1 is cooperative. Dmc1 renatures linearized plasmid DNA with first order reaction kinetics and without requiring added nucleotide cofactor. In addition, Dmc1 catalyzes strand assimilation of ssDNA oligonucleotides into homologous supercoiled duplex DNA in a reaction promoted by ATP or the non-hydrolyzable ATP analogue AMP-PNP.  相似文献   

14.
The RecA family proteins mediate homologous recombination, a ubiquitous mechanism for repairing DNA double-strand breaks (DSBs) and stalled replication forks. Members of this family include bacterial RecA, archaeal RadA and Rad51, and eukaryotic Rad51 and Dmc1. These proteins bind to single-stranded DNA at a DSB site to form a presynaptic nucleoprotein filament, align this presynaptic filament with homologous sequences in another double-stranded DNA segment, promote DNA strand exchange and then dissociate. It was generally accepted that RecA family proteins function throughout their catalytic cycles as right-handed helical filaments with six protomers per helical turn. However, we recently reported that archaeal RadA proteins can also form an extended right-handed filament with three monomers per helical turn and a left-handed protein filament with four monomers per helical turn. Subsequent structural and functional analyses suggest that RecA family protein filaments, similar to the F1-ATPase rotary motor, perform ATP-dependent clockwise axial rotation during their catalytic cycles. This new hypothesis has opened a new avenue for understanding the molecular mechanism of RecA family proteins in homologous recombination.  相似文献   

15.
During homologous recombination, a number of proteins cooperate to catalyze the loading of recombinases onto single-stranded DNA. Single-stranded DNA-binding proteins stimulate recombination by coating single-stranded DNA and keeping it free of secondary structure; however, in order for recombinases to load on single-stranded-DNA-binding protein-coated DNA, the activity of a class of proteins known as recombination mediators is required. Mediator proteins coordinate the handoff of single-stranded DNA from single-stranded DNA-binding protein to recombinase. Here we show that a complex of Mei5 and Sae3 from Saccharomyces cerevisiae preferentially binds single-stranded DNA and relieves the inhibition of the strand assimilation and DNA binding abilities of the meiotic recombinase Dmc1 imposed by the single-stranded DNA-binding protein replication protein A. Additionally, we demonstrate the physical interaction of Mei5-Sae3 with replication protein A. Our results, together with previous in vivo studies, indicate that Mei5-Sae3 is a mediator of Dmc1 assembly during meiotic recombination in S. cerevisiae.During meiosis, recombination between homologous chromosomes ensures proper segregation into haploid products. Recombination events are initiated by the formation of double strand breaks (DSBs)2 in DNA (1). This is followed by resection of free DNA ends to yield 3′ single-stranded tails, upon which recombinase assembles to form nucleoprotein filaments. Following recombinase assembly, the nucleoprotein filament engages a donor chromatid, searches for homologous DNA sequences on that chromatid, and promotes strand exchange to yield a heteroduplex DNA intermediate often referred to as a joint molecule. Although recombinase alone is capable of promoting homology search and strand exchange in vitro, genetic and biochemical studies have demonstrated that normal recombinase function in vivo requires the activity of a number of accessory factors (2). These factors enhance the assembly of nucleoprotein filaments, target capture, homology search, and dissociation of recombinase from duplex DNA.Most eukaryotes possess two recombinases, both homologues of the Escherichia coli recombinase RecA: Rad51, which is the major recombinase in mitotic cells and is also important during meiotic recombination, and Dmc1, which functions only in meiosis. Dmc1 and Rad51 have been shown to assemble at DSBs by immunofluorescence and chromatin immunoprecipitation (36), and both proteins oligomerize on single-stranded DNA (ssDNA) to form nucleofilaments that catalyze strand invasion (79).A number of biochemical studies have defined the role of accessory factors in stimulating the activity of Rad51 (1012). Replication protein A (RPA), the yeast ssDNA-binding protein (SSB), removes secondary structure in ssDNA that otherwise prevents formation of fully functional nucleoprotein filaments (13). Both Rad52 protein (11, 12) and the heterodimeric protein Rad55/Rad57 (14) can overcome the inhibitory effect of RPA on Rad51 nucleoprotein filament formation in purified systems, mediating a handoff between RPA and Rad51. It is thought that the mechanism for the mediator activity of Rad52 involves Rad52 recognizing and binding to RPA-coated ssDNA, where it provides nucleation sites for the recruitment of free molecules of Rad51 (15). The tumor suppressor protein BRCA2 also serves as an assembly factor for Rad51 during mitosis in a variety of species that encode orthologues of this protein, including mice (16), corn smut (17), and humans (18).The meiosis-specific recombinase Dmc1 is stimulated by a distinct set of accessory factors. Immunostaining studies suggest that the Rad51 mediators Rad52 and Rad55/Rad57 are not required for assembly of Dmc1 foci in vivo, although Rad51 itself promotes Dmc1 foci (1921). More recently, immunostaining and chromatin immunoprecipitation experiments demonstrated a role for the Mei5 and Sae3 proteins of Saccharomyces cerevisiae in assembly of Dmc1 at sites of DSBs in vivo (22, 23). Consistent with these observations, mei5 and sae3 mutants display markedly similar meiotic defects as compared with dmc1 mutants, including defects in sporulation, spore viability, crossing over, DSB repair, progression through meiosis, and synaptonemal complex formation (19, 2224). Finally, the three proteins have been shown to physically interact; Mei5 and Sae3 have been co-purified and co-immunoprecipitated, and an N-terminal portion of Mei5 has been shown to interact with Dmc1 in a two-hybrid assay (22).The fission yeast Schizosaccharomyces pombe encodes two proteins, Swi5 and Sfr1, which share sequence homology with Sae3 and Mei5, respectively (22). Swi5 and Sfr1 have been shown to stimulate the strand exchange activity of Rhp51 (the S. pombe Rad51 homologue) and Dmc1 (25). Although some results indicate functional similarity of Swi5-Sfr1 and Mei5-Sae3, there are also clear differences. The Mei5-Sae3 complex of budding yeast is expressed solely during meiosis, and no mitotic phenotypes have been reported for mei5 or sae3 mutants (22, 24, 26). In contrast, the Swi5-Sfr1 complex of fission yeast is expressed in mitotic and meiotic cells, and mutations in SWI5 have been shown to cause defects in mitotic recombination (27). Furthermore, although mei5 and sae3 mutants are phenotypically similar to dmc1 mutants, swi5 and sfr1 mutants display more severe meiotic defects during fission yeast meiosis than do dmc1 mutants (2729). These data suggest that although Swi5-Sfr1 clearly contributes to Rad51 activity in fission yeast, it is possible that the activity of Mei5-Sae3 is restricted to stimulating Dmc1 in budding yeast.In this study, a biochemical approach is used to test the budding yeast Mei5-Sae3 complex for properties expected of a recombinase assembly mediator. We show that Mei5-Sae3 binds both ssDNA and double-stranded DNA (dsDNA) but binds ssDNA preferentially. We also show that Mei5-Sae3 can overcome the inhibitory effects of RPA on the ssDNA binding and strand assimilation activities of Dmc1. Finally, we show that Mei5-Sae3 and RPA bind one another directly. These results indicate that Mei5-Sae3 acts directly as a mediator protein for assembly of Dmc1.  相似文献   

16.
Repair of programmed DNA double-strand breaks (DSBs) by meiotic recombination relies on the generation of flanking 3' single-stranded DNA overhangs and their interaction with a homologous double-stranded DNA template. In various common model organisms, the ubiquitous strand exchange protein Rad51 and its meiosis-specific homologue Dmc1 have been implicated in the joint promotion of DNA-strand exchange at meiotic recombination sites. However, the division of labor between these two recombinases is still a puzzle. Using RNAi and gene-disruption experiments, we have studied their roles in meiotic recombination and chromosome pairing in the ciliated protist Tetrahymena as an evolutionarily distant meiotic model. Cytological and electrophoresis-based assays for DSBs revealed that, without Rad51p, DSBs were not repaired. However, in the absence of Dmc1p, efficient Rad51p-dependent repair took place, but crossing over was suppressed. Immunostaining and protein tagging demonstrated that only Dmc1p formed strong DSB-dependent foci on meiotic chromatin, whereas the distribution of Rad51p was diffuse within nuclei. This suggests that meiotic nucleoprotein filaments consist primarily of Dmc1p. Moreover, a proximity ligation assay confirmed that little if any Rad51p forms mixed nucleoprotein filaments with Dmc1p. Dmc1p focus formation was independent of the presence of Rad51p. The absence of Dmc1p did not result in compensatory assembly of Rad51p repair foci, and even artificial DNA damage by UV failed to induce Rad51p foci in meiotic nuclei, while it did so in somatic nuclei within one and the same cell. The observed interhomologue repair deficit in dmc1Δ meiosis is consistent with a requirement for Dmc1p in promoting the homologue as the preferred recombination partner. We propose that relatively short and/or transient Rad51p nucleoprotein filaments are sufficient for intrachromosomal recombination, whereas long nucleoprotein filaments consisting primarily of Dmc1p are required for interhomolog recombination.  相似文献   

17.
The development of meiotic division and associated genetic recombination paved the way for evolutionary changes. However, the secondary and tertiary structure and functional domains of many of the proteins involved in genetic recombination have not been studied in detail. We used the human Dmc1 gene product along with secondary and tertiary domain structures of Escherichia coli RecA protein to help determine the molecular structure and function of maize Dmc1, which is required for synaptonemal complex formation and cell cycle progression. The maize recombinase Dmc1 gene was cloned and characterized, using rice Dmc1 cDNA as an orthologue. The deduced amino acid sequence was used for elaborating its 3-D structure, and functional analysis was made with the CDD software, showing significant identity of the Dmc1 gene product in Zea mays with that of Homo sapiens. Based on these results, the domains and motives of WalkerA and WalkerB as ATP binding sites, a multimer site (BRC) interface, the putative ssDNA binding L1 and L2 loops, the putative dsDNA binding helix-hairpin-helix, a polymerization motif, the subunit rotation motif, and a small N-terminal domain were proposed for maize recombinase Dmc1.  相似文献   

18.
The DMC1 protein, a meiosis-specific DNA recombinase, catalyzes strand exchange between homologous chromosomes. In rice, two Dmc1 genes, Dmc1A and Dmc1B, have been reported. Although the Oryza sativa DMC1A protein has been partially characterized, however the biochemical properties of the DMC1B protein have not been defined. In the present study, we expressed the Oryza sativa DMC1A and DMC1B proteins in bacteria and purified them. The purified DMC1A and DMC1B proteins formed helical filaments along single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA), and promoted robust strand exchange between ssDNA and dsDNA over five thousand base pairs in the presence of RPA, as a co-factor. The DMC1A and DMC1B proteins also promoted strand exchange in the absence of RPA with long DNA substrates containing several thousand base pairs. In contrast, the human DMC1 protein strictly required RPA to promote strand exchange with these long DNA substrates. The strand-exchange activity of the Oryza sativa DMC1A protein was much higher than that of the DMC1B protein. Consistently, the DNA-binding activity of the DMC1A protein was higher than that of the DMC1B protein. These biochemical differences between the DMC1A and DMC1B proteins may provide important insight into their functional differences during meiosis in rice.  相似文献   

19.
Meiotic recombination requires the meiosis-specific RecA homolog Dmc1 as well as the mitotic RecA homolog Rad51. Here, we show that the two meiosis-specific proteins Mei5 and Sae3 are necessary for the assembly of Dmc1, but not for Rad51, on chromosomes including the association of Dmc1 with a recombination hot spot. Mei5, Sae3, and Dmc1 form a ternary and evolutionary conserved complex that requires Rad51 for recruitment to chromosomes. Mei5, Sae3, and Dmc1 are mutually dependent for their chromosome association, and their absence prevents the disassembly of Rad51 filaments. Our results suggest that Mei5 and Sae3 are loading factors for the Dmc1 recombinase and that the Dmc1-Mei5-Sae3 complex is integrated onto Rad51 ensembles and, together with Rad51, plays both catalytic and structural roles in interhomolog recombination during meiosis.  相似文献   

20.
In E. coli, homologous recombination is catalyzed by the RecA recombinase. Two RecA-like factors, Rad51 and Dmc1, are found in eukaryotes. Whereas Rad51 is needed for homologous recombination reactions in both mitotic and meiotic cells, the role of Dmc1 is restricted to meiosis. Recent work has shown that, like RecA and Rad51, Dmc1 mediates the homologous DNA pairing strand exchange reaction via a filamentous intermediate assembled on single-stranded DNA. Emerging evidence suggests that the tumor suppressor BRCA2 functions in the assembly of nucleoprotein filaments of Rad51 and Dmc1. The manner in which Rad51 and Dmc1 functionally cooperate in meiotic recombination remains to be determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号