首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A comparative analysis of the contractile responses induced by acetylcholine and replacement of the external Na+ ions with choline ions in the isolated twitch and tonic fibers of frog skeletal muscles was performed. The effects of extracellular Ca2+ concentration and several pharmacological agents modulating the activity of various systems maintaining Ca2+ level in the myoplasm (dantrolene, cresol, d-tubocurarine, and tetrodotoxin) were studied. It has been found that a voltage-dependent Ca2+ release from the sarcoplasmic reticulum depot is the main mechanism inducing the acetylcholine contracture in the fibers of both types. However, the twitch and tonic fibers differ in the properties of the α-isoform and(or) the ratio of α- to β-isoforms of ryanodine-sensitive channels. In the fibers of both types, the replacement of over 25% of Na+ ions with choline induces long-term contracture responses, which are also mediated by activation of acetylcholine receptors. It is assumed that an additional mechanism—accumulation of choline ions in the myoplasm and their direct action on the ryanodine-sensitive channels—is involved in the development of such contractile responses.  相似文献   

2.
1. Preincubation with 1 or 2mM Ni2+ inhibited dose-dependently the ileal phasic response to K+ (60 mM) without appreciable effects on the tonic response. Ni2+ above 3mM inhibited the tonic response.2. Ni2+ inhibited the high affinity Ca2+ sites than the low affinity sites during K+ contraction.3. After treatment with Ni2+, the K+ response was fairly restored by a wash with normal medium. The nickel bound to the ileal cells was almost eliminated with the washing.4. This probably indicates that Ni2+ mainly inhibited the K+-induced phasic tension by reducing Ca2+ release rather than Ca2+ influx.  相似文献   

3.
1. The K+-induced contracture consists of a phasic and a sustained component. Both were eliminated in Ca2+-free saline, but the sustained component recovered on the addition of Ca2+ to the muscle.2. Procaine mainly inhibited the phasic component. 3. Unlike the sustained component, the phasic component was inhibited by nifedipine in a concentration dependent manner.4. Divalent cations such as Mn2+, Co2+ and Ni2+ markedly increased the sustained component at low concentrations, but decreased it at high concentrations. The cations also modified the phasic component differentially, but to a lesser extent. High concentration abolished the phasic component.5. Ouabain markedly enhanced the sustained component.6. Caffeine contracture was a phasic type. Its duration and amplitude were augmented by pre-soaking the muscle in Na+-reduced salines. Immediate pre-treatment with caffeine eliminated the phasic component of the 160mM K+-induced contracture.7. These results suggest that a Na-Ca exchange mechanism may play a role in excitation-contraction coupling in insect muscle. Calcium ions flowing into the cell upon membrane depolarization may specifically activate the phasic component by way of a calcium-induced calcium releasing mechanism.  相似文献   

4.
Previous studies have demonstrated neuron-specific differences in the inhibitory effects of depolarization upon neurite outgrowth. We examined whether there is a relationship between the normal impulse activity level of an axon and the effect of depolarization upon its growth. Inactive phasic motor axons and active tonic motor axons grow from crayfish abdominal nerve cord explants in culture. Depolarization of these axons with high K+ solutions produced greater inhibition of advancing growth cones from the phasic axons than from the tonic axons. During the period 20–40 min after the beginning of depolarization, tonic axon growth cones continued to advance, whereas phasic axon growth cones retracted. During chronic depolarization, all of the phasic axons retracted during the first day and approximately half of the phasic axons had degenerated after 4 days of depolarization. The majority of tonic axons continue to grow after 3 days of depolarization, and all of the tonic axon growth survived the 4 days of depolarization. The different responses of the growing phasic and tonic axons to depolarization appear to be Ca2+ dependent. The inhibitory effects of depolarization upon phasic axon growth were reduced by the Ca2+ channel blockers La3+ and Mg2+. Application of a Ca2+ ionophore, A23187, produces greater inhibition of phasic axon growth than tonic axon growth. This study demonstrates that depolarization produces greater inhibition of growth from inactive motor axons than from active motor axons. This is likely due to differences in Ca2+ regulation and/or sensitivity to intracellular Ca2+. © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 85–97, 1997  相似文献   

5.
Guinea pig vas deferens responds to externally applied acetylcholine (ACh) or noradrenaline (NA) by a small rapid contraction (phasi phase) and then a large contraction (tonic phase). The phasic phase was not affected by removal of external Ca2+, but tonic phase depended on external Ca2+. At lower temperatures the two components became larger and detectable separately. The tonic phase induced by ACh at low temperature (at 20°C) was greatly depressed by brief treatment with colchicine (0.5 μM – 5 μM), although the tonic phase at high temperature (at 37°C) was not affected. Na-induced contraction (phasic or tonic phase) was not changed by the colchicine-treatment. High K+ (40 mM)-contracture, which in many cases consisted of a single phase and depended on external Ca2+, was also not affected by brief treatment with colchicine. Culture of vas deferens for 3 days in the presence of colchicine, increased the phasic phase of ACh- and NA-induced contractions significantly, but reduced the tonic phase of contractions induced by ACh and NA. Colchicine also reduced high K+-contracture, the decrease depending on the period of culture with colchicine. Organ culture with colchicine did not affect the amounts of m-ACh and α-Ad receptors or the IC50 value of ACh and NA on 3H-ligand binding. These results suggest that colchicine specifically interacts with some steps in m-ACh and α-Ad receptor-responsor (e.g. ionophore) coupling without affecting the receptor number or affinity of the receptors for agonists. The mechanisms of action of colchicine are discussed in relation to m-ACh and α-Ad receptor functions.  相似文献   

6.
Summary Regulatory mechanism of contraction in the proboscis retractor muscle of Phascolosoma scolops was studied by physiological measurements and cytochemical electron microscopy. The magnitude of K+-contracture was dependent on external Ca2+ concentration and the contracture disappeared in Ca2+-free solution. The K+-contracture was suppressed by application of procaine and Mn2+. Caffeine induced contracture even when external Ca2+ was absent. Ultrastructural observations of the retractor muscle cells showed the presence of a large number of vesicles (subsarcolemmal vesicles), corresponding to the sarcoplasmic reticulum in vertebrate skeletal muscle, underneath the plasma membrane. For the cytochemical electron microscopy, the muscle fibers were fixed with 1% OsO4 solution containing 2% K-pyroantimonate. In the relaxed fibers, pyroantimonate precipitates were localized along the inner surface of plasma membrane and in the subsarcolemmal vesicles. In the contracting fibers, the precipitates were uniformly distributed in the myoplasm. The X-ray microanalysis revealed that the precipitates contained Ca. These results suggest that the contractile system is activated by the influx of extracellular Ca2+ as well as by the release of Ca2+ from the intracellular structures such as the inner surface of the plasma membrane and subsarcolemmal vesicles.  相似文献   

7.
Depolarization of the vascular smooth muscle cell membrane evokes a rapid (phasic) contractile response followed by a sustained (tonic) contraction. We showed previously that the sustained contraction involves genistein-sensitive tyrosine phosphorylation upstream of the RhoA/Rho-associated kinase (ROK) pathway leading to phosphorylation of MYPT1 (the myosin-targeting subunit of myosin light chain phosphatase (MLCP)) and myosin regulatory light chains (LC20). In this study, we addressed the hypothesis that membrane depolarization elicits activation of the Ca2+-dependent tyrosine kinase Pyk2 (proline-rich tyrosine kinase 2). Pyk2 was identified as the major tyrosine-phosphorylated protein in response to membrane depolarization. The tonic phase of K+-induced contraction was inhibited by the Pyk2 inhibitor sodium salicylate, which abolished the sustained elevation of LC20 phosphorylation. Membrane depolarization induced autophosphorylation (activation) of Pyk2 with a time course that correlated with the sustained contractile response. The Pyk2/focal adhesion kinase (FAK) inhibitor PF-431396 inhibited both phasic and tonic components of the contractile response to K+, Pyk2 autophosphorylation, and LC20 phosphorylation but had no effect on the calyculin A (MLCP inhibitor)-induced contraction. Ionomycin, in the presence of extracellular Ca2+, elicited a slow, sustained contraction and Pyk2 autophosphorylation, which were blocked by pre-treatment with PF-431396. Furthermore, the Ca2+ channel blocker nifedipine inhibited peak and sustained K+-induced force and Pyk2 autophosphorylation. Inhibition of Pyk2 abolished the K+-induced translocation of RhoA to the particulate fraction and the phosphorylation of MYPT1 at Thr-697 and Thr-855. We conclude that depolarization-induced entry of Ca2+ activates Pyk2 upstream of the RhoA/ROK pathway, leading to MYPT1 phosphorylation and MLCP inhibition. The resulting sustained elevation of LC20 phosphorylation then accounts for the tonic contractile response to membrane depolarization.  相似文献   

8.
Bulk water transport in reconstituted ghosts is statistically comparable to that in the parent red cells, and is unaffected by incorporation of Ca2+ over the range of 0.01 to 1 mM. Brief exposure of ghosts to p-chloromercuribenzene sulfonate results in a supression of osmotic water flow but leaves K+ permeability unchanged. Incorporation of p-chloromercuribenzene sulfonate provokes extremely rapid K+ loss which can be counteracted by simultaneous inclusion of Ca2+.Erythrocyte ghosts, when prepared with a small amount of Ca2+, demonstrate recovery of normal impermeability to choline, sucrose, Na+ and inulin and have an improved K+ retention over Ca2+-free preparations.The rate of passive transport of K+ from unwashed erythrocyte ghosts was measured during the initial few minutes of efflux. The initial rates vary in a bimodal fashion with the concentration of Ca2+ incorporated at the time of hemolysis. In low concentrations (0.01–0.1 mM), Ca2+ protects the K+ barrier while at higher concentrations (0.1–1.0 mM) it provokes a K+ leakage ranging from 7 to 50 times the normal rate of passive K+ loss. The Ca2+-induced K+ leak is thus a graded response rather than a discrete membrane transport state. The transition from a Ca2+-protected to a Ca2+-damaged membrane occurs upon an increase in Ca2+ concentration of less than 50 μmoles/l.  相似文献   

9.
The effects of fluphenazine (FLU) on the noradrenaline (NA) induced cAMP-synthesis in intact rat retinae were studied as a function of extracellular K+- and Ca2+-ions. Thus NA-induced cAMP levels were measured after incubating intact rat retinae with 50 μM NA in the presence or absence of FLU and in the presence of 1 or 10 mM theophylline. Results were: (1) Experimental condition a: standard NA-responses were measured after incubating retinae at 0.75 mM Ca2+, at 10 mM theophylline, at 10 μM FLU and at 2 and 0 mM K+. FLU does not affect the NA-response at 2 mM K+ significantly; however, it inhibits the NA-response at 0 mM K+ in this condition. (2) Experimental condition b: NA-responses were measured after incubating retinae at 0.125 mM Ca2+, 10 mM theophylline, 10 μM FLU and at 2 and 0 mM K+. At 2 mM K+ FLU replaces a Ca2+ function probably connected with the synthesis part of the NA-cAMP system and NA-responses in this low Ca2+ condition are consequently enhanced by FLU; however, FLU inhibits the NA-response at 0 mM K+ in this condition. (3) Experimental condition c: NA-responses were measured after incubating retinae at 0.75 mM Ca2+, 1 mM theophylline, 10 μM FLU and at 2 and 0 mM K+. At 2 mM K+ FLU enhances the NA-response by further inhibition of the degradation part of the NA-cAMP system; FLU inhibits the NA-response at 0 mM K+ in this condition. (4) The inhibitions of the NA-responses by FLU at 0 mM K+ in all three conditions a, b and c showed an apparent Km of 1 μM. (5) Low concentrations of K+ (0.4–0.8 mM) maintain the property of FLU to enhance the NA-responses at condition b (0.125 mM Ca2+) and at condition c (1 mM theophylline). Results suggest that the activation of NA-receptor coupled adenylate cyclases (NA-AC-ases) by NA, resulting in activation of phosphodiesterase activity by the NA-elevated cAMP-levels, is sustained by (a) membraneous factor(s) connected to the NA-receptor. This (these) factor(s) is (are) switched off in the absence of K+. Evidence has been presented, that Ca2+ and FLU do not have access to this intramembraneous factor-enzyme activating moiety of the NA-cAMP system at 0 mM K+. Between 0.4 and 0.8 mM K+ the factor-enzyme-NA-receptor complex is still intact.  相似文献   

10.
Possible involvement of cAMP-dependent mechanisms in the development of both phasic and tonic contractions induced by oxytocin — OT (25 nM and 25 µM, respectively), as well as of KCl-induced contracture, was studied on the myometrium of estradiol-dominated rats using the myometrial strips with suppressed spontaneous mechanical activity. The intracellular cAMP level was modulated by furosemide that had been previously shown to decrease cAMP content in the rat myometrium tissue. When added to the medium in the pulse mode together with 25 nM OT, furosemide (0.02 mM) increased contraction amplitude by 224%, whereas higher, 0.2 and 20 mM, furosemide concentrations suppressed the response by 286% or totally removed it, respectively. Being present in the bath permanently, 0.2 mM furosemide progressively decreased the amplitude of OT-induced phasic contractions. Under such conditions, 0.02 mM furosemide exerted biphasic effect on the responses, so that the initial enhancement was replaced by the progressive inhibition. Dibutyryl-cAMP (dbcAMP) at a proper concentration restored the responsiveness of the tissue to OT in the presence of furosemide in the saturating concentration. Contractile responses induced by 25 µM OT comprised both phasic and tonic components. In a Ca2+-free medium, the OT-induced contractions seemed to be associated with Ca2+ release from intracellular stores. Permanent presence of furosemide in the CaCl2-containing medium inhibited OT-induced responses in the same manner as omission of Ca2+ from the medium, i.e., furosemide did not affect the responses caused by Ca2+ release but inhibited those mediated via acceleration of the Ca2+ influx. The furosemide-sensitive component of responses to OT was combined with a persistent contraction caused by KCl depolarization; there was a moderate decrease in amplitude of the KCl-induced contracture due to furosemide action. The decrease could be prevented by dbcAMP addition. It is suggested that both voltage-gated and receptor-operated Ca2+ entries induced by OT are regulated by cAMP-dependent protein kinases, while Ca2+ extrusion into the extracellular space does not depend on the intracellular cAMP.Neirofiziologiya/Neurophysiology, Vol. 26, No. 1, pp. 54–60, January–February, 1994.  相似文献   

11.
When male Schistosoma mansoni were incubated in a Ca2+-free medium their responsiveness to the contracture inducing agents, praziquantel (PZ), dinitrophenol (DNP), 60 mM K+ (high K+), ouabain, and low temperature, was rapidly attenuated. After 5 min in a zero Ca2+ medium the responsiveness to PZ was reduced by 60% but a residual response of 20% remained even after 40 min in a calcium-free medium. The contracture induced by ouabain or low temperature was totally lost within 1 min exposure to a zero Ca2+ medium. The efflux of 45Ca2+ from parasites incubated in a medium containing no Ca2+ closely parallels the drop in responsiveness of their musculature to high K+, DNP, and PZ. The total amount of Ca2+ in the parasite was reduced by only 30% after 60 min in zero Ca2+ medium. A relatively rapid exponential decline in muscle tension was noted when parasites, previously treated with PZ, high K+, or DNP, were transferred to a medium containing these agents but with no Ca2+. Parasites that had been contracted with ouabain or low temperature showed no significant relaxation 16 min after transfer to a zero Ca2+ medium. The 45Ca2+ efflux from worms bathed in zero Ca2+ medium was not significantly altered by the presence of ouabain. These results suggest the presence of active Ca2+ transport at the level of the parasites' muscle membranes.  相似文献   

12.
The O2-uptake of phasic and tonic muscles fromRana temporaria was measured under the influence of high extra-cellular concentrations of K+ by means of the Pt-electrode together with simultaneous registration of muscles-mechanics. The O2-uptake in isotonic KCl coincides with the amount of tension (tetanus and contracture); at relaxation the stimulation of respiration ceases; in spite of the permanent depolarization also the “resting respiration” decreases. If isotonic KCl is replaced by Ringer, respiration remains at an elevated state; so-called after-contractures expressing a plastic tonus reveal no additional O2-uptake. In muscles deprived of Ca++ the development of tonus and increase of respiration is strongly reduced, whereas both parameters increase considerably on Ca-enriched muscles. By removing of Ca++ in Ca-free Ringer a slight increase in O2-uptake occurs; in phasic muscles because of twitches, in tonic muscles because of weak contractures (Ca-withdrawal contracture). After addition of Ca++ the increase of respiration occurs before mechanical effects become observable. A further increase of Ca-concentration produces a slow and relatively weak tonus, at which O2-uptake increases transitorily, but decreases soon in spite of the developping contracture (rigor). Oxygen uptake is related to mechanics but not to depolarization of the membrane. The latter is linked with both processes by means of coupling reactions, whereby Ca++ plays an important role. In addition to the electro-mechanical coupling, the existence of a direct Ca++-dependent electro-respiratory coupling may be assumed.  相似文献   

13.
Katina IE  Nasledov GA 《Biofizika》2006,51(5):898-905
A comparative analysis of the effects of the concentrations of Ca2+ in external medium and the inhibitor (dantrolene) and activator (4-chloro-m-cresol) of rhyanodine-sensitive Ca2+ channels of carcoplasmic reticulum on the characteristics of potassium contracture in frog twitch and tonic skeletal muscles has been performed. It was shown that the duration of contracture in tonic muscles is not restricted by the presence of Ca2+, as distinct from twitch muscles. Dandrolene does not practically affect the contractile responses of tonic fibres, and the concentration of cresol eliciting the contracture for tonic fibres is substantially higher (1 mM) than for twitch fibers (0.25 mM). In twitch fibers, the potassium contracture activated in the presence of cresol is comparable in amplitude and dynamics with the contracture under control conditions, and in tonic fibers a summing of responses without relaxation after the washing of excessive potassium is observed. This suggests that, in twitch fibers, the influx of Ca2+ can directly create the concentration sufficient for the maintenance of contraction, and in tonic fibers its involvement is mediated through the Ca(2+)-dependent activation of the beta-isoform of rhyanodine-sensitive channels.  相似文献   

14.
Calcium influx in the sartorius muscle of the frog (Rana pipiens) has been estimated from the rate of entry of Ca45. In the unstimulated preparation it is about equal to what has been reported for squid giant axons, but that per impulse is at least 30 times greater than in nerve fibers. The enhanced twitch when NO-2 replaces Cl- in Ringer's is associated with at least a 60 per cent increase in influx during activity, whereas this anion substitution does not affect the passive influx significantly. Calcium entry during potassium contracture is even more markedly augmented than during electrical stimulation, but only at the beginning of the contracture; thus, when a brief Ca45 exposure precedes excess K+ application, C45 uptake is increased three- to fivefold over the controls not subjected to K+, whereas when C45 and K+ are added together, no measurable increase in Ca45 uptake occurs. These findings are in keeping with the brevity of potassium contracture in "fast (twitch)" fibers such as in sartorius muscle.  相似文献   

15.
Recent studies have provided evidence that depolarization in the absence of extracellular Ca2+ can trigger Ca2+ release from internal stores in a variety of neuron subtypes. Here we examine whether postganglionic sympathetic neurons are able to mobilize Ca2+ from intracellular stores in response to depolarization, independent of Ca2+ influx. We measured changes in cytosolic ΔF/F0 in individual fluo-4 –loaded sympathetic ganglion neurons in response to maintained K+ depolarization in the presence (2 mM) and absence of extracellular Ca2+ ([Ca2+]e). Progressive elevations in extracellular [K+]e caused increasing membrane depolarizations that were of similar magnitude in 0 and 2 mM [Ca2+]e. Peak amplitude of ΔF/F0 transients in 2 mM [Ca2+]e increased in a linear fashion as the membrane become more depolarized. Peak elevations of ΔF/F0 in 0 mM [Ca2+]e were ~5–10% of those evoked at the same membrane potential in 2 mM [Ca2+]e and exhibited an inverse U-shaped dependence on voltage. Both the rise and decay of ΔF/F0 transients in 0 mM [Ca2+]e were slower than those of ΔF/F0 transients evoked in 2 mM [Ca2+]e. Rises in ΔF/F0 evoked by high [K+]e in the absence of extracellular Ca2+ were blocked by thapsigargin, an inhibitor of endoplasmic reticulum Ca2+ ATPase, or the inositol 1,4,5-triphosphate (IP3) receptor antagonists 2-aminoethoxydiphenyl borate and xestospongin C, but not by extracellular Cd2+, the dihydropyridine antagonist nifedipine, or by ryanodine at concentrations that caused depletion of ryanodine-sensitive Ca2+ stores. These results support the notion that postganglionic sympathetic neurons possess the ability to release Ca2+ from IP3-sensitive internal stores in response to membrane depolarization, independent of Ca2+ influx.  相似文献   

16.
Summary Correlated physiological and electron-microscopic studies were made on the source of calcium activating the contractile system (activator calcium) in dog coronary artery smooth muscle fibers. The magnitude of contracture tension induced by 100 mM K+ was dependent on external Ca2+ concentration and reduced or eliminated by factors known to reduce the Ca2+ spike or ca2+ influx. Little or no mechanical response was elicited by treatments known to cause release of intracellularly stored calcium. These results indicated that the contractile system is mainly activated by the inward movement of extracellular calcium. In accordance with the physiological experiments, electron-opaque pyroantimonate precipitate containing calcium was found in the lumina of caveolae, but not in any intracellular structures close to the plasma membrane, when the relaxed fibers were fixed in a 1% osmium tetroxide solution containing 2% potassium pyroantimonate. If the contracted fibers were fixed in the same solution, the pyroantimonate precipitate was diffusely distributed in the myoplasm in the form of numerous particles, while the precipitate in the caveolar lumina was scarcely seen. These findings are discussed in connection with the regulation of intracellular Ca2+ concentration in dog coronary artery smooth muscle.  相似文献   

17.
This study hypothesized that decline in sarcoplasmic reticulum (SR) Ca2+ release and maximal SR-releasable Ca2+ contributes to decreased specific force with aging. To test it, we recorded electrically evoked maximal isometric specific force followed by 4-chloro-m-cresol (4-CmC)-evoked maximal contracture force in single intact fibers from the mouse flexor digitorum brevis muscle. Significant differences in tetanic, but not in 4-CmC-evoked, contracture forces were recorded in fibers from aging mice as compared to younger mice. Peak intracellular Ca2+ in response to 4-CmC did not differ significantly. SR Ca2+ release was recorded in whole-cell patch-clamped fibers in the linescan mode of confocal microscopy using a low-affinity Ca2+ indicator (Oregon green bapta-5N) with high-intracellular ethylene glycol-bis(α-aminoethyl ether)-N,N,NN′-tetraacetic acid (20 mM). Maximal SR Ca2+ release, but not voltage dependence, was significantly changed in fibers from old compared to young mice. Increasing the duration of fiber depolarization did not increase the maximal rate of SR Ca2+ release in fibers from old compared to young mice. Voltage-dependent inactivation of SR Ca2+ release did not differ significantly between fibers from young and old mice. These findings indicate that alterations in excitation-contraction coupling, but not in maximal SR-releasable Ca2+, account for the age-dependent decline in intracellular Ca2+ mobilization and specific force.  相似文献   

18.
Neurotransmitter receptors are formed during chick embryo development in the amnion, an avascular extraembryonic membrane devoid of innervation. Carbachol induces phasic and tonic contractions mediated by M3 cholinoceptors in an amniotic membrane strip isolated from 11–14-day-old chick embryo. The carbachol effect on the amnion contractile activity was studied in normal physiological salt solution, during depolarization by K+, exposure to nifedipine, and in calcium-free medium. Voltage-dependent and receptor-operated Ca2+ channels as well as calcium from intracellular stores are involved in the contractile response to carbachol. Phasic contractions of the amnion are mainly induced by calcium ions entering through voltage-dependent calcium channels, while tonic contractions are also maintained by receptor-operated channels. Ca2+-activated potassium channels can serve as a negative feedback factor in regulation of the amnion contractile responses.  相似文献   

19.
Petr Paucek  Martin Jab?rek 《BBA》2004,1659(1):83-91
The Na+/Ca2+ antiporter was purified from beef heart mitochondria and reconstituted into liposomes containing fluorescent probes selective for Na+ or Ca2+. Na+/Ca2+ exchange was strongly inhibited at alkaline pH, a property that is relevant to rapid Ca2+ oscillations in mitochondria. The effect of pH was mediated entirely via an effect on the Km for Ca2+. When present on the same side as Ca2+, K+ activated exchange by lowering the Km for Ca2+ from 2  to 0.9 μM. The Km for Na+ was 8 mM. In the absence of Ca2+, the exchanger catalyzed high rates of Na+/Li+ and Na+/K+ exchange. Diltiazem and tetraphenylphosphonium cation inhibited both Na+/Ca2+ and Na+/K+ exchange with IC50 values of 10 and 0.6 μM, respectively. The Vmax for Na+/Ca2+ exchange was increased about fourfold by bovine serum albumin, an effect that may reflect unmasking of an autoregulatory domain in the carrier protein.  相似文献   

20.
The importance of Ca2+ signaling in astrocytes is undisputed but a potential role of Ca2+ influx via L-channels in the brain in vivo is disputed, although expression of these channels in cultured astrocytes is recognized. This study shows that an increase in free cytosolic Ca2+ concentration ([Ca2+]i) in astrocytes in primary cultures in response to an increased extracellular K+ concentration (45 mM) is inhibited not only by nifedipine (confirming previous observations) but also to a very large extent by ryanodine, inhibiting ryanodine receptor-mediated release of Ca2+, known to occur in response to an elevation in [Ca2+]i. This means that the actual influx of Ca2+ is modest, which may contribute to the difficulty in demonstrating L-channel-mediated Ca2+ currents in astrocytes in intact brain tissue. Chronic treatment with any of the 3 conventional anti-bipolar drugs lithium, carbamazepine or valproic acid similarly causes a pronounced inhibition of K+-mediated increase in [Ca2+]i. This is shown to be due to an inhibition of capacitative Ca2+ influx, reflected by decreased mRNA and protein expression of the ‘transient receptor potential channel’ (TRPC1), a constituent of store-operated channels (SOCEs). Literature data are cited (i) showing that depolarization-mediated Ca2+ influx in response to an elevated extracellular K+ concentration is important for generation of Ca2+ oscillations and for the stimulatory effect of elevated K+ concentrations in intact, non-cultured brain tissue, and (ii) that Ca2+ channel activity is dependent upon availability of metabolic substrates, including glycogen. Finally, expression of mRNA for Cav1.3 is demonstrated in freshly separated astrocytes from normal brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号