首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Germination of dormant Bacillus subtilis spores with specific nutrient germinants is dependent on a number of inner membrane (IM) proteins, including (i) the GerA, GerB, and GerK germinant receptors (GRs) that respond to nutrient germinants; (ii) the GerD protein, essential for optimal GR function; and (iii) SpoVA proteins, essential for the release of the spore-specific molecule dipicolinic acid (DPA) during spore germination. Levels of GR A and C subunit proteins, GerD, and SpoVAD in wild-type spores were determined by Western blot analysis of spore fractions or total disrupted spores by comparison with known amounts of purified proteins. Surprisingly, after disruption of decoated B. subtilis spores with lysozyme and fractionation, ∼90% of IM fatty acids and GR subunits remained with the spores'' insoluble integument fraction, indicating that yields of purified IM are low. The total lysate from disrupted wild-type spores contained ∼2,500 total GRs/spore: GerAA and GerAC subunits each at ∼1,100 molecules/spore and GerBC and GerKA subunits each at ∼700 molecules/spore. Levels of the GerBA subunit determined previously were also predicted to be ∼700 molecules/spore. These results indicate that the A/C subunit stoichiometry in GRs is most likely 1:1, with GerA being the most abundant GR. GerD and SpoVAD levels were ∼3,500 and ∼6,500 molecules/spore, respectively. These values will be helpful in formulating mathematic models of spore germination kinetics as well as setting lower limits on the size of the GR-GerD complex in the spores'' IM, termed the germinosome.  相似文献   

2.
Germination of Bacillus subtilis spores is normally initiated when nutrients from the environment interact with germinant receptors (GRs) in the spores'' inner membrane (IM), in which most of the lipids are immobile. GRs and another germination protein, GerD, colocalize in the IM of dormant spores in a small focus termed the “germinosome,” and this colocalization or focus formation is dependent upon GerD, which is also essential for rapid GR-dependent spore germination. To determine the fate of the germinosome and germination proteins during spore germination and outgrowth, we employed differential interference microscopy and epifluorescence microscopy to track germinating spores with fluorescent fusions to germination proteins and used Western blot analyses to measure germination protein levels. We found that after initiation of spore germination, the germinosome foci ultimately changed into larger disperse patterns, with ≥75% of spore populations displaying this pattern in spores germinated for 1 h, although >80% of spores germinated for 30 min retained the germinosome foci. Western blot analysis revealed that levels of GR proteins and the SpoVA proteins essential for dipicolinic acid release changed minimally during this period, although GerD levels decreased ∼50% within 15 min in germinated spores. Since the dispersion of the germinosome during germination was slower than the decrease in GerD levels, either germinosome stability is not compromised by ∼2-fold decreases in GerD levels or other factors, such as restoration of rapid IM lipid mobility, are also significant in germinosome dispersion as spore germination proceeds.  相似文献   

3.
Spores of Bacillus species can remain in their dormant and resistant states for years, but exposure to agents such as specific nutrients can cause spores'' return to life within minutes in the process of germination. This process requires a number of spore-specific proteins, most of which are in or associated with the inner spore membrane (IM). These proteins include the (i) germinant receptors (GRs) that respond to nutrient germinants, (ii) GerD protein, which is essential for GR-dependent germination, (iii) SpoVA proteins that form a channel in spores'' IM through which the spore core''s huge depot of dipicolinic acid is released during germination, and (iv) cortex-lytic enzymes (CLEs) that degrade the large peptidoglycan cortex layer, allowing the spore core to take up much water and swell, thus completing spore germination. While much has been learned about nutrient germination, major questions remain unanswered, including the following. (i) How do nutrient germinants penetrate through spores'' outer layers to access GRs in the IM? (ii) What happens during the highly variable and often long lag period between the exposure of spores to nutrient germinants and the commitment of spores to germinate? (iii) What do GRs and GerD do, and how do these proteins interact? (iv) What is the structure of the SpoVA channel in spores'' IM, and how is this channel gated? (v) What is the precise state of the spore IM, which has a number of novel properties even though its lipid composition is very similar to that of growing cells? (vi) How is CLE activity regulated such that these enzymes act only when germination has been initiated? (vii) And finally, how does the germination of spores of clostridia compare with that of spores of bacilli?  相似文献   

4.
GerD of Bacillus subtilis is a protein essential for normal spore germination with either L-alanine or a mixture of L-asparagine, D-glucose, D-fructose, and potassium ions. GerD's amino acid sequence suggests that it may be a lipoprotein, indicating a likely location in a membrane. Location in the spore's outer membrane seems unlikely, since removal of this membrane does not result in a gerD spore germination phenotype, suggesting that GerD is likely in the spore's inner membrane. In order to localize GerD within spores, FLAG-tagged GerD constructs were made, found to be functional in spore germination, and detected in immunoblots of spore extracts as not only monomers but also dimers and trimers. Upon fractionation of spore extracts, GerD-FLAG was found in the inner membrane fraction from dormant spores and was present at approximately 2,000 molecules/spore. GerD-FLAG in the inner membrane fraction was solubilized by Triton X-100, suggesting that GerD is a lipoprotein, and the protein was also solubilized by 0.5 M NaCl. GerD-FLAG was not processed proteolytically in a B. subtilis strain lacking gerF (lgt), which encodes prelipoprotein diacylglycerol transferase (Lgt), indicating that when GerD does not have a diacylglycerol moiety, signal sequence processing does not occur. However, unprocessed GerD-FLAG still gave bands corresponding to monomers and dimers of slightly higher molecular weight than that of GerD-FLAG from a strain with Lgt, further suggesting that GerD is a lipoprotein. Upon spore germination, much GerD became soluble and then appeared to be degraded as the germinated spores outgrew and initiated vegetative growth. All of these results suggest that GerD is a lipoprotein associated with the dormant spore's inner membrane that may be released in some fashion from this membrane upon spore germination.  相似文献   

5.
6.
Bacterial endospores exhibit extreme resistance to most conditions that rapidly kill other life forms, remaining viable in this dormant state for centuries or longer. While the majority of Bacillus subtilis dormant spores germinate rapidly in response to nutrient germinants, a small subpopulation termed superdormant spores are resistant to germination, potentially evading antibiotic and/or decontamination strategies. In an effort to better understand the underlying mechanisms of superdormancy, membrane-associated proteins were isolated from populations of B. subtilis dormant, superdormant, and germinated spores, and the relative abundance of 11 germination-related proteins was determined using multiple-reaction-monitoring liquid chromatography-mass spectrometry assays. GerAC, GerKC, and GerD were significantly less abundant in the membrane fractions obtained from superdormant spores than those derived from dormant spores. The amounts of YpeB, GerD, PrkC, GerAC, and GerKC recovered in membrane fractions decreased significantly during germination. Lipoproteins, as a protein class, decreased during spore germination, while YpeB appeared to be specifically degraded. Some protein abundance differences between membrane fractions of dormant and superdormant spores resemble protein changes that take place during germination, suggesting that the superdormant spore isolation procedure may have resulted in early, non-committal germination-associated changes. In addition to low levels of germinant receptor proteins, a deficiency in the GerD lipoprotein may contribute to heterogeneity of spore germination rates. Understanding the reasons for superdormancy may allow for better spore decontamination procedures.  相似文献   

7.
Spores of a Bacillus subtilis strain with a gerD deletion mutation (Delta gerD) responded much slower than wild-type spores to nutrient germinants, although they did ultimately germinate, outgrow, and form colonies. Spores lacking GerD and nutrient germinant receptors also germinated slowly with nutrients, as did Delta gerD spores in which nutrient receptors were overexpressed. The germination defect of Delta gerD spores was not suppressed by many changes in the sporulation or germination conditions. Germination of Delta gerD spores was also slower than that of wild-type spores with a pressure of 150 MPa, which triggers spore germination through nutrient receptors. Ectopic expression of gerD suppressed the slow germination of Delta gerD spores with nutrients, but overexpression of GerD did not increase rates of spore germination. Loss of GerD had no effect on spore germination induced by agents that do not act through nutrient receptors, including a 1:1 chelate of Ca2+ and dipicolinic acid, dodecylamine, lysozyme in hypertonic medium, a pressure of 500 MPa, and spontaneous germination of spores that lack all nutrient receptors. Deletion of GerD's putative signal peptide or change of its likely diacylglycerylated cysteine residue to alanine reduced GerD function. The latter findings suggest that GerD is located in a spore membrane, most likely the inner membrane, where the nutrient receptors are located. All these data suggest that, while GerD is not essential for nutrient germination, this protein has an important role in spores' rapid response to nutrient germinants, by either direct interaction with nutrient receptors or some signal transduction essential for germination.  相似文献   

8.
Spores of Bacillus species can remain dormant and resistant for years, but can rapidly ‘come back to life’ in germination triggered by agents, such as specific nutrients, and non‐nutrients, such as CaDPA, dodecylamine and hydrostatic pressure. Major events in germination include release of spore core monovalent cations and CaDPA, hydrolysis of the spore cortex peptidoglycan (PG) and expansion of the spore core. This leads to a well‐hydrated spore protoplast in which metabolism and macromolecular synthesis begin. Proteins essential for germination include the GerP proteins that facilitate germinant access to spores' inner layers, germinant receptors (GRs) that recognize and respond to nutrient germinants, GerD important in rapid GR‐dependent germination, SpoVA proteins important in CaDPA release and cortex‐lytic enzymes that degrade cortex PG. Rates of germination of individuals in spore populations are heterogeneous, and methods have been developed recently to simultaneously analyse the germination of multiple individual spores. Spore germination heterogeneity is due primarily to large variations in GR levels among individual spores, with spores that germinate extremely slowly and termed superdormant having very low GR levels. These and other aspects of spore germination will be discussed in this review, and major unanswered questions will also be discussed.  相似文献   

9.
Bacillus subtilis spores that germinated poorly with saturating levels of nutrient germinants, termed superdormant spores, were separated from the great majority of dormant spore populations that germinated more rapidly. These purified superdormant spores (1.5 to 3% of spore populations) germinated extremely poorly with the germinants used to isolate them but better with germinants targeting germinant receptors not activated in superdormant spore isolation although not as well as the initial dormant spores. The level of β-galactosidase from a gerA-lacZ fusion in superdormant spores isolated by germination via the GerA germinant receptor was identical to that in the initial dormant spores. Levels of the germination proteins GerD and SpoVAD were also identical in dormant and superdormant spores. However, levels of subunits of a germinant receptor or germinant receptors activated in superdormant spore isolation were 6- to 10-fold lower than those in dormant spores, while levels of subunits of germinant receptors not activated in superdormant spore isolation were only ≤ 2-fold lower. These results indicate that (i) levels of β-galactosidase from lacZ fusions to operons encoding germinant receptors may not be an accurate reflection of actual germinant receptor levels in spores and (ii) a low level of a specific germinant receptor or germinant receptors is a major cause of spore superdormancy.  相似文献   

10.
Nutrient germination of spores of Bacillus species occurs through germinant receptors (GRs) in spores'' inner membrane (IM) in a process stimulated by sublethal heat activation. Bacillus subtilis spores maximum germination rates via different GRs required different 75°C heat activation times: 15 min for l-valine germination via the GerA GR and 4 h for germination with the l-asparagine–glucose–fructose–K+ mixture via the GerB and GerK GRs, with GerK requiring the most heat activation. In some cases, optimal heat activation decreased nutrient concentrations for half-maximal germination rates. Germination of spores via various GRs by high pressure (HP) of 150 MPa exhibited heat activation requirements similar to those of nutrient germination, and the loss of the GerD protein, required for optimal GR function, did not eliminate heat activation requirements for maximal germination rates. These results are consistent with heat activation acting primarily on GRs. However, (i) heat activation had no effects on GR or GerD protein conformation, as probed by biotinylation by an external reagent; (ii) spores prepared at low and high temperatures that affect spores'' IM properties exhibited large differences in heat activation requirements for nutrient germination; and (iii) spore germination by 550 MPa of HP was also affected by heat activation, but the effects were relatively GR independent. The last results are consistent with heat activation affecting spores'' IM and only indirectly affecting GRs. The 150- and 550-MPa HP germinations of Bacillus amyloliquefaciens spores, a potential surrogate for Clostridium botulinum spores in HP treatments of foods, were also stimulated by heat activation.  相似文献   

11.
Spore germination in Bacillus species represents an excellent model system with which to study the molecular mechanisms underlying the nutritional control of growth and development. Binding of specific chemical nutrients to their cognate receptors located in the spore inner membrane triggers the germination process that leads to a resumption of metabolism in spore outgrowth. Recent studies suggest that the inner membrane GerD lipoprotein plays a critical role in the receptor-mediated activation of downstream germination events. The 121-residue core polypeptide of GerD (GerD60-180) from Geobacillus stearothermophilus forms a stable α-helical trimer in aqueous solution. The 2.3-Å-resolution crystal structure of the trimer reveals a neatly twisted superhelical rope, with unusual supercoiling induced by parallel triple-helix interactions. The overall geometry comprises three interleaved hydrophobic screws of interacting helices linked by short turns that have not been seen before. Using complementation analysis in a series of Bacillus subtilis gerD mutants, we demonstrated that alterations in the GerD trimer structure have profound effects on nutrient germination. This important structure–function relationship of trimeric GerD is supported by our identification of a dominant negative gerD mutation in B. subtilis. These results and those of others lead us to propose that GerD mediates clustering of germination proteins in the inner membrane of dormant spores and thus promotes the rapid and cooperative germination response to nutrients.  相似文献   

12.
Deletion of Bacillus subtilis spores' GerA germinant receptor (GR) had no effect on spore germination via the GerB plus GerK GRs, and loss of GerB plus GerK did not affect germination via GerA. Loss of one or two GRs also did not affect levels of GRs that were not deleted. Overexpression of GRs 5- to 18-fold increased rates of germination via the overexpressed GR and slowed germination by other GRs up to 15-fold. However, overexpression of one or two GRs had no effect on levels of GRs that were not overexpressed. These results suggest that either interaction between different GRs reduces the activity of GRs in triggering spore germination or all GRs compete for interaction with a limiting amount of a downstream signaling molecule in the germination pathway. Overexpression or deletion of GRs also had no effect on spores' levels of the GerD protein needed for normal GR-dependent germination or of the SpoVAD protein likely involved in dipicolinic acid release early in germination. Loss of GerD also had no effect on levels of GRs or SpoVAD. Spores of a strain lacking the only B. subtilis prelipoprotein diacylglycerol transferase, GerF, also had no detectable GerD or the GerA's C subunit, both of which are most likely lipoproteins; GerA's A subunit was also absent. However, levels of GerB's C subunit, also almost certainly a lipoprotein, and GerK's A subunit were normal in gerF spores. These results with gerF spores were consistent with effects of loss of GerF on spore germination by different GRs.  相似文献   

13.
The Bacillus subtilis spoVAEa and spoVAF genes are expressed in developing spores as members of the spoVA operon, which encodes proteins essential for the uptake and release of dipicolinic acid (DPA) during spore formation and germination. SpoVAF is likely an integral inner spore membrane protein and exhibits sequence identity to A subunits of the spore''s nutrient germinant receptors (GRs), while SpoVAEa is a soluble protein with no obvious signals to allow its passage across a membrane. However, like SpoVAD, SpoVAEa is present on the outer surface of the spore''s inner membrane, as SpoVAEa was accessible to an external biotinylation agent in spores and SpoVAEa disappeared in parallel with SpoVAD during proteinase K treatment of germinated spores. SpoVAEa and SpoVAD were also distributed similarly in fractions of disrupted dormant spores. Unlike spoVAD, spoVAEa is absent from the genomes of some spore-forming members of the Bacillales and Clostridiales orders, although SpoVAEa''s amino acid sequence is conserved in species containing spoVAEa. B. subtilis strains lacking SpoVAF or SpoVAEa and SpoVAF sporulated normally, and the spores had normal DPA levels. Spores lacking SpoVAF or SpoVAEa and SpoVAF also germinated normally with non-GR-dependent germinants but more slowly than wild-type spores with GR-dependent germinants, and this germination defect was complemented by ectopic expression of the missing proteins.  相似文献   

14.
Highly conserved amino acid residues in the C subunits of the germinant receptors (GRs) of spores of Bacillus and Clostridium species have been identified by amino acid sequence comparisons, as well as structural predictions based on the high-resolution structure recently determined for the C subunit of the Bacillus subtilis GerB GR (GerBC). Single and multiple alanine substitutions were made in these conserved residues in three regions of GerBC, and the effects of these changes on B. subtilis spore germination via the GerB GR alone or in concert with the GerK GR, as well as on germination via the GerA GR, were determined. In addition, levels of the GerBC variants in the spore inner membrane were measured, and a number of the GerBC proteins were expressed and purified and their solubility and aggregation status were assessed. This work has done the following: (i) identified a number of conserved amino acids that are crucial for GerBC function in spore germination via the GerB GR and that do not alter spores' levels of these GerBC variants; (ii) identified other conserved GerBC amino acid essential for the proper folding of the protein and/or for assembly of GerBC in the spore inner membrane; (iii) shown that some alanine substitutions in GerBC significantly decrease the GerA GR's responsiveness to its germinant l-valine, consistent with there being some type of interaction between GerA and GerB GR subunits in spores; and (iv) found no alanine substitutions that specifically affect interaction between the GerB and GerK GRs.  相似文献   

15.
A major event in the nutrient germination of spores of Bacillus species is release of the spores'' large depot of dipicolinic acid (DPA). This event is preceded by both commitment, in which spores continue through germination even if germinants are removed, and loss of spore heat resistance. The latter event is puzzling, since spore heat resistance is due largely to core water content, which does not change until DPA is released during germination. We now find that for spores of two Bacillus species, the early loss in heat resistance during germination is most likely due to release of committed spores'' DPA at temperatures not lethal for dormant spores. Loss in spore acid resistance during germination also paralleled commitment and was also associated with the release of DPA from committed spores at acid concentrations not lethal for dormant spores. These observations plus previous findings that DPA release during germination is preceded by a significant release of spore core cations suggest that there is a significant change in spore inner membrane permeability at commitment. Presumably, this altered membrane cannot retain DPA during heat or acid treatments innocuous for dormant spores, resulting in DPA-less spores that are rapidly killed.  相似文献   

16.
As previously reported, gerP Bacillus subtilis spores were defective in nutrient germination triggered via various germinant receptors (GRs), and the defect was eliminated by severe spore coat defects. The gerP spores'' GR-dependent germination had a longer lag time between addition of germinants and initiation of rapid release of spores'' dipicolinic acid (DPA), but times for release of >90% of DPA from individual spores were identical for wild-type and gerP spores. The gerP spores were also defective in GR-independent germination by DPA with its associated Ca2+ divalent cation (CaDPA) but germinated better than wild-type spores with the GR-independent germinant dodecylamine. The gerP spores exhibited no increased sensitivity to hypochlorite, suggesting that these spores have no significant coat defect. Overexpression of GRs in gerP spores did lead to faster germination via the overexpressed GR, but this was still slower than germination of comparable gerP+ spores. Unlike wild-type spores, for which maximal nutrient germinant concentrations were between 500 μM and 2 mM for l-alanine and ≤10 mM for l-valine, rates of gerP spore germination increased up to between 200 mM and 1 M l-alanine and 100 mM l-valine, and at 1 M l-alanine, the rates of germination of wild-type and gerP spores with or without all alanine racemases were almost identical. A high pressure of 150 MPa that triggers spore germination by activating GRs also triggered germination of wild-type and gerP spores identically. All these results support the suggestion that GerP proteins facilitate access of nutrient germinants to their cognate GRs in spores'' inner membrane.  相似文献   

17.
Germination of dormant spores of Bacillus species is initiated when nutrient germinants bind to germinant receptors in spores’ inner membrane and this interaction triggers the release of dipicolinic acid and cations from the spore core and their replacement by water. Bacillus subtilis spores contain three functional germinant receptors encoded by the gerA, gerB, and gerK operons. The GerA germinant receptor alone triggers germination with L-valine or L-alanine, and the GerB and GerK germinant receptors together trigger germination with a mixture of L-asparagine, D-glucose, D-fructose and KCl (AGFK). Recently, it was reported that the B. subtilis gerW gene is expressed only during sporulation in developing spores, and that GerW is essential for L-alanine germination of B. subtilis spores but not for germination with AGFK. However, we now find that loss of the B. subtilis gerW gene had no significant effects on: i) rates of spore germination with L-alanine; ii) spores’ levels of germination proteins including GerA germinant receptor subunits; iii) AGFK germination; iv) spore germination by germinant receptor-independent pathways; and v) outgrowth of germinated spores. Studies in Bacillus megaterium did find that gerW was expressed in the developing spore during sporulation, and in a temperature-dependent manner. However, disruption of gerW again had no effect on the germination of B. megaterium spores, whether germination was triggered via germinant receptor-dependent or germinant receptor-independent pathways.  相似文献   

18.
The GerAA, -AB, and -AC proteins of the Bacillus subtilis spore are required for the germination response to L-alanine as the sole germinant. They are likely to encode the components of the germination apparatus that respond directly to this germinant, mediating the spore's response; multiple homologues of the gerA genes are found in every spore former so far examined. The gerA operon is expressed in the forespore, and the level of expression of the operon appears to be low. The GerA proteins are predicted to be membrane associated. In an attempt to localize GerA proteins, spores of B. subtilis were broken and fractionated to give integument, membrane, and soluble fractions. Using antibodies that detect Ger proteins specifically, as confirmed by the analysis of strains lacking GerA and the related GerB proteins, the GerAA protein and the GerAC+GerBC protein homologues were localized to the membrane fraction of fragmented spores. The spore-specific penicillin-binding protein PBP5*, a marker for the outer forespore membrane, was absent from this fraction. Extraction of spores to remove coat layers did not release the GerAC or AA protein from the spores. Both experimental approaches suggest that GerAA and GerAC proteins are located in the inner spore membrane, which forms a boundary around the cellular compartment of the spore. The results provide support for a model of germination in which, in order to initiate germination, germinant has to permeate the coat and cortex of the spore and bind to a germination receptor located in the inner membrane.  相似文献   

19.
Clostridium botulinum dormant spores germinate in presence of l-alanine via a specific receptor composed of GerAA, GerAB and GerAC proteins. In Bacillus subtilis spores, GerAA and GerAC proteins were located in the inner membrane of the spore. We studied the location of the GerAB protein in C. botulinum spore fractions by Western-blot analysis, using an antipeptidic antibody. The protein GerAB was in vitro translated and used to confirm the specificity of the antibodies. GerAB was not present in a coat and spore outer membrane fraction but was present in a fraction of decoated spores containing inner membrane. These results strongly suggest that the protein GerAB is located in the inner membrane of the spore.  相似文献   

20.
Aim: To analyse the dynamic germination of hundreds of individual superdormant (SD) Bacillus subtilis spores. Methods and Results: Germination of hundreds of individual SD B. subtilis spores with various germinants and under different conditions was followed by multifocus Raman microspectroscopy and differential interference contrast microscopy for 12 h and with temporal resolutions of ≤30 s. SD spores germinated poorly with the nutrient germinant used to isolate them and with alternate germinants targeting the germinant receptor (GR) used originally. The mean times following mixing of spores and nutrient germinants to initiate and complete fast release of Ca‐dipicolinic acid (CaDPA) (Tlag and Trelease times, respectively) of SD spores were much longer than those of dormant spores. However, the ΔTrelease times (Trelease?Tlag) of SD spores were essentially identical to those of dormant spores. SD spores germinated almost as well as dormant spores with nutrient germinants targeting GRs different from the one used to isolate the SD spores and with CaDPA that does not trigger spore germination via GRs. Conclusions: Since (i) ΔTrelease times were essentially identical in GR‐dependent germination of SD and dormant spores; (ii) rates of GR‐independent germination of SD and dormant spores were identical; (iii) large increases in Tlag times were the major difference in the GR‐dependent germination of SD as compared with spores; and (iv) higher GR levels are correlated with shorter Tlag times, these results are consistent with the hypothesis that low levels of a GR are the major reason that some spores in a population are SD with germinants targeting this same GR. Significance and Impact of the Study: This study provides information on the dynamic germination of individual SD spores and improves the understanding of spore superdormancy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号