首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 674 毫秒
1.
局域种群的Allee效应和集合种群的同步性   总被引:3,自引:0,他引:3  
从包含Allee效应的局域种群出发,建立了耦合映像格子模型,即集合种群模型.通过分析和计算机模拟表明:(1)当局域种群受到Allee效应强度较大时,集合种群同步灭绝;(2)而当Allee效应强度相对较弱时,通过稳定局域种群动态(减少混沌)使得集合种群发生同步波动,而这种同步波动能够增加集合种群的灭绝风险;(3)斑块间的连接程度对集合种群同步波动的发生有很大的影响,适当的破碎化有利于集合种群的续存.全局迁移和Allee效应结合起来增加了集合种群同步波动的可能,从而增加集合种群的灭绝风险.这些结果对理解同步性的机理、利用同步机理来制定物种保护策略和害虫防治都有重要的意义.  相似文献   

2.
Genetic data are often used to assess ‘population connectivity’ because it is difficult to measure dispersal directly at large spatial scales. Genetic connectivity, however, depends primarily on the absolute number of dispersers among populations, whereas demographic connectivity depends on the relative contributions to population growth rates of dispersal vs. local recruitment (i.e. survival and reproduction of residents). Although many questions are best answered with data on genetic connectivity, genetic data alone provide little information on demographic connectivity. The importance of demographic connectivity is clear when the elimination of immigration results in a shift from stable or positive population growth to negative population growth. Otherwise, the amount of dispersal required for demographic connectivity depends on the context (e.g. conservation or harvest management), and even high dispersal rates may not indicate demographic interdependence. Therefore, it is risky to infer the importance of demographic connectivity without information on local demographic rates and how those rates vary over time. Genetic methods can provide insight on demographic connectivity when combined with these local demographic rates, data on movement behaviour, or estimates of reproductive success of immigrants and residents. We also consider the strengths and limitations of genetic measures of connectivity and discuss three concepts of genetic connectivity that depend upon the evolutionary criteria of interest: inbreeding connectivity, drift connectivity, and adaptive connectivity. To conclude, we describe alternative approaches for assessing population connectivity, highlighting the value of combining genetic data with capture‐mark‐recapture methods or other direct measures of movement to elucidate the complex role of dispersal in natural populations.  相似文献   

3.
The question of how dispersal behavior is adaptive and how it responds to changes in selection pressure is more relevant than ever, as anthropogenic habitat alteration and climate change accelerate around the world. In metapopulation models where local populations are large, and thus local population size is measured in densities, density-dependent dispersal is expected to evolve to a single-threshold strategy, in which individuals stay in patches with local population density smaller than a threshold value and move immediately away from patches with local population density larger than the threshold. Fragmentation tends to convert continuous populations into metapopulations and also to decrease local population sizes. Therefore we analyze a metapopulation model, where each patch can support only a relatively small local population and thus experience demographic stochasticity. We investigated the evolution of density-dependent dispersal, emigration and immigration, in two scenarios: adult and natal dispersal. We show that density-dependent emigration can also evolve to a nonmonotone, “triple-threshold” strategy. This interesting phenomenon results from an interplay between the direct and indirect benefits of dispersal and the costs of dispersal. We also found that, compared to juveniles, dispersing adults may benefit more from density-dependent vs. density-independent dispersal strategies.  相似文献   

4.
The development of parentage analysis to track the dispersal of juvenile offspring has given us unprecedented insight into the population dynamics of coral reef fishes. These tools now have the potential to inform fisheries management and species conservation, particularly for small fragmented populations under threat from exploitation and disturbance. In this study, we resolve patterns of larval dispersal for a population of the anemonefish Amphiprion melanopus in the Keppel Islands (southern Great Barrier Reef). Habitat loss and fishing appear to have impacted this population and a network of no‐take marine reserves currently protects 75% of the potential breeders. Using parentage analysis, we estimate that 21% of recruitment in the island group was generated locally and that breeding adults living in reserves were responsible for 79% (31 of 39) of these of locally produced juveniles. Overall, the network of reserves was fully connected via larval dispersal; however, one reserve was identified as a critical source of larvae for the island group. The population in the Keppel Islands also appears to be well‐connected to other source populations at least 60 km away, given that 79% (145 of 184) of the juveniles sampled remained unassigned in the parentage analysis. We estimated the effective size of the A. melanopus metapopulation to be 745 (582–993 95% CI) and recommend continued monitoring of its genetic status. Maintaining connectivity with populations beyond the Keppel Islands and recovery of local recruitment habitat, potentially through active restoration of host anemone populations, will be important for its long‐term persistence.  相似文献   

5.

Background and Aims

Populations of many epiphytes show a patchy distribution where clusters of plants growing on individual trees are spatially separated and may thus function as metapopulations. Seed dispersal is necessary to (re)colonize unoccupied habitats, and to transfer seeds from high- to low-competition patches. Increasing dispersal distances, however, reduces local fecundity and the probability that seeds will find a safe site outside the original patch. Thus, there is a conflict between seed survival and colonization.

Methods

Populations of three epiphytic orchids were monitored over three years in a Mexican humid montane forest and analysed with spatially averaged and with spatially explicit matrix metapopulation models. In the latter, population dynamics at the scale of the subpopulations (epiphytes on individual host trees) are based on detailed stage-structured observations of transition probabilities and trees are connected by a dispersal function.

Key Results

Population growth rates differed among trees and years. While ignoring these differences, and averaging the population matrices over trees, yields negative population growth, metapopulation models predict stable or growing populations because the trees that support growing subpopulations determine the growth of the metapopulation. Stochastic models which account for the differences among years differed only marginally from deterministic models. Population growth rates were significantly lower, and extinctions of local patches more frequent in models where higher dispersal results in reduced local fecundity compared with hypothetical models where this is not the case. The difference between the two models increased with increasing mean dispersal distance. Though recolonization events increased with dispersal distance, this could not compensate the losses due to reduced local fecundity.

Conclusions

For epiphytes, metapopulation models are useful to capture processes beyond the level of the single host tree, but local processes are equally important to understand epiphyte population dynamics.  相似文献   

6.
Species associated with transient habitats need efficient dispersal strategies to ensure their regional survival. Using a spatially explicit metapopulation model, we studied the effect of the dispersal range on the persistence of a metapopulation as a function of the local population and landscape dynamics (including habitat patch destruction and subsequent regeneration). Our results show that the impact of the dispersal range depends on both the local population and patch growth. This is due to interactions between dispersal and the dynamics of patches and populations via the number of potential dispersers. In general, long-range dispersal had a positive effect on persistence in a dynamic landscape compared to short-range dispersal. Long-range dispersal increases the number of couplings between the patches and thus the colonisation of regenerated patches. However, long-range dispersal lost its advantage for long-term persistence when the number of potential dispersers was low due to small population growth rates and/or small patch growth rates. Its advantage also disappeared with complex local population dynamics and in a landscape with clumped patch distribution.  相似文献   

7.
《Acta Oecologica》2007,31(1):60-68
Habitat destruction and fragmentation severely affected the Atlantic Forest. Formerly contiguous populations may become subdivided into a larger number of smaller populations, threatening their long-term persistence. The computer package VORTEX was used to simulate the consequences of habitat fragmentation and population subdivision on Micoureus paraguayanus, an endemic arboreal marsupial of the Atlantic Forest. Scenarios simulated hypothetical populations of 100 and 2000 animals being partitioned into 1–10 populations, linked by varying rates of inter-patch dispersal, and also evaluated male-biased dispersal. Results demonstrated that a single population was more stable than an ensemble of populations of equal size, irrespective of dispersal rate. Small populations (10–20 individuals) exhibited high instability due to demographic stochasticity, and were characterized by high rates of extinction, smaller values for metapopulation growth and larger fluctuations in population size and growth rate. Dispersal effects on metapopulation persistence were related to the size of the populations and to the sexes that were capable of dispersing. Male-biased dispersal had no noticeable effects on metapopulation extinction dynamics, whereas scenarios modelling dispersal by both sexes positively affected metapopulation dynamics through higher growth rates, smaller fluctuations in growth rate, larger final metapopulation sizes and lower probabilities of extinction. The present study highlights the complex relationships between metapopulation size, population subdivision, habitat fragmentation, rate of inter-patch dispersal and sex-biased dispersal and indicates the importance of gaining a better understanding of dispersal and its interactions with correlations between disturbance events.  相似文献   

8.
Connectivity, the demographic linking of local populations through the dispersal of individuals, is one of the most poorly understood processes in population dynamics, yet has profound implications for conservation and harvest strategies. For marine species with pelagic larvae, direct estimation of connectivity remains logistically challenging and has mostly been limited to single snapshots in time. Here, we document seasonal and interannual patterns of larval dispersal in a metapopulation of the coral reef fish Amphiprion polymnus. A 3‐year record of larval trajectories within and among nine discrete local populations from an area of approximately 35 km was established by determining the natal origin of settled juveniles through DNA parentage analysis. We found that spatial patterns of both self‐recruitment and connectivity were remarkably consistent over time, with a low level of self‐recruitment at the scale of individual sites. Connectivity among sites was common and multidirectional in all years and was not significantly influenced by seasonal variability of predominant surface current directions. However, approximately 75% of the sampled juveniles could not be assigned to parents within the study area, indicating high levels of immigrations from sources outside the study area. The data support predictions that the magnitude and temporal stability of larval connectivity decreases significantly with increasing distance between subpopulations, but increases with the size of subpopulations. Given the considerable effort needed to directly measure larval exchange, the consistent patterns suggest snapshot parentage analyses can provide useful dispersal estimates to inform spatial management decisions.  相似文献   

9.
We consider optimal strategies for harvesting a population that is composed of two local populations. The local populations are connected by the dispersal of juveniles, e.g. larvae, and together form a metapopulation. We model the metapopulation dynamics using coupled difference equations. Dynamic programming is used to determine policies for exploitation that are economically optimal. The metapopulation harvesting theory is applied to a hypothetical fishery and optimal strategies are compared to harvesting strategies that assume the metapopulation is composed either of single unconnected populations or of one well-mixed population. Local populations that have high per capita larval production should be more conservatively harvested than would be predicted using conventional theory. Recognizing the metapopulation structure of a stock and using the appropriate theory can significantly improve economic gains.  相似文献   

10.
Transgenes may spread from crops into the environment via the establishment of feral populations, often initiated by seed spill from transport lorries or farm machinery. Locally, such populations are often subject to large environmental variability and usually do not persist longer than a few years. Because secondary feral populations may arise from seed dispersal to adjacent sites, the dynamics of such populations should be studied in a metapopulation context. We study a structured metapopulation model with local dispersal, mimicking a string of roadside subpopulations of a feral crop. Population growth is assumed to be subject to local disturbances, introducing spatially random environmental stochasticity. Our aim is to understand the role of dispersal and environmental variability in the dynamics of such ephemeral populations. We determine the effect of dispersal on the extinction boundary and on the distribution of persistence times, and investigate the influence of spatially correlated disturbances as opposed to spatially random disturbances. We find that, given spatially random disturbances, dispersal slows down the decline of the metapopulation and results in the occurrence of long-lasting local populations which remain more or less static in space. We identify which life history traits, if changed by genetic modification, have the largest impact on the population growth rate and persistence times. For oilseed rape, these are seed bank survival and dormancy. Combining our findings with literature data on transgene-induced life history changes, we predict that persistence is promoted by transgenes for oil-modifications (high stearate or high laurate) and, possibly, for insect resistence (Bt). Transgenic tolerance to glufosinate herbicide is predicted to reduce persistence.  相似文献   

11.
Metapopulation extinction risk is the probability that all local populations are simultaneously extinct during a fixed time frame. Dispersal may reduce a metapopulation’s extinction risk by raising its average per-capita growth rate. By contrast, dispersal may raise a metapopulation’s extinction risk by reducing its average population density. Which effect prevails is controlled by habitat fragmentation. Dispersal in mildly fragmented habitat reduces a metapopulation’s extinction risk by raising its average per-capita growth rate without causing any appreciable drop in its average population density. By contrast, dispersal in severely fragmented habitat raises a metapopulation’s extinction risk because the rise in its average per-capita growth rate is more than offset by the decline in its average population density. The metapopulation model used here shows several other interesting phenomena. Dispersal in sufficiently fragmented habitat reduces a metapopulation’s extinction risk to that of a constant environment. Dispersal between habitat fragments reduces a metapopulation’s extinction risk insofar as local environments are asynchronous. Grouped dispersal raises the effective habitat fragmentation level. Dispersal search barriers raise metapopulation extinction risk. Nonuniform dispersal may reduce the effective fraction of suitable habitat fragments below the extinction threshold. Nonuniform dispersal may make demographic stochasticity a more potent metapopulation extinction force than environmental stochasticity.  相似文献   

12.
Dispersal comprises a complex life-history syndrome that influences the demographic dynamics of especially those species that live in fragmented landscapes, the structure of which may in turn be expected to impose selection on dispersal. We have constructed an individual-based evolutionary sexual model of dispersal for species occurring as metapopulations in habitat patch networks. The model assumes correlated random walk dispersal with edge-mediated behaviour (habitat selection) and spatially correlated stochastic local dynamics. The model is parametrized with extensive data for the Glanville fritillary butterfly. Based on empirical results for a single nucleotide polymorphism (SNP) in the phosphoglucose isomerase (Pgi) gene, we assume that dispersal rate in the landscape matrix, fecundity and survival are affected by a locus with two alleles, A and C, individuals with the C allele being more mobile. The model was successfully tested with two independent empirical datasets on spatial variation in Pgi allele frequency. First, at the level of local populations, the frequency of the C allele is the highest in newly established isolated populations and the lowest in old isolated populations. Second, at the level of sub-networks with dissimilar numbers and connectivities of patches, the frequency of C increases with decreasing network size and hence with decreasing average metapopulation size. The frequency of C is the highest in landscapes where local extinction risk is high and where there are abundant opportunities to establish new populations. Our results indicate that the strength of the coupling of the ecological and evolutionary dynamics depends on the spatial scale and is asymmetric, demographic dynamics having a greater immediate impact on genetic dynamics than vice versa.  相似文献   

13.
Munguia P  Mackie C  Levitan DR 《Oecologia》2007,153(3):533-541
In metapopulations, the maintenance of local populations can depend on source–sink dynamics, where populations with positive growth rate seed populations with negative growth rate. The pattern and probability of successful dispersal among habitats can therefore be crucial in determining whether local populations will become rare or increase in abundance. We present here data on the dispersal strategy and population dynamics of three marine amphipods living in pen shells (Atrina rigida) in the Gulf of Mexico. The three amphipod species in this study disperse at different life stages. Neomegamphopus hiatus and Melita nitida disperse as adults, while Bemlos unicornis disperses as juveniles. The two species that disperse as adults have the highest initial population sizes when a new shell becomes available, likely caused by the arriving females releasing their brood into these recently occupied shells. This dispersal pattern results in initially higher population growth, but fewer occupied shells, as noted by their clumped distribution. In contrast, the species that disperses as juveniles accumulates more slowly and more evenly across habitats, eventually dominating the other two in terms of numerical abundance. The metapopulation dynamics of the three species seems to be highly dependent on the life history stage involved in dispersal. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
Fragmentation can strongly influence population persistence and expression of life-history strategies in spatially-structured populations. In this study, we directly estimated size-specific dispersal, growth, and survival of stream-dwelling brook trout in a stream network with connected and naturally-isolated tributaries. We used multiple-generation, individual-based data to develop and parameterize a size-class and location-based population projection model, allowing us to test effects of fragmentation on population dynamics at local (i.e., subpopulation) and system-wide (i.e., metapopulation) scales, and to identify demographic rates which influence the persistence of isolated and fragmented populations. In the naturally-isolated tributary, persistence was associated with higher early juvenile survival ( approximately 45% greater), shorter generation time (one-half) and strong selection against large body size compared to the open system, resulting in a stage-distribution skewed towards younger, smaller fish. Simulating barriers to upstream migration into two currently-connected tributary populations caused rapid (2-6 generations) local extinction. These local extinctions in turn increased the likelihood of system-wide extinction, as tributaries could no longer function as population sources. Extinction could be prevented in the open system if sufficient immigrants from downstream areas were available, but the influx of individuals necessary to counteract fragmentation effects was high (7-46% of the total population annually). In the absence of sufficient immigration, a demographic change (higher early survival characteristic of the isolated tributary) was also sufficient to rescue the population from fragmentation, suggesting that the observed differences in size distributions between the naturally-isolated and open system may reflect an evolutionary response to isolation. Combined with strong genetic divergence between the isolated tributary and open system, these results suggest that local adaptation can 'rescue' isolated populations, particularly in one-dimensional stream networks where both natural and anthropogenically-mediated isolation is common. However, whether rescue will occur before extinction depends critically on the race between adaptation and reduced survival in response to fragmentation.  相似文献   

15.
Theoretical models about the benefits of philopatry predict that immigrant fitness can be higher, lower or similar to that of philopatrics depending on habitat heterogeneity, dispersal costs, distance between patches or population densities. In this study, we compared transience rates, local survival and recruitment among philopatric and immigrant individuals of Audouin’s gull Larus audouinii, a long-lived bird with high dispersal capacities. Several previous studies have shown that these capacities were probably the result of adaptation to unstable and highly discrete habitats; hence, we tested the hypothesis that fitness components for philopatrics and immigrants were similar. During 1988–2006, ca. 27,800 chicks were marked in 31 colonies in the western Mediterranean metapopulation, and more than 52,000 resightings were made in a single, high-quality colony, to estimate local demographic parameters by capture–recapture analyses. Results suggest that, even though parameters related to site-tenacity (e.g. recapture rates) were higher for philopatrics than for immigrants, survival and recruitment were fundamentally similar. Small differences between philopatrics and immigrants were probably influenced by a highly suitable habitat at the study site, which reduced dispersal costs for immigrants; furthermore, the similarities in most fitness components were also probably the result of a life-history strategy of a species living in unpredictable, unstable habitats with high emigration rates among local populations, and with a relatively low cost of dispersal.  相似文献   

16.
Abstract 1. Despite widespread acceptance of metapopulation theory, the effects that inter-patch dispersal and variability in patch size have on metapopulation dynamics in insects are two issues that require further study. In addition, previous studies of metapopulations have tended to focus on organisms with high dispersal capabilities such as some species of butterfly and bird.
2. Mountain stone weta Hemideina maori are a long-lived, flightless orthopteran that live on island rock outcrops or tors in the alpine region of southern New Zealand. A total of 480 adults and 789 juveniles was marked over three seasons on four large and 14 small tors to assess the effects of habitat fragmentation on the population dynamics of H. maori .
3. Only 12 adults (2.5% of marked adults and 4.0% of recaptured adults) and two juveniles (0.3% of marked juveniles and 0.7% of recaptured juveniles) dispersed between tors. The mean dispersal distance was 361 m (range = 36–672 m). Larger tors supported larger populations and had a higher number of emigrants and immigrants while smaller tors had proportionally higher emigration and immigration rates. Although adults on large and small tors had similar mean lifespans, five extinction events and three recolonisation events occurred during the study period, all on small tors.
4. Hemideina maori conform to many of the predictions of metapopulation theory even though they are flightless, show relatively low dispersal rates, and occur at low densities. Extinction and colonisation events are more common on small tors but may be relatively unimportant for the long-term survival of the metapopulation because they occur on the smallest habitat patches, which support the smallest proportion of the overall population.  相似文献   

17.
We investigate how age-structure and differences in certain demographic traits between residents and immigrants of a single species act to determine the evolutionarily stable dispersal strategy in a two-patch environment that is heterogeneous in space but constant in time. These two factors have been neglected in previous models of the evolution of dispersal, which generally consider organisms with very simple life-cycles and assume that, whatever their origin, individuals in a given habitat have the same bio-demographic characteristics. However, there is increasing empirical evidence that dispersing individuals have different demographic properties from phylopatric ones. We develop a matrix model in which recruitment depends on local population densities. We assume that dispersal entails a proportional cost to immigrant fecundity, which can be compensated by differences in survival rates between immigrants and residents. The evolutionarily stable strategies (ESS) for dispersal are identified using a combination of analytical expressions and numerical simulations. Our results show that philopatry is selected (1) when dispersal rates do not vary in space, (2) when the metapopulation is a source-sink system and (3) when dispersal rates vary in space (asymmetric dispersal) and immigrants do not compensate for their reduced fecundity. We observe that non-zero asymmetric dispersal rates may be evolutionarily stable when (1) immigrants and residents are demographically alike and (2) immigrants compensate totally for their reduced fecundity through an increase in adult survival. Under these conditions, we find that the ESS occurs when the fitnesses at equilibrium in the two habitats, measured in our model by the realized reproductive rates, are each equal to unity. A comparison with previous studies suggests a unifying rule for the evolution of dispersal: the dispersal rates which permit the spatial homogenization of fitnesses are ESSs. This condition provides new insight into the evolutionary stability of source-sink systems. It also supports the hypothesis that immigrants have adapted demographic strategies, rather than the hypothesis that dispersal is costly and immigrants are at a disavantage compared with residents.  相似文献   

18.
Continuous colonization and re-colonization is critical for survival of insect species living in temporary habitats. When insect populations in temporary habitats are depleted, some species may escape extinction by surviving in permanent, but less suitable habitats, in which long-term population survival can be maintained only by immigration from other populations. Such situation has been repeatedly described in nature, but conditions when and how this occurs and how important this phenomenon is for insect metapopulation survival are still poorly known, mainly because it is difficult to study experimentally. Therefore, we used a simulation model to investigate, how environmental stochasticity, growth rate and the incidence of dispersal affect the positive effect of permanent but poor (“sink”) habitats on the likelihood of metapopulation persistence in a network of high quality but temporary (“source”) habitats. This model revealed that permanent habitats substantially increase the probability of metapopulation persistence of insect species with poor dispersal ability if the availability of temporary habitats is spatio-temporally synchronized. Addition of permanent habitats to a system sometimes enabled metapopulation persistence even in cases in which the metapopulation would otherwise go extinct, especially for species with high growth rates. For insect species with low growth rates the probability of a metapopulation persistence strongly depended on the proportions of “source” to “source” and “sink” to “source” dispersal rates.  相似文献   

19.
Dispersal evolution impacts the fluxes of individuals and hence, connectivity in metapopulations. Connectivity is therefore decoupled from the structural connectedness of the patches within the spatial network. Because of demographic feedbacks, local selection also drives the evolution of other life history traits. We investigated how different levels of connectedness affect trait evolution in experimental metapopulations of the two‐spotted spider mite. We separated local‐ and metapopulation‐level selection and linked trait divergence to population dynamics. With lower connectedness, an increased starvation resistance and delayed dispersal evolved. Reproductive performance evolved locally by transgenerational plasticity or epigenetic processes. Costs of dispersal, but also changes in local densities and temporal fluctuations herein are found to be putative drivers. In addition to dispersal, demographic traits are able to evolve in response to metapopulation connectedness at both the local and metapopulation level by genetic and/or non‐genetic inheritance. These trait changes impact the persistence of spatially structured populations.  相似文献   

20.
There is currently a poor understanding of the nature and extent of long-distance seed dispersal, largely due to the inherent difficulty of detection. New statistical approaches and molecular markers offer the potential to accurately address this issue. A log-likelihood population allocation test (AFLPOP) was applied to a plant metapopulation to characterize interpopulation seed dispersal. Banksia hookeriana is a fire-killed shrub, restricted to sandy dune crests in fire-prone shrublands of the Eneabba sandplain, southwest Australia. Population genetic variation was assessed for 221 individuals sampled from 21 adjacent dune-crest populations of B. hookeriana using amplified fragment length polymorphism. Genetic diversity was high, with 175 of 183 (96%) amplified fragment length polymorphism markers polymorphic. Of the total genetic diversity, 8% was partitioned among populations by amova and FST. There was no relationship between genetic diversity within populations and population demographic parameters such as population size and sample size. A population allocation test on these data unambiguously assigned 177 of 221 (80.1%) individuals to a single population. Of these, 171 (77.4% of total) were assigned to the population from which they were sampled and 6 (2.7% of total) were assigned to a known population other than the one from which they were sampled. A further 9 (4.1% of total) were assigned to outside the sampled metapopulation area, and 35 individuals (15.8%) could not be assigned unambiguously to any particular population. These results suggest that both the extent [15 of 221 (6.8%) individuals originating from a population other than the one in which they occur] and distance (1.6 to > 2.5 km), of seed dispersal between dune-crest populations is greater than expected from previous studies. The extent of long-distance interpopulation seed dispersal observed provides a basis for explaining the survival of populations of the fire-killed B. hookeriana in a landscape experiencing frequent fire, where local extinctions and recolonizations may be a regular occurrence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号