首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction   总被引:42,自引:0,他引:42  
TLR4 is a member of the recently identified Toll-like receptor family of proteins and has been putatively identified as Lps, the gene necessary for potent responses to lipopolysaccharide in mammals. In order to determine whether TLR4 is involved in lipopolysaccharide-induced activation of the nuclear factor-kappaB (NF-kappaB) pathway, HEK 293 cells were transiently transfected with human TLR4 cDNA and an NF-kappaB-dependent luciferase reporter plasmid followed by stimulation with lipopolysaccharide/CD14 complexes. The results demonstrate that lipopolysaccharide stimulates NF-kappaB-mediated gene expression in cells transfected with the TLR4 gene in a dose- and time-dependent fashion. Furthermore, E5531, a lipopolysaccharide antagonist, blocked TLR4-mediated transgene activation in a dose-dependent manner (IC50 approximately 30 nM). These data demonstrate that TLR4 is involved in lipopolysaccharide signaling and serves as a cell-surface co-receptor for CD14, leading to lipopolysaccharide-mediated NF-kappaB activation and subsequent cellular events.  相似文献   

2.
The interaction of endogenous and exogenous stimulators of innate immunity was examined in primary cultures of mouse microglial cells and macrophages after application of defined Toll-like receptor (TLR) agonists [lipopolysaccharide (LPS) (TLR4), the synthetic lipopeptide Pam3Cys-Ser-Lys4 (Pam3Cys) (TLR2) and single-stranded unmethylated CpG-DNA (CpG) (TLR9)] alone and in combination with amyloid beta peptide (Abeta) 1-40. Abeta1-40 stimulated microglial cells and macrophages primed by interferon-gamma in a dose-dependent manner. Co-administration of Abeta1-40 with LPS or Pam3Cys led to an additive release of nitric oxide (NO) and tumour necrosis factor alpha (TNF-alpha). This may be one reason for the clinical deterioration frequently observed in patients with Alzheimer's disease during infections. In contrast, co-application of Abeta1-40 with CpG led to a substantial decrease of NO and TNF-alpha release compared with stimulation with CpG alone. Abeta1-40 and CpG did not co-localize within the same subcellular compartment, making a direct physicochemical interaction as the cause of the observed antagonism very unlikely. This suggests that not all TLR agonists enhance the stimulatory effect of A beta on innate immunity.  相似文献   

3.
Central nervous system (CNS) infection and inflammation severely reduce the capacity of cytochrome P-450 metabolism in the liver. We developed a mouse model to examine the effects of CNS inflammation on hepatic cytochrome P-450 metabolism. FVB, C57BL/6, and C3H/HeouJ mice were given Escherichia coli LPS (2.5 microg) by intracerebroventricular (ICV) injection. The CNS inflammatory response was confirmed by the elevation of TNF-alpha and/or IL-1beta proteins in the brain. In all mouse strains, LPS produced a 60-70% loss in hepatic Cyp3a11 expression and activity compared with saline-injected controls. Adrenalectomy did not prevent the loss in Cyp3a11 expression or activity, thereby precluding the involvement of the hypothalamic-adrenal-pituitary axis. Endotoxin was detectable (1-10 ng/ml) in serum between 15 and 120 min after ICV dosing of 2.5 microg LPS. Peripheral administration of 2.5 microg LPS by intraperitoneal injection produced similar serum endotoxin levels and a similar loss (60%) in Cyp3a11 expression and activity in the liver. The loss of Cyp3a11 in response to centrally or peripherally administered LPS could not be evoked in Toll-like receptor-4 (TLR4)-mutant (C3H/HeJ) mice, indicating that TLR4 signaling pathways are directly involved in the enzyme loss. In summary, we conclude that LPS is transferred from the brain to the circulation in significant quantities in a model of CNS infection or inflammation. Subsequently, LPS that has reached the circulation stimulates a TLR4-dependent mechanism in the periphery, evoking a reduction in Cyp3a11 expression and metabolism in the liver.  相似文献   

4.
The roles of Toll-like receptor (TLR) 2 and TLR4 in the host inflammatory response to infection caused by Chlamydia trachomatis have not been elucidated. We examined production of TNF-alpha and IL-6 in wild-type TLR2 knockout (KO), and TLR4 KO murine peritoneal macrophages infected with the mouse pneumonitis strain of C. trachomatis. Furthermore, we compared the outcomes of genital tract infection in control, TLR2 KO, and TLR4 KO mice. Macrophages lacking TLR2 produced significantly less TNF-alpha and IL6 in response to active infection. In contrast, macrophages from TLR4 KO mice consistently produced higher TNF-alpha and IL-6 responses than those from normal mice on in vitro infection. Infected TLR2-deficient fibroblasts had less mRNA for IL-1, IL-6, and macrophage-inflammatory protein-2, but TLR4-deficient cells had increased mRNA levels for these cytokines compared with controls, suggesting that ligation of TLR4 by whole chlamydiae may down-modulate signaling by other TLRs. In TLR2 KO mice, although the course of genital tract infection was not different from that of controls, significantly lower levels of TNF-alpha and macrophage-inflammatory protein-2 were detected in genital tract secretions during the first week of infection, and there was a significant reduction in oviduct and mesosalpinx pathology at late time points. TLR4 KO mice responded to in vivo infection similarly to wild-type controls and developed similar pathology. TLR2 is an important mediator in the innate immune response to C. trachomatis infection and appears to play a role in both early production of inflammatory mediators and development of chronic inflammatory pathology.  相似文献   

5.

Background

It is now evident that inflammation after vascular injury has significant impact on the restenosis after revascularization procedures such as angioplasty, stenting, and bypass grafting. However, the mechanisms that regulate inflammation and repair after vascular injury are incompletely understood. Here, we report that vascular injury-mediated cytokine expression, reactive oxygen species (ROS) production, as well as subsequent neointimal formation requires Toll-like receptor-2 (TLR-2) mediated signaling pathway in vivo.

Methods and results

Vascular injury was induced by cuff-placement around the femoral artery in non-transgenic littermates (NLC) and TLR-2 knockout (TLR-2KO) mice. After cuff-placement in NLC mice, expression of TLR-2 was significantly increased in both smooth muscle medial layer and adventitia. Interestingly, we found that inflammatory genes expression such as tumor necrosis factor-α, interleukin-1β (IL-1β), IL-6, and monocyte chemoattractant protein-1 were markedly decreased in TLR-2KO mice compared with NLC mice. In addition, ROS production after vascular injury was attenuated in TLR-2KO mice compared with NLC mice. Since we observed the significant role of endogenous TLR-2 activation in regulating inflammatory responses and ROS production after vascular injury, we determined whether inhibition of endogenous TLR-2 activation can inhibit neointimal proliferation after vascular injury. Neointimal hyperplasia was markedly suppressed in TLR-2KO mice compared with WT mice at both 2 and 4 weeks after vascular injury.

Conclusions

These findings suggested that endogenous TLR-2 activation might play a central role in the regulation of vascular inflammation as well as subsequent neointimal formation in injured vessels.  相似文献   

6.
Nephrotic syndrome (NS) is a kidney disease predominantly present in children with idiopathic condition; final stage of the disease progresses into end-stage renal disease. Generally, NS is treated using standard steroid therapy, however; most of the children are steroid sensitive and about 15–20% are non-responders (SRNS). Non-responsiveness of these children would be a risk with the possibility of mutational changes in podocyte genes (NPHS1, NPHS2, WT1, PLCE1). The mutation in podocyte genes is associated with SRNS. NPHS1, NPHS2, and WT1 genes are identified/directly linked to SRNS. The present study is a surveillance on the mutation analysis of WT1 (exons 8 and 9) and NPHS2 (exons 1–8) gene in SRNS followed by clinical management. In the present study, we analyzed these two genes in a total of 117 SRNS (73 boys and 44 girls) children. A total of five mutations were detected in six children. First, WT1 mutation was detected at 9th intron-IVS 9 + 4C > T position in one SRNS female patient. This WT1 mutation was identified in a girl having Frasier Syndrome (FS) with focal segmental glomerulosclerosis and a complete sex reversal found through molecular and karyological screening. In NPHS2, missense mutations of P20L (in two children), P316S, and p.R229Q, and a frame shift mutation of 42delG were detected. Thus, applying molecular investigation helped us to decide on treatment plan of SRNS patients, mainly to avoid unnecessary immunosuppressive treatment.  相似文献   

7.
Toll-like receptor-4 (TLR4) is a pattern-recognition receptor not only for exogenous ligands such as lipopolysaccharide (LPS) of Gram-negative bacteria, but also for endogenous ligands such as fibronectin, heat shock proteins and hyaluronan oligosaccharides. The Asp299Gly allele of the TLR4 gene has been associated with increased risk for severe infections, but reduced progression of atherosclerosis. We have investigated the consequences of the presence of Asp299Gly polymorphism after stimulation of mononuclear cells with lipopolysaccharide (LPS), the non-LPS TLR4 microbial stimuli Aspergillus fumigatus and Cryptococcus neoformans, and the endogenous TLR4 ligand heat shock protein 60. No differences in either production of the proinflammatory cytokine TNF or the antiinflammatory cytokine interleukin-10 were observed between volunteers with the wild-type allele, volunteers heterozygous for the Asp299Gly allele and one volunteer homozygous for the TLR4 variant. In conclusion, the presence of the Asp299Gly TLR4 polymorphism does not result in defective pro and antiinflammatory cytokine production after stimulation with either exogenous (LPS and non-LPS) or endogenous TLR4 ligands, and alternative explanations are likely to be responsible for the epidemiological data showing associations with inflammatory conditions. In addition, this is the first study to demonstrate that even homozygosity for the Asp299Gly mutation does not confer hyporesponsiveness to stimulation with TLR4 stimuli.  相似文献   

8.
Bacterial lipopolysaccharides (LPS) initiate immune response through Toll-like receptor 4 (TLR4). Because many a times host is confronted with secondary bacterial challenges, it is critical to understand TLR4 expression following initial provocation. We studied TLR4 expression in rats at various times after intra-tracheal instillation of LPS. Although TLR4 mRNA was undetectable in normal lungs, it increased at 6h and 12h and declined at 36h post-LPS treatment. Western blots showed TLR4 protein at all time points. Immunohistochemistry localized TLR4 in alveolar septal cells, bronchial epithelium, macrophages and endothelium of large and peribronchial blood vessels. Dual label immunoelectron microscopy showed co-localization of TLR4 and LPS in the cytoplasm and nucleus of various lung and inflammatory cells. Nuclear localization of TLR4 was confirmed with Western blots on lung nuclear extracts. We conclude that TLR4 expression in lung is sustained up to 36 hours and that TLR4 and LPS are localized in the cytoplasm and nuclei of lung cells.  相似文献   

9.
UVB radiation is a potent immunosuppressive agent that inhibits cell-mediated immune responses. The mechanisms by which UVB radiation influences cell-mediated immune responses have been the subject of extensive investigation. However, the role of innate immunity on photoimmunological processes has received little attention. The purpose of this study was to determine whether Toll-like receptor-4 (TLR4) contributed to UV-induced suppression of contact hypersensitivity (CHS) responses. TLR4−/− and wild type C57BL/6 (TLR4+/+) mice were subjected to a local UVB immunosuppression regimen consisting of 100 mJ/cm2 UVB radiation followed by sensitization with the hapten DNFB. Wild type TLR4+/+ mice exhibited significant suppression of contact hypersensitivity response, whereas TLR4−/− developed significantly less suppression. The suppression in wild type TLR4+/+ mice could be adoptively transferred to naïve syngeneic recipients. Moreover, there were significantly fewer Foxp3 expressing CD4+CD25+ regulatory T-cells in the draining lymph nodes of UV-irradiated TLR4−/− mice than TLR4+/+ mice. When cytokine levels were compared in these two strains after UVB exposure, T-cells from TLR4+/+ mice produced higher levels of IL-10 and TGF-β and lower levels of IFN-γ and IL-17. Strategies to inhibit TLR4 may allow us to develop immunopreventive and immunotherapeutic approaches for management of UVB induced cutaneous immunosuppression.  相似文献   

10.
Endotoxin (LPS) is a potent inducer oftumor necrosis factor- (TNF-) and manganese superoxide dismutase(MnSOD). Recent evidence suggests that LPS induction of TNF- andMnSOD mRNAs is mediated through distinct intracellular signaltransduction pathways. Membrane CD14 (mCD14) and Toll-like receptor-4(TLR4) mediate LPS induction of TNF- in macrophages. In the current study, we evaluated the role of mCD14 and TLR4 in LPS induction ofMnSOD using peritoneal macrophages from CD14 knockout (CD14-KO) miceand mice with the Tlr4 gene point mutation (C3H/HeJ) ordeletion (C57BL/10ScCr). We studied mCD14-dependent (1 and 10 ng/ml)and mCD14-independent (1,000 ng/ml) concentrations of LPS. Compared with control (BALB/c) macrophages, LPS at 1 and 10 ng/ml failed toinduce TNF- or MnSOD mRNA in CD14-KO macrophages. However, LPS at1,000 ng/ml induced TNF- and MnSOD mRNAs equally in macrophages fromCD14-KO and control mice. LPS (1, 10, or 1,000 ng/ml) failed to induceTNF- or MnSOD mRNA and failed to activate nuclear factor-B inC3H/HeJ or C57BL/10ScCr macrophages. Measurements of TNF- and MnSODenzyme activity paralleled TNF- and MnSOD mRNA levels. These datademonstrate that, like TNF-, induction of MnSOD by LPS is mediatedby mCD14 and TLR4 in murine macrophages.

  相似文献   

11.
Tsai JJ  Liu SH  Yin SC  Yang CN  Hsu HS  Chen WB  Liao EC  Lee WJ  Pan HC  Sheu ML 《PloS one》2011,6(9):e23249

Background

Allergic disease can be characterized as manifestations of an exaggerated inflammatory response to environmental allergens triggers. Mite allergen Der-p2 is one of the major allergens of the house dust mite, which contributes to TLR4 expression and function in B cells in allergic patients. However, the precise mechanisms of Der-p2 on B cells remain obscure.

Methodology/Principal Findings

We investigated the effects of Der-p2 on proinflammatory cytokines responses and Toll-like receptor-4 (TLR4)-related signaling in human B cells activation. We demonstrated that Der-p2 activates pro-inflammatory cytokines, TLR4 and its co-receptor MD2. ERK inhibitor PD98059 significantly enhanced TLR4/MD2 expression in Der-p2-treated B cells. Der-p2 markedly activated mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP-1) and decreased p38 phosphorylation in B cells. MKP-1-siRNA downregulated TLR4/MD2 expression in Der-p2-treated B cells. In addition, Der-p2 significantly up-regulated expression of co-stimulatory molecules and increased B cell proliferation. Neutralizing Der-p2 antibody could effectively abrogate the Der-p2-induced B cell proliferation. Der-p2 could also markedly induce NF-κB activation in B cells, which could be counteracted by dexamethasone.

Conclusions/Significance

These results strongly suggest that Der-p2 is capable of triggering B cell activation and MKP-1-activated p38/MAPK dephosphorylation-regulated TLR4 induction, which subsequently enhances host immune, defense responses and development of effective allergic disease therapeutics in B cells.  相似文献   

12.
蛋白酶活化受体-2的研究进展   总被引:3,自引:0,他引:3  
Niu QX  He SH 《生理科学进展》2003,34(4):373-375
蛋白酶活化受体(protease-activated receptors,PARs)属于G蛋白偶联受体家族成员,其N-末端被蛋白酶裂解后,可形成新的N-末端。新N-末端能够结合、激活自身受体。PAR-2是PARs的成员之一,其激活、灭活、脱敏、复敏、及其与信号转导途径的关系,尤其是与疾病(如呼吸道慢性炎症)的关系正倍受关注。  相似文献   

13.
Left ventricular (LV) remodeling is known to contribute to morbidity and mortality after myocardial infarction (MI). Because LV remodeling is strongly associated with an inflammatory response, we investigated whether or not TLR-4 influences LV remodeling and survival in a mice model of MI. Six days after MI induction, TLR4 knockout (KO)-MI mice showed improved LV function 32 and reduced LV remodeling as indexed by reduced levels of atrial natriuretic factor and total collagen as well as by a reduced heart weight to body weight ratio when compared with WT-MI mice. This was associated with a reduction of protein levels of the intracellular TLR4 adapter protein MyD88 and enhanced protein expression of the anti-hypertrophic JNK in KO-MI mice when compared with wild-type (WT)-MI mice. In contrast, protein activation of the pro-hypertrophic kinases protein kinase Cdelta and p42/44 were not regulated in KO-MI mice when compared with WT-MI mice. Improved LV function, reduced cardiac remodeling, and suppressed intracellular TLR4 signaling in KO-MI mice were associated with significantly improved survival compared with WT-MI mice (62 vs 23%; p < 0.0001). TLR4 deficiency led to improved survival after MI mediated by attenuated left ventricular remodeling.  相似文献   

14.
Hyaluronan (HA) action depends upon its molecular size. Low molecular weight HA elicits pro-inflammatory responses by modulating the toll-like receptor-4 (TLR-4) or by activating the nuclear factor kappa B (NF-kB). In contrast, high molecular weight HA manifests an anti-inflammatory effect via CD receptors and by inhibiting NF-kB activation. Lipopolysaccharide (LPS) –mediated activation of TLR-4 complex induces the myeloid differentiation primary-response protein (MyD88) and the tumor necrosis factor receptor-associated factor-6 (TRAF-6), and ends with the liberation of NF-kB/Rel family members. The aim of this study was to investigate the influence of HA at different MWs (low, medium, high) on TLR-4 modulation in LPS-induced inflammatory response in mouse chondrocyte cultures.  相似文献   

15.
16.
17.
Several studies have shown the presence of liver mitochondrial dysfunction during sepsis. TLR3 recognizes viral double-stranded RNA and host endogenous cellular mRNA released from damaged cells. TLR3 ligand amplifies the systemic hyperinflammatory response observed during sepsis and in sepsis RNA escaping from damaged tissues/cells may serve as an endogenous ligand for TLR3 thereby modulating immune responses. This study addressed the hypothesis that TLR3 might regulate mitochondrial function in cultured human hepatocytes.HepG2 cells were exposed to TLR-3 ligand (dsRNA — polyinosine–polycytidylic acid; Poly I:C) and mitochondrial respiration was measured. Poly I:C induced a reduction in maximal mitochondrial respiration of human hepatocytes which was prevented partially by preincubation with cyclosporine A (a mitochondrial permeability transition pore-opening inhibitor). Poly-I:C induced activation of NF-κB, and the mitochondrial dysfunction was accompanied by caspase-8 but not caspase-3 activation and by no major alterations in cellular or mitochondrial ultrastructure.  相似文献   

18.
Devaraj S  Tobias P  Jialal I 《Cytokine》2011,55(3):441-445
Type 1 diabetes (T1DM) is associated with increased vascular complications and is a pro-inflammatory state. Recent findings have shown increased TLR2 and 4 expression, signaling, ligands, and functional activation in T1DM subjects compared to controls and further accentuated in T1DM with microvascular complications. Thus, the aim of this study was to examine if genetic deficiency of TLR4 attenuates the increased inflammation associated with T1DM using the streptozotocin-induced diabetic mouse model. C57BL/6 and TLR4(-/-) mice were obtained and studied in the native state and following induction of diabetes using streptozotocin. Diabetic (WT+STZ) mice had increased expression of both TLR2 and TLR4, while TLR4(-/-) STZ mice had increased expression only of TLR2, but not TLR4 compared to the non-diabetic mice TLR2 expression was significantly increased with STZ-induced diabetes and was unaffected by knockout of TLR4. Also, levels of MyD88, IRAK-1 protein phosphorylation, Trif, IRF3, and NF-κB activity were significantly reduced in TLR4(-/-) +STZ mice compared to the WT+STZ mice. WT+STZ mice exhibited significantly increased levels of serum and macrophage IL-1β, IL-6, KC/IL-8, IP-10, MCP-1, IFN beta and TNF-α compared to WT mice and this was significantly attenuated in TLR4(-/-) +STZ mice (P<0.01). Thus, TLR4 contributes to the pro-inflammatory state and TLR4KO attenuates inflammation in diabetes.  相似文献   

19.
20.
TLRs、慢性炎症与肿瘤   总被引:3,自引:0,他引:3  
郑杰 《生命科学》2007,19(1):15-20
Toll样受体是新发现的先天性免疫的病原模式识别受体,在机体抵抗外来病原生物入侵上起关键的作用。除了抵抗外来病原生物入侵外, Toll样受体现在也被认为与某些自身免疫性疾病、肿瘤和某些病因不明的疾病的发病有关。慢性炎症被认为在不同层面促进某些肿瘤的发生和发展,其中之一就是慢性炎症通过免疫抑制导致免疫系统对肿瘤细胞无反应,这种免疫抑制也与 Toll样受体有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号