首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae), is an important pest of maize in the United States and many tropical areas in the western hemisphere. In 2001, Herculex I® (Cry1F) maize was commercially planted in the United States to control Lepidoptera, including S. frugiperda. In 2006, a population of S. frugiperda was discovered in Puerto Rico that had evolved resistance to Cry1F maize in the field, making it the first well-documented case of an insect with field resistance to a plant producing protein from Bacillus thuringiensis (Bt). Using this resistant population, we conducted tri-trophic studies with a natural enemy of S. frugiperda. By using resistant S. frugiperda, we were able to overcome possible prey-mediated effects and avoid concerns about potential differences in laboratory- or field-derived Bt resistance. We used the Cry1F-resistant S. frugiperda to evaluate effects of Cry1F on Cotesia marginiventris (Cresson) (Hymenoptera: Braconidae), a larval endoparasitoid of S. frugiperda, over five generations. Our results clearly demonstrate that Cry1F maize does not affect development, parasitism, survivorship, sex ratio, longevity or fecundity of C. marginiventris when they parasitize Cry1F maize-fed S. frugiperda. Furthermore, the level of Cry1F protein in the leaves was strongly diluted when transferred from Bt maize to S. frugiperda and was not detected in larvae, cocoons or adults of C. marginiventris. Our results refute previous reports of C. marginiventris being harmed by Bt proteins and suggest that such results were caused by prey-mediated effects due to using Bt-susceptible lepidopteran hosts.  相似文献   

2.
There is an increasing appreciation of the importance of transgenerational effects on offspring fitness, including in relation to immune function and disease resistance. Here, we assess the impact of parental rearing density on offspring resistance to viral challenge in an insect species expressing density-dependent prophylaxis (DDP); i.e. the adaptive increase in resistance or tolerance to pathogen infection in response to crowding. We quantified survival rates in larvae of the cotton leafworm (Spodoptera littoralis) from either gregarious- or solitary-reared parents following challenge with the baculovirus S. littoralis nucleopolyhedrovirus. Larvae from both the parental and offspring generations exhibited DDP, with gregarious-reared larvae having higher survival rates post-challenge than solitary-reared larvae. Within each of these categories, however, survival following infection was lower in those larvae from gregarious-reared parents than those from solitary-reared, consistent with a transgenerational cost of DDP immune upregulation. This observation demonstrates that crowding influences lepidopteran disease resistance over multiple generations, with potential implications for the dynamics of host–pathogen interactions.  相似文献   

3.
Exposure of arthropod predators to Cry1Ab toxin in Bt maize fields   总被引:5,自引:0,他引:5  
Abstract.  1. To assess the risks of an insect-resistant transgenic plant for non-target arthropods, it is important to investigate the exposure of non-target species to the transgene product. Exposure of predators in the field depends on the toxin levels in food sources, their feeding ecology and that of their prey.
2. To verify the transmission of Cry1Ab toxin through the food chain, and thus exposure of predators in the field, samples from different plant tissues, herbivores, and predators in Bt maize fields in Spain (Event 176) were collected at different periods over the season and the toxin content was measured using ELISA. Complementary laboratory studies were performed with the omnivorous predator Orius majusculus to assess the toxin uptake and persistence after feeding on variable Bt-containing food sources.
3. Field results revealed that toxin content in some herbivores was negligible (aphids, thrips, leafhoppers) compared with those in spider mites. The latter herbivore only occurred after pollen shed and contained three times greater toxin levels than Bt maize leaves.
4. Data confirmed that the Bt toxin can be transferred to predators, that is to say to Orius spp., Chrysoperla spp., and Stethorus sp. This only applied when Bt maize pollen or spider mites were available. The passage of Bt toxin to O. majusculus via these two food sources was also confirmed in the laboratory. Contrastingly, some predators in the field (hemerobiids, Nabis sp., Hippodamia sp., Demetrias sp.) contained no or negligible toxin levels even when pollen or spider mites were present.
5. Besides essential information for exposure assessment of numerous arthropod predators, this study provides an insight into the feeding ecology of different arthropods in the maize system.  相似文献   

4.
A major assumption of the high-dose/refuge strategy proposed for insect resistance management strategies for transgenic crop plants that express toxins from Bacillus thuringiensis is that resistance traits that evolve in pest species will be recessive. The inheritance of Cry1F resistance and larval survival on commercially available Cry1F corn hybrids were determined in a laboratory-selected strain of European corn borer, Ostrinia nubilalis (Hübner), displaying more than 3000-fold resistance to Cry1F. Concentration-response bioassays of reciprocal parental crosses indicated that the resistance is autosomal and recessive. Bioassays of the backcross of the F1 generation with the selected strain were consistent with the hypothesis that a single locus, or a set of tightly linked loci, is responsible for the resistance. Greenhouse experiments with Cry1F-expressing corn hybrids indicated that some resistant larvae survived the high dose of toxin delivered by Cry1F-expressing plants although F1 progeny of susceptible by resistant crosses had fitness close to zero. These results provide the first direct evidence that the high dose/refuge strategy currently in place to manage resistance in Cry1F-expressing corn is appropriate.  相似文献   

5.
Although transgenic crops expressing either Cry1Ab or Cry1Ac, both derived from Bacillus thuringiensis (Bt), have been used commercially, the evolution of insects resistance to these CRY proteins has become a challenge. Thus, it has been proposed that co-expression of two Bt proteins with different modes of action may delay the development of resistance to Bt. However, few Bt proteins have been identified as having different modes of action from those of Cry1Ab or Cry1Ac. In this study, transgenic lines of maize over-expressing either Cry1Ie or Cry1Ac gene have been developed. Several independent transgenic lines with one copy of the foreign gene were identified by Southern blot analysis. Bioassays in the laboratory showed that the transgenic plants over-expressing Cry1Ie were highly toxic against the wild-type cotton bollworm (Heliothis armigera), producing mortality levels of 50 % after 6 days of exposure. However, the mortality caused by these plants was lower than that caused by the Cry1Ac transgenic plants (80 %) and MON810 plants expressing Cry1Ab (100 %), which both exhibited low toxicity toward the Cry1Ac-resistant cotton bollworm. In contrast, three transgenic maize lines expressing Cry1Ie induced higher mortality against this pest and were also highly toxic to the Asian corn borer (Ostrinia furnacalis) in the field. These results indicate that the Cry1Ie protein has a different mode of action than the Cry1Ab and Cry1Ac proteins. Therefore, the use of transgenic plants expressing Cry1Ie might delay the development of Bt-resistant insects in the field.  相似文献   

6.
The long-term usefulness of Bacillus thuringiensis Cry toxins, either in sprays or in transgenic crops, may be compromised by the evolution of resistance in target insects. Managing the evolution of resistance to B. thuringiensis toxins requires extensive knowledge about the mechanisms, genetics, and ecology of resistance genes. To date, laboratory-selected populations have provided information on the diverse genetics and mechanisms of resistance to B. thuringiensis, highly resistant field populations being rare. However, the selection pressures on field and laboratory populations are very different and may produce resistance genes with distinct characteristics. In order to better understand the genetics, biochemical mechanisms, and ecology of field-evolved resistance, a diamondback moth (Plutella xylostella) field population (Karak) which had been exposed to intensive spraying with B. thuringiensis subsp. kurstaki was collected from Malaysia. We detected a very high level of resistance to Cry1Ac; high levels of resistance to B. thuringiensis subsp. kurstaki Cry1Aa, Cry1Ab, and Cry1Fa; and a moderate level of resistance to Cry1Ca. The toxicity of Cry1Ja to the Karak population was not significantly different from that to a standard laboratory population (LAB-UK). Notable features of the Karak population were that field-selected resistance to B. thuringiensis subsp. kurstaki did not decline at all in unselected populations over 11 generations in laboratory microcosm experiments and that resistance to Cry1Ac declined only threefold over the same period. This finding may be due to a lack of fitness costs expressed by resistance strains, since such costs can be environmentally dependent and may not occur under ordinary laboratory culture conditions. Alternatively, resistance in the Karak population may have been near fixation, leading to a very slow increase in heterozygosity. Reciprocal genetic crosses between Karak and LAB-UK populations indicated that resistance was autosomal and recessive. At the highest dose of Cry1Ac tested, resistance was completely recessive, while at the lowest dose, it was incompletely dominant. A direct test of monogenic inheritance based on a backcross of F1 progeny with the Karak population suggested that resistance to Cry1Ac was controlled by a single locus. Binding studies with 125I-labeled Cry1Ab and Cry1Ac revealed greatly reduced binding to brush border membrane vesicles prepared from this field population.  相似文献   

7.
Evolution of resistance by insect pests is the greatest threat to the continued success of Bacillus thuringiensis (Bt) toxins used in insecticide formulations or expressed by transgenic crop plants such as Cry1F‐expressing maize [(Zea mays L.) (Poaceae)]. A strain of European corn borer, Ostrinia nubilalis (Hübner) (Lepidoptera: Crambidae), obtained from field collections throughout the central US Corn Belt in 1996 was selected in the laboratory for resistance to Cry1F by exposure to the toxin incorporated into artificial diet. The selected strain developed more than 3000‐fold resistance to Cry1F after 35 generations of selection and readily consumed Cry1F expressing maize tissue; yet, it was as susceptible to Cry1Ab and Cry9C as the unselected control strain. Only a low level of cross‐resistance (seven‐fold) to Cry1Ac was observed. These lacks of cross‐resistance between Cry1F and Cry1Ab suggest that maize hybrids expressing these two toxins are likely to be compatible for resistance management of O. nubilalis.  相似文献   

8.
Scientific studies are frequently used to support policy decisions related to transgenic crops. Schmidt et al., Arch Environ Contam Toxicol 56:221–228 (2009) recently reported that Cry1Ab and Cry3Bb were toxic to larvae of Adalia bipunctata in direct feeding studies. This study was quoted, among others, to justify the ban of Bt maize (MON 810) in Germany. The study has subsequently been criticized because of methodological shortcomings that make it questionable whether the observed effects were due to direct toxicity of the two Cry proteins. We therefore conducted tritrophic studies assessing whether an effect of the two proteins on A. bipunctata could be detected under more realistic routes of exposure. Spider mites that had fed on Bt maize (events MON810 and MON88017) were used as carriers to expose young A. bipunctata larvae to high doses of biologically active Cry1Ab and Cry3Bb1. Ingestion of the two Cry proteins by A. bipunctata did not affect larval mortality, weight, or development time. These results were confirmed in a subsequent experiment in which A. bipunctata were directly fed with a sucrose solution containing dissolved purified proteins at concentrations approximately 10 times higher than measured in Bt maize-fed spider mites. Hence, our study does not provide any evidence that larvae of A. bipunctata are sensitive to Cry1Ab and Cry3Bb1 or that Bt maize expressing these proteins would adversely affect this predator. The results suggest that the apparent harmful effects of Cry1Ab and Cry3Bb1 reported by Schmidt et al., Arch Environ Contam Toxicol 56:221–228 (2009) were artifacts of poor study design and procedures. It is thus important that decision-makers evaluate the quality of individual scientific studies and do not view all as equally rigorous and relevant.  相似文献   

9.
文章以转Cry1Ac基因棉(中棉所41)和常规棉(中棉所49)为对照,研究了转Cry1Ac+Cry2Ab基因棉(639020)在棉花生长的关键时期——蕾期(二代棉铃虫发生期)、花期(三代棉铃虫发生期)和花铃期(四代棉铃虫发生期)对棉铃虫的控制作用,同时研究了639020棉田主要捕食性天敌(中华草蛉幼虫、龟纹瓢虫、小花蝽和草间小黑蛛)对烟粉虱的捕食功能,明确了639020棉花在生长的关键时期对棉铃虫的控制效果及对棉田主要捕食性天敌捕食功能反应的影响。结果表明,639020棉花对二代和三代棉铃虫具有良好的控制作用,抗虫性分别比中棉所41提高了52.85%和16.22%,其中前者差异达显著水平,后者差异不显著。在棉花蕾期、花期和花铃期,639020棉田棉铃虫落卵量都比中棉所41棉田和中棉所49棉田低(除二代棉铃虫发生期);棉铃虫幼虫数量都极显著低于常规棉,且都低于防治指标,但与中棉所41棉田无显著差异。639020棉田中华草蛉、龟纹瓢虫、小花蝽和草间小黑蛛对烟粉虱的捕食功能与中棉所41棉田和常规棉田相比无显著变化。研究结果以期为新型转基因棉花环境安全性研究及其外源基因的抗虫遗传效应和生产应用前景进行安全性评价。  相似文献   

10.
Transgenic corn, Zea mays L., expressing the Bacillus thuringiensis Berliner (Bt) protein Cry1F has been registered for Spodoptera frugiperda (J. E. Smith) control since 2003 in the USA. Unexpected damage to Cry1F corn was reported in 2006 in Puerto Rico, and Cry1F resistance in S. frugiperda from Puerto Rico was documented. The study of fitness costs associated with insect resistance to Bt insecticidal proteins is important for understanding resistance evolution and for evaluating resistance management practices used to mitigate resistance to transgenic corn. Currently, no studies have addressed the fitness costs associated with Cry1F resistance in S. frugiperda. In this study, susceptible and resistant strains with similar genetic background and their reciprocal crosses were used to estimate Cry1F resistance fitness costs. Comparisons between life‐history traits and population growth rates of homozygous susceptible, heterozygous and homozygous resistant S. frugiperda were used to determine whether the resistance is associated with fitness costs. Major fitness costs were not apparent in either heterozygotes or homozygous resistant insects. However, there was a slight indication of hybrid vigour in the heterozygotes. Additionally, two lines in which the frequency of the resistant alleles was fixed at 0.5 were followed for seven generations, after which the frequency of resistant alleles slightly decreased in both lines. The lack of strong fitness costs associated with Cry1F resistance in S. frugiperda indicates that initial allele frequencies may be higher than expected in field populations and will tend to remain stable in field populations in the absence of selection pressure (e.g. Puerto Rico).  相似文献   

11.
Transgenic maize (Zea mays L., Poaceae) event TC1507, producing the Cry1F protein of Bacillus thuringiensis Berliner, has been used for management of the fall armyworm, Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae), in Brazil since 2009. A strain of S. frugiperda, obtained from field collections of larvae in TC1507 maize in Minas Gerais state in 2010, was selected in the laboratory for resistance to Cry1F using leaves of TC1507 maize in two selection regimes. Continuous exposure of larvae to Cry1F was more effective than exposure for 6, 8, and 10 days in the selection of resistant S. frugiperda individuals. With only four generations of laboratory selection, a strain with high levels of resistance to Cry1F was obtained, as indicated by the survival of insects reared on leaves of TC1507 maize plants and by the more than 300‐fold resistance level measured in bioassays with the purified Cry1F protein. Importantly, reciprocal crosses between control and the Cry1F‐selected strains revealed that the resistance is autosomal and incompletely recessive, and the response obtained in the backcross of the F1 generation with the resistant strain was consistent with simple monogenic inheritance. Additionally, there were no apparent fitness costs associated with resistance either for survival or larval growth on non‐Bt maize leaves. Our findings provide experimental evidence for rapid evolution of Cry1F resistance in S. frugiperda in the laboratory and further reinforce the potential of this species to evolve field resistance to the TC1507 maize as previously reported. The resistant strain isolated in this study provides an opportunity to estimate the resistance allele frequency in the field and to determine the biochemical and molecular basis of the resistance, which should provide further information to assist in the resistance management of S. frugiperda on transgenic maize producing B. thuringiensis proteins.  相似文献   

12.
Four genetically modified (GM) maize (Zea mays L.) hybrids (coleopteran resistant, coleopteran and lepidopteran resistant, lepidopteran resistant and herbicide tolerant, coleopteran and herbicide tolerant) and its non‐GM control maize stands were tested to compare the functional diversity of arthropods and to determine whether genetic modifications alter the structure of arthropods food webs. A total number of 399,239 arthropod individuals were used for analyses. The trophic groups’ number and the links between them indicated that neither the higher magnitude of Bt toxins (included resistance against insect, and against both insects and glyphosate) nor the extra glyphosate treatment changed the structure of food webs. However, differences in the average trophic links/trophic groups were detected between GM and non‐GM food webs for herbivore groups and plants. Also, differences in characteristic path lengths between GM and non‐GM food webs for herbivores were observed. Food webs parameterized based on 2‐year in‐field assessments, and their properties can be considered a useful and simple tool to evaluate the effects of Bt toxins on non‐target organisms.  相似文献   

13.
Transgenic Bacillus thuringiensis Berliner (Bt) crops receive particular attention because they carry genes encoding insecticidal proteins that might negatively affect non‐target arthropods. Here, laboratory experiments were conducted to evaluate the impact of Cry1Ab‐expressing transgenic maize [5422Bt1 (event Bt11) and 5422CBCL (MON810)] on the biological parameters of two non‐target arthropods, the aphid Rhopalosiphum maidis (Fitch) (Hemiptera: Aphididae) and its predator the ladybeetle Propylea japonica (Thunberg) (Coleoptera: Coccinellidae). In a long‐term assay (three generations), no significant differences were found between R. maidis fed Bt maize and those fed a near‐isogenic line (5422) when individual parameters were compared, including nymph development time, adult longevity, aphid spawning period, and fecundity. No negative effects were detected throughout the life cycle of Pjaponica in aphids’ feeding amount, development (nymphs, pupae, adults, and progeny eggs), fecundity, or egg hatching when they preyed on Bt maize‐fed aphids compared with non‐Bt maize treatments. A tritrophic assay revealed that Cry1Ab was highly diluted through the food chain (Bt maize leaves, R. maidis, and P. japonica), as detected by an enzyme‐linked immunosorbent assay (ELISA). In conclusion, although Cry1Ab concentrations in maize leaves increased as the plants developed, Cry1Ab levels were significantly reduced in the aphid R. maidis, and no traces of Cry1Ab were detected in P. japonica preying on Bt maize‐fed aphids. The two hybrids of Bt maize expressing Cry1Ab had no negative effects on the measured biological parameters of the aphid R. maidis or its predator, the ladybeetle P. japonica.  相似文献   

14.
 The objective of this study was to determine the genetic basis of resistance to maize mosaic virus (MMV). Molecular markers were used to map resistance loci to MMV in a set of 91 maize (Zea mays L.) recombinant inbred lines (RILs), derived from the cross between Hi31 (a B68 conversion resistant to MMV) and Kil4 (a Thai inbred susceptible to MMV). The RILs were evaluated for MMV resistance in disease nurseries in Hawaii in the winter of 1993 and the summer of 1994. Twenty-eight highly susceptible RILs were chosen for gene mapping using the pooled-sampling approach. Initial evidence from the pooled DNA indicated that restriction fragment length polymorphism (RFLP) probes on chromosome 3 near the centromere were biased to the susceptible parent allele. Analysis of 91 RILs at 103 RFLP loci confirmed the presence of a major MMV resistance gene on chromosome 3. The resistant allele at this locus, previously named Mv1, is present in the resistant parent Hi31 and traces back to the Argentine parent used in conferring common rust resistance to B68. We conclude that resistance to MMV in B68 and Caribbean flints involves a major gene mv1 on chromosome 3 located between RFLP markers umc102 and php20508. Received: 12 June 1996 / Accepted: 5 July 1996  相似文献   

15.
The sugarcane borer, Diatraea saccharalis (F.), is a major target of transgenic maize expressing Bacillus thuringiensis (Bt) proteins in South America and the mid-Southern region of the United States. During 2007-2009, a total of 986 feral individuals of D. saccharalis were collected from maize fields in six locations of Louisiana and Mississippi and examined for resistance to Cry1Ab maize using F 1/F 2 screens. Major resistance alleles to Cry1Ab maize in the populations sampled from non-Bt maize plants during 2007 and 2008 in Louisiana and 2009 in Mississippi were rare. From a total of 487 individuals collected from three locations in Louisiana in 2007 and 2008, only one individual was identified with major resistance alleles. In addition, no major resistance alleles were detected in 242 individuals collected from three locations in Mississippi in 2009. The frequency of major resistance alleles was estimated to be 0.002 with a 95% CI of 0.00025-0.0057 for the Louisiana populations and < 0.0061, with 95% probability, for the Mississippi populations. The resistance frequency estimated for the Louisiana populations in 2007 and 2008 was not significantly different from those reported previously for populations sampled in 2004-2006. However, among 200 individuals sampled from non-Bt maize plants in 2009 in Louisiana, six individuals were identified to possess major resistance alleles. The estimated major resistance allele frequency for the populations sampled from non-Bt maize plants in 2009 in Louisiana was 0.0176 with a 95% CI of 0.0072 to 0.0328, which was significantly greater than those estimated for the populations collected in 2004-2008. Similarly, the frequency of minor resistance alleles to Cry1Ab maize for the Louisiana populations collected in 2009 was also significantly greater than those estimated for the populations sampled before. In addition, two out of 57 feral individuals collected from Bt maize plants in Louisiana in 2009 were identified to carry major resistance alleles to Cry1Ab maize. Since 2010, transgenic maize expressing pyramided Bt genes has been planted in the US mid-Southern region and by 2011, pyramided Bt maize has replaced Cry1Ab maize as the dominant Bt maize for managing lepidopteran pests including D. saccharalis. The timely switching from single-gene Cry1Ab maize to the pyramided Bt maize should prevent further increases in Cry1Ab resistance allele frequency and thus ensure the continued success of Bt maize for managing D. saccharalis in the region.  相似文献   

16.
Understanding the behavior of pests targeted with Bacillus thuringiensis Berliner (Bt) crops is important to define resistance management strategies. Particularly the study of larval movement between plants is important to determine the feasibility of refuge configurations. Exposure to Bt maize, Zea mays L. (Poaceae), has been suggested to increase larval movement in lepidopteran species but few studies have examined the potential for resistance to interact with behavioral responses to Bt toxins. Choice and no‐choice experiments were conducted with Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae) and Ostrinia nubilalis (Hübner) (Lepidoptera: Crambidae) to determine whether Cry1F resistance influences neonate movement. Leaf discs of Cry1F maize and the corresponding isoline were used to characterize behavioral responses. In both experiments, the location (on or off of plant tissues) and mortality of susceptible and Cry1F resistant neonates was recorded for 5 days, but the analysis of larvae location was performed until 7 h. Our results indicated no strong difference between resistant and susceptible phenotypes in S. frugiperda and O. nubilalis, although a small percentage of susceptible neonates in both species abandoned maize tissue expressing Cry1F. However, significant behavioral differences were observed between species. Ostrinia nubilalis exhibited increased movement between leaf discs, whereas S. frugiperda selected plant tissue within the first 30 min and remained on the chosen plant regardless of the presence of Cry1F. Spodoptera frugiperda reduced larval movement may have implications to refuge configuration. This study represents the first step toward understanding the effects of Cry1F resistance on Lepidoptera larval behavior. Information regarding behavioral differences between species could aid in developing better and more flexible resistance management strategies.  相似文献   

17.
Computer simulations with GTLAUS 3.7 were performed to investigate the influence of different cases of increasing temperatures on the tritrophic wheat ‐ cereal aphid ‐ predator interaction. Two cases of a temperature increase were defined: (1) homogenous increase by adding 3°C, and (2) comparable increase with relatively wanner nights. Both cases of increasing temperatures with similar daily average values resulted in a significant reduction of aphid infestation, but this reduction was smaller in scenarios with relatively higher night temperatures. But the results indicate only relatively small differences deriving from this particularly high night temperatures.  相似文献   

18.
Cry1Fa insecticidal protein was successfully radiolabeled with (125)I-Na. Specific binding to brush border membrane vesicles was shown for the lepidopteran species Ostrinia nubilalis, Spodoptera frugiperda, Spodoptera exigua, Helicoverpa armigera, Heliothis virescens, and Plutella xylostella. Homologous competition assays were performed to obtain equilibrium binding parameters (K(d) [dissociation constant] and R(t) [concentration of binding sites]) for these six insect species.  相似文献   

19.
The binary toxin is the major active component of Bacillus sphaericus, a microbial larvicide used for controlling some vector mosquito-borne diseases. B. sphaericus resistance has been reported in many part of the world, leading to a growing concern for the usefulness of this environmental friendly insecticide. Here we characterize a novel mechanism of resistance to the binary toxin in a natural population of the West Nile virus vector, Culex pipiens. We show that the insertion of a transposable element-like DNA into the coding sequence of the midgut toxin receptor induces a new mRNA splicing event, unmasking cryptic donor and acceptor sites located in the host gene. The creation of the new intron causes the expression of an altered membrane protein, which is incapable of interacting with the toxin, thus providing the host mosquito with an advantageous phenotype. As a large portion of insect genomes is composed of transposable elements or transposable elements-related sequences, this new mechanism may be of general importance to appreciate their significance as potent agents for insect resistance to the microbial insecticides.  相似文献   

20.
One strategy for delaying evolution of resistance to Bacillus thuringiensis crystal (Cry) endotoxins is the production of multiple Cry toxins in each transgenic plant (gene stacking). This strategy relies upon the assumption that simultaneous evolution of resistance to toxins that have different modes of action will be difficult for insect pests. In B. thuringiensis-transgenic (Bt) cotton, production of both Cry1Ac and Cry2Ab has been proposed to delay resistance of Heliothis virescens (tobacco budworm). After previous laboratory selection with Cry1Ac, H. virescens strains CXC and KCBhyb developed high levels of cross-resistance not only to toxins similar to Cry1Ac but also to Cry2Aa. We studied the role of toxin binding alteration in resistance and cross-resistance with the CXC and KCBhyb strains. In toxin binding experiments, Cry1A and Cry2Aa toxins bound to brush border membrane vesicles from CXC, but binding of Cry1Aa was reduced for the KCBhyb strain compared to susceptible insects. Since Cry1Aa and Cry2Aa do not share binding proteins in H. virescens, our results suggest occurrence of at least two mechanisms of resistance in KCBhyb insects, one of them related to reduction of Cry1Aa toxin binding. Cry1Ac bound irreversibly to brush border membrane vesicles (BBMV) from YDK, CXC, and KCBhyb larvae, suggesting that Cry1Ac insertion was unaffected. These results highlight the genetic potential of H. virescens to become resistant to distinct Cry toxins simultaneously and may question the effectiveness of gene stacking in delaying evolution of resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号