首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The biological control function provided by natural enemies is regarded as a protection goal that should not be harmed by the application of any new pest management tool. Plants producing Cry proteins from the bacterium, Bacillus thuringiensis (Bt), have become a major tactic for controlling pest Lepidoptera on cotton and maize and risk assessment studies are needed to ensure they do not harm important natural enemies. However, using Cry protein susceptible hosts as prey often compromises such studies. To avoid this problem we utilized pest Lepidoptera, cabbage looper (Trichoplusia ni) and fall armyworm (Spodoptera frugiperda), that were resistant to Cry1Ac produced in Bt broccoli (T. ni), Cry1Ac/Cry2Ab produced in Bt cotton (T. ni), and Cry1F produced in Bt maize (S. frugiperda). Larvae of these species were fed Bt plants or non-Bt plants and then exposed to predaceous larvae of the green lacewing Chrysoperla rufilabris. Fitness parameters (larval survival, development time, fecundity and egg hatch) of C. rufilabris were assessed over two generations. There were no differences in any of the fitness parameters regardless if C. rufilabris consumed prey (T. ni or S. frugiperda) that had consumed Bt or non-Bt plants. Additional studies confirmed that the prey contained bioactive Cry proteins when they were consumed by the predator. These studies confirm that Cry1Ac, Cry2Ab and Cry1F do not pose a hazard to the important predator C. rufilabris. This study also demonstrates the power of using resistant hosts when assessing the risk of genetically modified plants on non-target organisms.  相似文献   

2.
Cotton‐ and maize‐producing insecticidal crystal (Cry) proteins from the bacterium, Bacillus thuringiensis (Bt), have been commercialized since 1996. Bt plants are subjected to environmental risk assessments for non‐target organisms, including natural enemies that suppress pest populations. Here, we used Cry1F‐resistant Spodoptera frugiperda (J.E. Smith) and Cry1Ac and Cry2Ab‐resistant Trichoplusia ni (Hübner) as prey for the assassin bug, Zelus renardii (Kolenati), a common predator in maize and cotton fields. In tritrophic studies, we assessed several fitness parameters of Z. renardii when it fed on resistant S. frugiperda that had fed on Bt maize expressing Cry1F or on resistant T. ni that had fed on Bt cotton expressing Cry1Ac and Cry2Ab. Survival, nymphal duration, adult weight, adult longevity and female fecundity of Z. renardii were not different when they were fed resistant‐prey larvae (S. frugiperda or T. ni) reared on either a Bt crop or respective non‐Bt crops. ELISA tests demonstrated that the Cry proteins were present in the plant at the highest levels, at lower levels in the prey and at the lowest levels in the predator. While Z. renardii was exposed to Cry1F and Cry1Ac and Cry2Ab when it fed on hosts that consumed Bt‐transgenic plants, the proteins did not affect important fitness parameters in this common and important predator.  相似文献   

3.
The fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae), is an important pest of maize in the United States and many tropical areas in the western hemisphere. In 2001, Herculex I® (Cry1F) maize was commercially planted in the United States to control Lepidoptera, including S. frugiperda. In 2006, a population of S. frugiperda was discovered in Puerto Rico that had evolved resistance to Cry1F maize in the field, making it the first well-documented case of an insect with field resistance to a plant producing protein from Bacillus thuringiensis (Bt). Using this resistant population, we conducted tri-trophic studies with a natural enemy of S. frugiperda. By using resistant S. frugiperda, we were able to overcome possible prey-mediated effects and avoid concerns about potential differences in laboratory- or field-derived Bt resistance. We used the Cry1F-resistant S. frugiperda to evaluate effects of Cry1F on Cotesia marginiventris (Cresson) (Hymenoptera: Braconidae), a larval endoparasitoid of S. frugiperda, over five generations. Our results clearly demonstrate that Cry1F maize does not affect development, parasitism, survivorship, sex ratio, longevity or fecundity of C. marginiventris when they parasitize Cry1F maize-fed S. frugiperda. Furthermore, the level of Cry1F protein in the leaves was strongly diluted when transferred from Bt maize to S. frugiperda and was not detected in larvae, cocoons or adults of C. marginiventris. Our results refute previous reports of C. marginiventris being harmed by Bt proteins and suggest that such results were caused by prey-mediated effects due to using Bt-susceptible lepidopteran hosts.  相似文献   

4.
5.
Evolution of insect resistance to transgenic crops containing Bacillus thuringiensis (Bt) genes is a serious threat to the sustainability of this technology. However, field resistance related to the reduced efficacy of Bt maize has not been documented in any lepidopteran pest in the mainland U.S. after 18 years of intensive Bt maize planting. Here we report compelling evidence of field resistance in the fall armyworm, Spodoptera frugiperda (J.E. Smith), to Cry1F maize (TC 3507) in the southeastern region of the U.S. An F2 screen showed a surprisingly high (0.293) Cry1F resistance allele frequency in a population collected in 2011 from non-Bt maize in south Florida. Field populations from non-Bt maize in 2012–2013 exhibited 18.8-fold to >85.4-fold resistance to purified Cry1F protein and those collected from unexpectedly damaged Bt maize plants at several locations in Florida and North Carolina had >85.4-fold resistance. In addition, reduced efficacy and control failure of Cry1F maize against natural populations of S. frugiperda were documented in field trials using Cry1F-based and pyramided Bt maize products in south Florida. The Cry1F-resistant S. frugiperda also showed a low level of cross-resistance to Cry1A.105 and related maize products, but not to Cry2Ab2 or Vip3A. The occurrence of Cry1F resistance in the U.S. mainland populations of S. frugiperda likely represents migration of insects from Puerto Rico, indicating the great challenges faced in achieving effective resistance management for long-distance migratory pests like S. frugiperda.  相似文献   

6.
Transgenic maize (Zea mays L., Poaceae) event TC1507, producing the Cry1F protein of Bacillus thuringiensis Berliner, has been used for management of the fall armyworm, Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae), in Brazil since 2009. A strain of S. frugiperda, obtained from field collections of larvae in TC1507 maize in Minas Gerais state in 2010, was selected in the laboratory for resistance to Cry1F using leaves of TC1507 maize in two selection regimes. Continuous exposure of larvae to Cry1F was more effective than exposure for 6, 8, and 10 days in the selection of resistant S. frugiperda individuals. With only four generations of laboratory selection, a strain with high levels of resistance to Cry1F was obtained, as indicated by the survival of insects reared on leaves of TC1507 maize plants and by the more than 300‐fold resistance level measured in bioassays with the purified Cry1F protein. Importantly, reciprocal crosses between control and the Cry1F‐selected strains revealed that the resistance is autosomal and incompletely recessive, and the response obtained in the backcross of the F1 generation with the resistant strain was consistent with simple monogenic inheritance. Additionally, there were no apparent fitness costs associated with resistance either for survival or larval growth on non‐Bt maize leaves. Our findings provide experimental evidence for rapid evolution of Cry1F resistance in S. frugiperda in the laboratory and further reinforce the potential of this species to evolve field resistance to the TC1507 maize as previously reported. The resistant strain isolated in this study provides an opportunity to estimate the resistance allele frequency in the field and to determine the biochemical and molecular basis of the resistance, which should provide further information to assist in the resistance management of S. frugiperda on transgenic maize producing B. thuringiensis proteins.  相似文献   

7.
Genetically modified plants expressing insecticidal proteins from Bacillus thuringiensis (Bt) offer valuable options for managing insect pests with considerable environmental and economic benefits. Despite the benefits provided by Bt crops, the continuous expression of these insecticidal proteins imposes strong selection for resistance in target pest populations. Bt maize (Zea mays) hybrids have been successful in controlling fall armyworm (Spodoptera frugiperda), the main maize pest in Brazil since 2008; however, field-evolved resistance to the protein Cry1F has recently been reported. Therefore it is important to assess the possibility of cross-resistance between Cry1F and other Cry proteins expressed in Bt maize hybrids. In this study, an F2 screen followed by subsequent selection on MON 89034 maize was used to select an S. frugiperda strain (RR) able to survive on the Bt maize event MON 89034, which expresses the Cry1A.105 and Cry2Ab2 proteins. Field-collected insects from maize expressing the Cry1F protein (event TC1507) represented most of the positive (resistance allele-containing) (iso)families found. The RR strain showed high levels of resistance to Cry1F, which apparently also conferred high levels of cross resistance to Cry1A.105 and Cry1Ab, but had only low-level (10-fold) resistance to Cry2Ab2. Life history studies to investigate fitness costs associated with the resistance in RR strain revealed only small reductions in reproductive rate when compared to susceptible and heterozygous strains, but the RR strain produced 32.2% and 28.4% fewer females from each female relative to the SS and RS (pooled) strains, respectively. Consistent with the lack of significant resistance to Cry2Ab2, MON 89034 maize in combination with appropriate management practices continues to provide effective control of S. frugiperda in Brazil. Nevertheless, the occurrence of Cry1F resistance in S. frugiperda across Brazil, and the cross-resistance to Cry1Ab and Cry1A.105, indicates that current Cry1-based maize hybrids face a challenge in managing S. frugiperda in Brazil and highlights the importance of effective insect resistance management for these technologies.  相似文献   

8.
Crops producing insecticidal toxins derived from the bacterium Bacillus thuringiensis (Bt) are widely planted to manage insect pests. Bt crops can provide an effective tool for pest management; however, the evolution of Bt resistance can diminish this benefit. The European corn borer, Ostrinia nubilalis Hübner, is a significant pest of maize and is widely managed with Bt maize in the Midwest of the United States. When Bt crops are grown in conjunction with non‐Bt refuges, fitness costs of Bt resistance can delay the evolution of resistance. Importantly, fitness costs often vary with ecological factors, including host‐plant genotype and diapause. In this study, we examined fitness costs associated with Cry1F resistance in O. nubilalis when insects were reared on three maize lines. Fitness costs were tested in two experiments. One experiment assessed the fitness costs when Cry1F‐resistant and Cry1F‐susceptible insects were reared on plants as larvae and experienced diapause. The second experiment tested resistant, susceptible and F1 heterozygotes that were reared on plants but did not experience diapause. Despite some evidence of greater adult longevity for Cry1F‐resistant insects, these insects produced fewer fertile eggs than Cry1F‐susceptible insects, and this occurred independent of diapause. Reduced fecundity was not detected among heterozygous individuals, which indicated that this fitness cost was recessive. Additionally, maize lines did not affect the magnitude of this fitness cost. The lower fitness of Cry1F‐resistant O. nubilalis may contribute to the maintenance of Cry1F susceptibility in field populations more than a decade after Cry1F maize was commercialized.  相似文献   

9.
The ecological implications on biological control of insecticidal transgenic plants, which produce crystal (Cry) proteins derived from the soil bacterium Bacillus thuringiensis (Bt), remains a contentious issue and affects risk assessment decisions. In this study, we used a unique system of resistant insects, Bt plants and a predator to critically evaluate this issue. The effects of broccoli type (normal or expressing Cry1Ac protein) and insect genotype (susceptible or Cry1Ac-resistant) of Plutella xylostella L. (Lepidoptera: Plutellidae) were examined for their effects on the life history of the predator, Coleomegilla maculata DeGeer (Coleoptera: Coccinellidae) over two generations. Additional behavioral studies were conducted on prey choice. C. maculata could not discriminate between Bt-resistant and susceptible genotypes of P. xylostella, nor between Bt and normal broccoli plants with resistant genotypes of P. xylostella feeding on them. The larval and pupal period, adult weight and fecundity of each female were not significantly different when C. maculata larvae fed on different genotypes (Bt-resistant or susceptible) of insect prey larvae reared on Bt or non-Bt broccoli plants. The life-history parameters of the subsequent generation of C. maculata fed on Bt broccoli-reared resistant P. xylostella were also not significantly different from those on non-Bt broccoli. These results indicated that Cry1Ac did not harm the life history or prey acceptance of an important predator after two generations of exposure. Plants expressing Cry1Ac are unlikely to affect this important predator in the field.  相似文献   

10.
The ladybird beetle, Coleomegilla maculata (DeGeer), is a common and abundant predator in many cropping systems. Its larvae and adults are predaceous, feeding on aphids, thrips, lepidopteran larvae and plant tissues, such as pollen. Therefore, this species is exposed to insecticidal proteins expressed in insect-resistant, genetically engineered cotton expressing Cry proteins derived from Bacillus thuringiensis (Bt). A tritrophic bioassay was conduced to evaluate the potential impact of Cry2Ab- and Cry1Ac-expressing cotton on fitness parameters of C. maculata using Bt-susceptible and -resistant larvae of Trichoplusia ni as prey. Coleomegilla maculata survival, development time, adult weight and fecundity were not different when they were fed with resistant T. ni larvae reared on either Bt or control cotton. To ensure that C. maculata were not sensitive to the tested Cry toxins independent from the plant background and to add certainty to the hazard assessment, C. maculata larvae were fed artificial diet incorporated with Cry2Ab, Cry1Ac or both at >10 times higher concentrations than in cotton tissue. Artificial diet containing E-64 was included as a positive control. No differences were detected in any life-table parameters between Cry protein-containing diet treatments and the control diet. In contrast, larvae of C. maculata fed the E-64 could not develop to the pupal stage and the 7-d larval weight was significantly negatively affected. In both feeding assays, the stability and bioactivity of Cry proteins in the food sources were confirmed by ELISA and sensitive-insect bioassays. Our results show that C. maculata is not affected by Bt cotton and is not sensitive to Cry2Ab and Cry1Ac at concentrations exceeding the levels in Bt cotton, thus demonstrating that Bt cotton will pose a negligible risk to C. maculata. More importantly, this study demonstrates a comprehensive system for assessing the risk of genetically modified plants on non-target organisms.  相似文献   

11.
Transgenic corn, Zea mays L., expressing the Bacillus thuringiensis Berliner (Bt) protein Cry1F has been registered for Spodoptera frugiperda (J. E. Smith) control since 2003 in the USA. Unexpected damage to Cry1F corn was reported in 2006 in Puerto Rico, and Cry1F resistance in S. frugiperda from Puerto Rico was documented. The study of fitness costs associated with insect resistance to Bt insecticidal proteins is important for understanding resistance evolution and for evaluating resistance management practices used to mitigate resistance to transgenic corn. Currently, no studies have addressed the fitness costs associated with Cry1F resistance in S. frugiperda. In this study, susceptible and resistant strains with similar genetic background and their reciprocal crosses were used to estimate Cry1F resistance fitness costs. Comparisons between life‐history traits and population growth rates of homozygous susceptible, heterozygous and homozygous resistant S. frugiperda were used to determine whether the resistance is associated with fitness costs. Major fitness costs were not apparent in either heterozygotes or homozygous resistant insects. However, there was a slight indication of hybrid vigour in the heterozygotes. Additionally, two lines in which the frequency of the resistant alleles was fixed at 0.5 were followed for seven generations, after which the frequency of resistant alleles slightly decreased in both lines. The lack of strong fitness costs associated with Cry1F resistance in S. frugiperda indicates that initial allele frequencies may be higher than expected in field populations and will tend to remain stable in field populations in the absence of selection pressure (e.g. Puerto Rico).  相似文献   

12.
Understanding the behavior of pests targeted with Bacillus thuringiensis Berliner (Bt) crops is important to define resistance management strategies. Particularly the study of larval movement between plants is important to determine the feasibility of refuge configurations. Exposure to Bt maize, Zea mays L. (Poaceae), has been suggested to increase larval movement in lepidopteran species but few studies have examined the potential for resistance to interact with behavioral responses to Bt toxins. Choice and no‐choice experiments were conducted with Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae) and Ostrinia nubilalis (Hübner) (Lepidoptera: Crambidae) to determine whether Cry1F resistance influences neonate movement. Leaf discs of Cry1F maize and the corresponding isoline were used to characterize behavioral responses. In both experiments, the location (on or off of plant tissues) and mortality of susceptible and Cry1F resistant neonates was recorded for 5 days, but the analysis of larvae location was performed until 7 h. Our results indicated no strong difference between resistant and susceptible phenotypes in S. frugiperda and O. nubilalis, although a small percentage of susceptible neonates in both species abandoned maize tissue expressing Cry1F. However, significant behavioral differences were observed between species. Ostrinia nubilalis exhibited increased movement between leaf discs, whereas S. frugiperda selected plant tissue within the first 30 min and remained on the chosen plant regardless of the presence of Cry1F. Spodoptera frugiperda reduced larval movement may have implications to refuge configuration. This study represents the first step toward understanding the effects of Cry1F resistance on Lepidoptera larval behavior. Information regarding behavioral differences between species could aid in developing better and more flexible resistance management strategies.  相似文献   

13.
A recent shift in managing insect resistance to genetically engineered (GE) maize consists of mixing non-GE seed with GE seed known as “refuge in a bag”, which increases the likelihood of predators encountering both prey fed Bt and prey fed non-Bt maize. We therefore conducted laboratory choice-test feeding studies to determine if a predator, Harmonia axyridis, shows any preference between prey fed Bt and non-Bt maize leaves. The prey species was Spodoptera frugiperda, which were fed Bt maize (MON-810), expressing the single Cry1Ab protein, or non-Bt maize. The predators were third instar larvae and female adults of H. axyridis. Individual predators were offered Bt and non-Bt fed prey larvae that had fed for 24, 48 or 72 h. Ten and 15 larvae of each prey type were offered to third instar and adult predators, respectively. Observations of arenas were conducted at 1, 2, 3, 6, 15 and 24 h after the start of the experiment to determine the number and type of prey eaten by each individual predator. Prey larvae that fed on non-Bt leaves were significantly larger than larvae fed Bt leaves. Both predator stages had eaten nearly all the prey by the end of the experiment. However, in all combinations of predator stage and prey age, the number of each prey type consumed did not differ significantly. ELISA measurements confirmed the presence of Cry1Ab in leaf tissue (23–33 µg/g dry weight) and S. frugiperda (2.1–2.2 µg/g), while mean concentrations in H. axyridis were very low (0.01–0.2 µg/g). These results confirm the predatory status of H. axyridis on S. frugiperda and that both H. axyridis adults and larvae show no preference between prey types. The lack of preference between Bt-fed and non-Bt-fed prey should act in favor of insect resistance management strategies using mixtures of GE and non-GE maize seed.  相似文献   

14.
Dietary exposure studies are initial steps in environmental risk assessments of genetically engineered plants on non‐target organisms. These studies are conducted in the laboratory where surrogate species are exposed to purified and biologically active insecticidal compounds at higher concentrations than those expected to occur in transgenic crops foliage. Thus, dietary exposure (early tier) tests provide robust data needed to make general conclusions about the susceptibility of the surrogate species to the test substance. For this, we developed suitable artificial diet and used it to establish a dietary exposure test for assessing the toxicity of midgut‐active insecticidal compounds to the larvae of the Asian ladybird beetle Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae). Using boric acid as a model compound, we validated the bioassay established for H. axyridis larvae. An artificial diet containing boric acid which negatively affected survival, development and adult weights was offered to larvae and indicated that the bioassay was able to detect toxic effects of insecticidal substances incorporated in diets. Using this dietary exposure test, environmental risk assessment of Cry1Ac, Cry2Ab, Cry1Ca, Cry1F and the non‐Cry protein Vip3Aa was evaluated by analysing pupation rates, adult emergence rates, 7‐day larval weights, and freshly emerged male and female weights among the toxin treatments and a pure artificial diet. These life‐table parameters did not vary among artificial diets containing 200 μg/g Bt proteins or pure artificial diet. In contrast, boric acid adversely affected all life‐table parameters. Thus on these bases, we concluded H. axyridis larvae are not sensitive to these Bt proteins expressed in genetically engineered crops.  相似文献   

15.
With the cultivation of Bt cotton, the produced insecticidal Cry proteins are ingested by herbivores and potentially transferred along the food chain to natural enemies, such as predators. In laboratory experiments with Bollgard II cotton, concentrations of Cry1Ac and Cry2Ab were measured in Lepidoptera larvae (Spodoptera littoralis, Heliothis virescens), plant bugs (Euschistus heros), aphids (Aphis gossypii), whiteflies (Bemisia tabaci), thrips (Thrips tabaci, Frankliniella occidentalis), and spider mites (Tetranychus urticae). Tritrophic experiments were conducted with caterpillars of S. littoralis as prey and larvae of ladybird beetles (Harmonia axyridis, Adalia bipunctata) and lacewings (Chrysoperla carnea) as predators. Immunological measurements (ELISA) indicated that herbivores feeding on Bt cotton contained 5%–50% of the Bt protein concentrations in leaves except whiteflies and aphids, which contained no or only traces of Bt protein, and spider mites, which contained 7 times more Cry1Ac than leaves. Similarly, predators contained 1%–30% of the Cry protein concentration in prey. For the nontarget risk assessment, this indicates that Bt protein concentrations decrease considerably from one trophic level to the next in the food web, except for spider mites that contain Bt protein concentrations higher than those measured in the leaves. Exposure of phloem sucking hemipterans is negligible.  相似文献   

16.
Fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), is a target species of transgenic corn (Zea mays L.) that expresses single and pyramided Bacillus thuringiensis (Bt) toxin. In 2014, S. frugiperda were collected from a light trap in North Carolina, and a total of 212 F1/F2 isofemale lines of S. frugiperda were screened for resistance to Bt and non-Bt corn. All of the 212 isolines were susceptible to corn tissue expressing Cry1A.105 + Cry2Ab, Cry1F + Cry1A.105 + Cry2Ab, and Cry1F + Cry1Ab + Vip3Aa20. Growth rate bioassays were performed to isolate non-recessive Bt resistance alleles. Seven individuals out of the 212 isofemale lines carried major non-recessive alleles conferring resistance to Cry1F. A pooled colony was created from the seven individuals. This colony was 151.21 times more resistant to Cry1F than a known-susceptible population and was also resistant to Cry1A.105, but was not resistant to Cry2Ab and Vip3Aa20. The results demonstrate that field populations of S. frugiperda collected from North Carolina are generally susceptible to Cry1F, but that some individuals carry resistant alleles. The data generated in this study can be used as baseline data for resistance monitoring.  相似文献   

17.
Evolution of resistance by insect pests is the greatest threat to the continued success of Bacillus thuringiensis (Bt) toxins used in insecticide formulations or expressed by transgenic crop plants such as Cry1F‐expressing maize [(Zea mays L.) (Poaceae)]. A strain of European corn borer, Ostrinia nubilalis (Hübner) (Lepidoptera: Crambidae), obtained from field collections throughout the central US Corn Belt in 1996 was selected in the laboratory for resistance to Cry1F by exposure to the toxin incorporated into artificial diet. The selected strain developed more than 3000‐fold resistance to Cry1F after 35 generations of selection and readily consumed Cry1F expressing maize tissue; yet, it was as susceptible to Cry1Ab and Cry9C as the unselected control strain. Only a low level of cross‐resistance (seven‐fold) to Cry1Ac was observed. These lacks of cross‐resistance between Cry1F and Cry1Ab suggest that maize hybrids expressing these two toxins are likely to be compatible for resistance management of O. nubilalis.  相似文献   

18.
Brazil ranked second only to the United States in hectares planted to genetically modified crops in 2013. Recently corn producers in the Cerrado region reported that the control of Spodoptera frugiperda with Bt corn expressing Cry1Fa has decreased, forcing them to use chemicals to reduce the damage caused by this insect pest. A colony of S. frugiperda was established from individuals collected in 2013 from Cry1Fa corn plants (SfBt) in Brazil and shown to have at least more than ten-fold higher resistance levels compared with a susceptible colony (Sflab). Laboratory assays on corn leaves showed that in contrast to SfLab population, the SfBt larvae were able to survive by feeding on Cry1Fa corn leaves. The SfBt population was maintained without selection for eight generations and shown to maintain high levels of resistance to Cry1Fa toxin. SfBt showed higher cross-resistance to Cry1Aa than to Cry1Ab or Cry1Ac toxins. As previously reported, Cry1A toxins competed the binding of Cry1Fa to brush border membrane vesicles (BBMV) from SfLab insects, explaining cross-resistance to Cry1A toxins. In contrast Cry2A toxins did not compete Cry1Fa binding to SfLab-BBMV and no cross-resistance to Cry2A was observed, although Cry2A toxins show low toxicity to S. frugiperda. Bioassays with Cry1AbMod and Cry1AcMod show that they are highly active against both the SfLab and the SfBt populations. The bioassay data reported here show that insects collected from Cry1Fa corn in the Cerrado region were resistant to Cry1Fa suggesting that resistance contributed to field failures of Cry1Fa corn to control S. frugiperda.  相似文献   

19.
The fall armyworm, Spodoptera frugiperda (J.E. Smith), is a major target pest of Bt crops (e.g., corn, cotton, and soybean) in North and South America. This pest has recently invaded Africa and Asia including China and the invasion has placed a great threat to the food security in many countries of these two continents. Due to the extensive use of Bt crops, practical resistance of S. frugiperda to Cry1F corn (TC 1507) with field control problems has widely occurred in Puerto Rico, Brazil, Argentina, and the mainland United States. Analyzing data generated from decade-long studies showed that several factors might have contributed to the wide development of the resistance. These factors include (1) limited modes of action of Bt proteins used in Bt crops; (2) cross-resistance among Cry1 proteins; (3) use of nonhigh dose Bt crop traits; (4) that the resistance is complete on Bt corn plants; (5) abundant in initial Cry1F resistance alleles; and (6) lack of fitness costs/recessive fitness costs of the resistance. The long-term use of Bt crop technology in the Americas suggests that Bt corn can be an effective tool for controlling S. frugiperda in China. IRM programs for Bt corn in China should be as simple as possible to be easily adopted by small-scale growers. The following aspects may be considered in its Bt corn IRM programs: (1) use of only “high dose” traits for both S. frugiperda and stalk borers; (2) developing and implementing a combined resistance monitoring program; (3) use “gene pyramiding” as a primary IRM strategy; and (4) if possible, Bt corn may not be planted in the areas where S. frugiperda overwinters. Lessons and experience gained from the global long-term use of Bt crops should have values in improving IRM programs in the Americas, as well as for a sustainable use of Bt corn technology in China.  相似文献   

20.
A major assumption of the high-dose/refuge strategy proposed for insect resistance management strategies for transgenic crop plants that express toxins from Bacillus thuringiensis is that resistance traits that evolve in pest species will be recessive. The inheritance of Cry1F resistance and larval survival on commercially available Cry1F corn hybrids were determined in a laboratory-selected strain of European corn borer, Ostrinia nubilalis (Hübner), displaying more than 3000-fold resistance to Cry1F. Concentration-response bioassays of reciprocal parental crosses indicated that the resistance is autosomal and recessive. Bioassays of the backcross of the F1 generation with the selected strain were consistent with the hypothesis that a single locus, or a set of tightly linked loci, is responsible for the resistance. Greenhouse experiments with Cry1F-expressing corn hybrids indicated that some resistant larvae survived the high dose of toxin delivered by Cry1F-expressing plants although F1 progeny of susceptible by resistant crosses had fitness close to zero. These results provide the first direct evidence that the high dose/refuge strategy currently in place to manage resistance in Cry1F-expressing corn is appropriate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号