首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experiments using functional neuroimaging and transcranial magnetic stimulation in humans have revealed regions of the parietal lobes that are specialized for particular visuomotor actions, such as reaching, grasping and eye movements. In addition, the human parietal cortex is recruited by processing and perception of action-related information, even when no overt action occurs. Such information can include object shape and orientation, knowledge about how tools are employed and the understanding of actions made by other individuals. We review the known subregions of the human posterior parietal cortex and the principles behind their organization.  相似文献   

2.
Nitz DA 《Neuron》2006,49(5):747-756
Quick and efficient traversal of learned routes is critical to the survival of many animals. Routes can be defined by both the ordering of navigational epochs, such as continued forward motion or execution of a turn, and the distances separating them. The neural substrates conferring the ability to fluidly traverse complex routes are not well understood, but likely entail interactions between frontal, parietal, and rhinal cortices and the hippocampus. This paper demonstrates that posterior parietal cortical neurons map both individual and multiple navigational epochs with respect to their order in a route. In direct contrast to spatial firing patterns of hippocampal neurons, parietal neurons discharged in a place- and direction-independent fashion. Parietal route maps were scalable and versatile in that they were independent of the size and spatial configuration of navigational epochs. The results provide a framework in which to consider parietal function in spatial cognition.  相似文献   

3.
Adopting an unusual posture can sometimes give rise to paradoxical experiences. For example, the subjective ordering of successive unseen tactile stimuli delivered to the two arms can be affected when people cross them. A growing body of evidence now highlights the role played by the parietal cortex in spatio-temporal information processing when sensory stimuli are delivered to the body or when actions are executed; however, little is known about the neural basis of such paradoxical feelings resulting from such unusual limb positions. Here, we demonstrate increased fMRI activation in the left posterior parietal cortex when human participants adopted a crossed hands posture with their eyes closed. Furthermore, by assessing tactile temporal order judgments (TOJs) in the same individuals, we observed a positive association between activity in this area and the degree of reversal in TOJs resulting from crossing arms. The strongest positive association was observed in the left intraparietal sulcus. This result implies that the left posterior parietal cortex may be critically involved in monitoring limb position and in spatio-temporal binding when serial events are delivered to the limbs.  相似文献   

4.
A touch on one hand can enhance the response to a visual stimulus delivered at a nearby location [1, 2], improving our interactions with the external world. In order to keep such visual-tactile spatial interactions effective, the brain updates the continuous postural changes, like those typically accompanying hand actions, through proprioception, thus maintaining the somatosensory and visual maps in spatial register [2, 3]. The posterior parietal cortex (PPC) might be critical for such a spatial remapping [4]; nevertheless, a direct causal demonstration of its involvement is lacking. Here, we found that unattended touches to one hand enhanced visual sensitivity for phosphenes induced by occipital trancranial magnetic stimulation (TMS) [5] when the touched hand was spatially coincident to the reported location of the phosphenes in external space. Notably, this spatially specific crossmodal facilitation was maintained after hand crossing, suggesting an efficient visual-tactile remapping. Critically, after 1 Hz repetitive TMS interference [6] over the PPC, but not over the primary somatosensory cortex, phosphene detection was still enhanced by spatially coincident touches with uncrossed hands, but it was enhanced by spatially noncoincident touches after hand crossing. This is the first causal evidence in humans that the PPC constantly updates the representation of the body in space in order to facilitate crossmodal interactions.  相似文献   

5.
Leon MI  Shadlen MN 《Neuron》2003,38(2):317-327
The neural basis of time perception is unknown. Here we show that neurons in the posterior parietal cortex (area LIP) represent elapsed time relative to a remembered duration. We trained rhesus monkeys to report whether the duration of a test light was longer or shorter than a remembered "standard" (316 or 800 ms) by making an eye movement to one of two choice targets. While timing the test light, the responses of LIP neurons signaled changes in the monkey's perception of elapsed time. The variability of the neural responses explained the monkey's uncertainty about its temporal judgments. Thus, in addition to their role in spatial processing and sensorimotor integration, posterior parietal neurons encode signals related to the perception of time.  相似文献   

6.
The posterior parietal cortex has long been considered an ''association'' area that combines information from different sensory modalities to form a cognitive representation of space. However, until recently little has been known about the neural mechanisms responsible for this important cognitive process. Recent experiments from the author''s laboratory indicate that visual, somatosensory, auditory and vestibular signals are combined in areas LIP and 7a of the posterior parietal cortex. The integration of these signals can represent the locations of stimuli with respect to the observer and within the environment. Area MSTd combines visual motion signals, similar to those generated during an observer''s movement through the environment, with eye-movement and vestibular signals. This integration appears to play a role in specifying the path on which the observer is moving. All three cortical areas combine different modalities into common spatial frames by using a gain-field mechanism. The spatial representations in areas LIP and 7a appear to be important for specifying the locations of targets for actions such as eye movements or reaching; the spatial representation within area MSTd appears to be important for navigation and the perceptual stability of motion signals.  相似文献   

7.
Orchestrating a movement towards a sensory target requires many computational processes, including a transformation between reference frames. This transformation is important because the reference frames in which sensory stimuli are encoded often differ from those of motor effectors. The posterior parietal cortex has an important role in these transformations. Recent work indicates that a significant proportion of parietal neurons in two cortical areas transforms the sensory signals that are used to guide movements into a common reference frame. This common reference frame is an eye-centred representation that is modulated by eye-, head-, body- or limb-position signals. A common reference frame might facilitate communication between different areas that are involved in coordinating the movements of different effectors. It might also be an efficient way to represent the locations of different sensory targets in the world.  相似文献   

8.
The cortical local field potential (LFP) is a summation signal of excitatory and inhibitory dendritic potentials that has recently become of increasing interest. We report that LFP signals in the parietal reach region (PRR) of the posterior parietal cortex of macaque monkeys have temporal structure that varies with the type of planned or executed motor behavior. LFP signals from PRR provide better decode performance for reaches compared to saccades and have stronger coherency with simultaneously recorded spiking activity during the planning of reach movements than during saccade planning. LFP signals predict the animal's behavioral state (e.g., planning a reach or saccade) and the direction of the currently planned movement from single-trial information. This new evidence provides further support for a role of the parietal cortex in movement planning and the potential application of LFP signals for a brain-machine interface.  相似文献   

9.
Stoet G  Snyder LH 《Neuron》2004,42(6):1003-1012
The primate posterior parietal cortex (PPC), part of the dorsal visual pathway, is best known for its role in encoding salient spatial information. Yet there are indications that neural activity in the PPC can also be modulated by nonspatial task-related information. In this study, we tested whether neurons in the PPC encode signals related to cognitive set, that is, the preparation to perform a particular task. Cognitive set has previously been associated with the frontal cortex but not the PPC. In this study, monkeys performed a cognitive set shifting paradigm in which they were cued in advance to apply one of two different task rules to the subsequent stimulus on every trial. Here we show that a subset of neurons in the PPC, concentrated in the lateral bank of the intraparietal sulcus and on the angular gyrus, responds selectively to cues for different task rules.  相似文献   

10.
The neural mechanisms underlying the craniotopic updating of visual space across saccadic eye movements are poorly understood. Previous single-unit recording studies in primates and clinical studies in brain-damaged patients have shown that the posterior parietal cortex (PPC) has a key role in this process. In the present study, we used single-pulse transcranial magnetic stimulation (TMS) to disrupt the processing within the PPC during a task that requires craniotopic updating: double saccades. In this task, two targets are presented in quick succession and the subject is required to make a saccade to each location as accurately as possible. We show here that TMS delivered to the PPC just prior to the second saccade effectively disrupts the craniotopic coding normally observed in this task. This causes subjects to revert to saccades more consistent with a representation of the targets based on their positions relative to one another. By contrast, stimulation at earlier times between the two saccades did not disrupt performance. These results suggest that extraretinal information generated during the first perisaccadic period is not put into functional use until just prior to the second saccade.  相似文献   

11.
12.
Lesion to the posterior parietal cortex in monkeys and humans produces spatial deficits in movement and perception. In recording experiments from area 7a, a cortical subdivision in the posterior parietal cortex in monkeys, we have found neurons whose responses are a function of both the retinal location of visual stimuli and the position of the eyes in the orbits. By combining these signals area 7 a neurons code the location of visual stimuli with respect to the head. However, these cells respond over only limited ranges of eye positions (eye-position-dependent coding). To code location in craniotopic space at all eye positions (eye-position-independent coding) an additional step in neural processing is required that uses information distributed across populations of area 7a neurons. We describe here a neural network model, based on back-propagation learning, that both demonstrates how spatial location could be derived from the population response of area 7a neurons and accurately accounts for the observed response properties of these neurons.  相似文献   

13.
When searching for an object, we usually avoid items that are visually different from the target and objects or places that have been searched already. Previous studies have shown that neural activity in the lateral intraparietal area (LIP) can be used to guide this behaviour; responses to task irrelevant stimuli or to stimuli that have been fixated previously in the trial are reduced compared with responses to potential targets. Here, we test the hypothesis that these reduced responses have a different genesis. Two animals were trained on a visual foraging task, in which they had to find a target among a number of physically identical potential targets (T) and task irrelevant distractors. We recorded neural activity and local field potentials (LFPs) in LIP while the animals performed the task. We found that LFP power was similar for potential targets and distractors but was greater in the alpha and low beta bands when a previously fixated T was in the response field. We interpret these data to suggest that the reduced single-unit response to distractors is a bottom-up feed-forward result of processing in earlier areas and the reduced response to previously fixated Ts is a result of active top-down suppression.  相似文献   

14.
Dean HL  Hagan MA  Pesaran B 《Neuron》2012,73(4):829-841
Here, we report that temporally patterned, coherent spiking activity in the posterior parietal cortex (PPC) coordinates the timing of looking and reaching. Using a spike-field approach, we identify a population of parietal area LIP neurons that fire spikes coherently with 15 Hz beta-frequency LFP activity. The firing rate of coherently active neurons predicts the reaction times (RTs) of coordinated reach-saccade movements but not of saccades when made alone. Area LIP neurons that do not fire coherently do not predict RT of either movement type. Similar beta-band LFP activity is present in the parietal reach region but not nearby visual area V3d. This suggests that coherent spiking activity in PPC can control reaches and saccades together. We propose that the neural mechanism of coordination involves a shared representation that acts to slow or speed movements together.  相似文献   

15.
The posterior parietal cortex (PPC) participates in cognitive processes including working memory (WM), sensory evidence accumulation, and perceptually guided decision making. However, surprisingly little work has used temporally precise manipulations to dissect its role in different epochs of behavior taking place over short timespans, such as WM tasks. As a result, a consistent view of the temporally precise role of the PPC in these processes has not been described. In the present study, we investigated the temporally specific role of the PPC in the Trial-Unique, Nonmatching-to-Location (TUNL) task, a touchscreen-based, visuospatial WM task that relies on the PPC. To disrupt PPC activity in a temporally precise manner, we applied mild intracranial electrical stimulation (ICES). We found that intra-PPC ICES (100 μA) significantly impaired accuracy in TUNL without significantly altering response latency. Moreover, we found that the impairment was specific to ICES applied during the delay and test phases of TUNL. Consistent with previous reports showing delay- and choice-specific neuronal activity in the PPC, the results provide evidence that the rat PPC is required for maintaining memory representations of stimuli over a delay period as well as for making successful comparisons and choices between test stimuli. In contrast, the PPC appears not to be critical for initial encoding of sample stimuli. This pattern of results may indicate that early encoding of visual stimuli is independent of the PPC or that the PPC becomes engaged only when visual stimuli are spatially complex or involve memory or decision making.  相似文献   

16.
17.
Coulthard EJ  Nachev P  Husain M 《Neuron》2008,58(1):144-157
Flexible behavior in humans often requires that rapid choices be made between conflicting action plans. Although much attention has focused on prefrontal regions, little is understood about the contribution of parietal cortex under situations of response conflict. Here we show that right parietal damage associated with spatial neglect leads to paradoxical facilitation (speeding) of rightward movements in the presence of conflicting leftward response plans. These findings indicate a critical role for parietal regions in action planning when there is response competition. In contrast, patients with prefrontal damage have an augmented cost of conflict for both leftward and rightward movements. The results suggest involvement of two independent systems in situations of response conflict, with right parietal cortex being a crucial site for automatic activation of competing motor plans and prefrontal regions acting independently to inhibit action plans irrelevant to current task goals.  相似文献   

18.
Phosphenes are commonly evoked by transcranial magnetic stimulation (TMS) to study the functional organization, connectivity, and excitability of the human visual brain. For years, phosphenes have been documented only from stimulating early visual areas (V1-V3) and a handful of specialized visual regions (V4, V5/MT+) in occipital cortex. Recently, phosphenes were reported after applying TMS to a region of posterior parietal cortex involved in the top-down modulation of visuo-spatial processing. In the present study, we systematically characterized parietal phosphenes to determine if they are generated directly by local mechanisms or emerge through indirect activation of other visual areas. Using technology developed in-house to record the subjective features of phosphenes, we found no systematic differences in the size, shape, location, or frame-of-reference of parietal phosphenes when compared to their occipital counterparts. In a second experiment, discrete deactivation by 1 Hz repetitive TMS yielded a double dissociation: phosphene thresholds increased at the deactivated site without producing a corresponding change at the non-deactivated location. Overall, the commonalities of parietal and occipital phosphenes, and our ability to independently modulate their excitability thresholds, lead us to conclude that they share a common neural basis that is separate from either of the stimulated regions.  相似文献   

19.
The representation of perceptual space in the posterior parietal cortex can be divided into at least two categories: far space, beyond arm's reach, and peripersonal space, within arm's reach. These are encoded by different groups of neurons that are closely related to the control of gaze and the guidance of arm and hand movement, respectively.  相似文献   

20.
The subplate is a transient zone of the developing cerebral cortex through which postmitotic neurons migrate and growing axons elongate en route to their adult positions within the cortical plate. To learn more about the cellular interactions that occur in this zone, we have examined whether fibronectins (FNs), a family of molecules known to promote migration and elongation in other systems, are present during the fetal and postnatal development of the cat's cerebral cortex. Three different anti-FN antisera recognized a single broad band with an apparent molecular mass of 200-250 kD in antigen-transfer analyses (reducing conditions) of plasma-depleted (perfused) whole fetal brain or synaptosome preparations, indicating that FNs are present at these ages. This band can be detected as early as 1 mo before birth at embryonic day 39. Immunohistochemical examination of the developing cerebral cortex from animals between embryonic day 46 and postnatal day 7 using any of the three antisera revealed that FN-like immunoreactivity is restricted to the subplate and the marginal zones, and is not found in the cortical plate. As these zones mature into their adult counterparts (the white matter and layer 1 of the cerebral cortex), immunostaining gradually disappears and is not detectable by postnatal day 70. Previous studies have shown that the subplate and marginal zones contain a special, transient population of neurons (Chun, J. J. M., M. J. Nakamura, and C. J. Shatz. 1987. Nature (Lond.). 325:617-620). The FN-like immunostaining in the subplate and marginal zone is closely associated with these neurons, and some of the immunostaining delineates them. Moreover, the postnatal disappearance of FN-like immunostaining from the subplate is correlated spatially and temporally with the disappearance of the subplate neurons. When subplate neurons are killed by neurotoxins, FN-like immunostaining is depleted in the lesioned area. These observations show that an FN-like molecule is present transiently in the subplate of the developing cerebral cortex and, further, is spatially and temporally correlated with the transient subplate neurons. The presence of FNs within this zone, but not in the cortical plate, suggests that the extracellular milieu of the subplate mediates a unique set of interactions required for the development of the cerebral cortex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号