首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A cDNA library prepared from pea nodule poly(A)+ RNA was screened by differential hybridization with cDNA probes synthesized from root and nodule RNA respectively. From the cDNA clones that hybridized exclusively with the nodule probe five clones, designated pPsNod 6, 10, 11, 13 and 14 and each containing unique sequences, were further characterized together with one leghemoglobin and one root-specific cDNA clone. In vitro translation of RNA selected by the pPsNod clones showed that the corresponding genes encode nodulins with molecular weights ranging from 5 800 to 19 000. During pea root nodule development expression of the five PsNod genes starts more or less concomitantly with the onset of nitrogen fixing activity in the nodules and the time course of appearance and accumulation of the nodulin mRNAs is similar to that of leghemoglobin mRNA. In ineffective pea root nodules expression of the PsNod genes is induced but the final accumulation levels of the mRNAs are markedly reduced to various degrees. The expression of another nodulin gene, designated ENOD2, was followed using a heterologous soybean cDNA clone as probe. In pea root nodules the ENOD2 gene is expressed at least five days before the PsNod and leghemoglobin genes, and in contrast to the PsNod mRNAs the concentration of the ENOD2 mRNA is the same in wild type and fix - nodules. The results described suggest that in root nodules several regulatory mechanisms exist which determine the final nodulin mRNA amounts accumulating in the root nodule.  相似文献   

2.
Nodulin gene expresison was studied in Vicia sativa (common vetch) root nodules induced by several Rhizobium and Agrobacterium strains. An Agrobacterium transconjugant containing a R. leguminosarum symplasmid instead of its Ti-plasmid, that was previously shown to form empty nodules on pea, induced nodules on Vicia roots in which nodule cells were infected with bacteria. In the Vicia nodules induced by this transconjugant, two so-called early nodulin genes were found to be expressed, whereas in the nodules formed on pea the expression of only one early nodulin gene was detected. In both cases the majority of the nodulin genes was not expressed.Apparently, an intracellular location of the bacteria is not sufficient for the induction of the majority of the nodulin genes. All nodulin genes were expressed in nodules induced by cured Rhizobium strains containing cosmid clones that have a 10 kb nod region of the sym-plasmid in common. Since in tumours no nodulin gene expression was found at all, the Agrobacterium chromosome does not contribute to the induction of nodulin genes. Therefore it is concluded that the signal for the induction of the expression of the two Vicia early nodulin genes is encoded by the nod-region, and the signal involved in the induction of all other nodulin genes has to be located outside the sym-plasmid, on the Rhizobium chromosome. The apparent difference in early nodulin gene expression between pea and Vicia is discussed in the light of the usefulness of Agrobacterium transconjugants in the study of nodulin gene expression.  相似文献   

3.
Nodule-specific root proteins – so called nodulins – were identified in root nodules of pea plants by an immunological assay. Nodulin patterns were examined at different stages of nodule development. About 30 nodulins were detectable during development. Some were preferentially synthesized before nitrogen fixation started, whereas the majority were synthesized concomitantly with leghaemoglobin. Some of the nodulins were located within the peribacteroid membrane. Ineffective Rhizobium strains (a natural nod+fix- and a pop -fix-) appeared to be useful in studying the expression of nodulin genes. Synthesis of some nodulins was repressed in ineffective root nodules, indicating that nodulins are essential for the establishment of nitrogen fixation. In both types of ineffective root nodules, leghaemoglobin synthesis was not completely repressed. Low amounts of leghaemoglobin were always detected in young ineffective root nodules whereas in old nodules no leghaemoglobin was present.  相似文献   

4.
Nodulin gene expression was analyzed in effective and ineffective root nodules of alfalfa (Medicago sativa L. cv Iroquois) elicited by three different Rhizobium meliloti mutants: an exoB mutant having defective acidic exopolysaccharide that does not fluoresce on plates containing the fluorescent brightener Calcofluor; fix21, a spontaneous mutant that has defective lipopolysaccharide and is Calcofluor bright; and a Rhizobium mutant resulting from a Tn5 insertion in the nifH gene of the nif operon. The ineffective nodules elicited by these various mutant rhizobia are blocked at different stages of nodule development and have unique phenotypes. A distinctive pattern of nodulin gene expression as determined by in vitro translations of total nodule RNA characterizes each nodule phenotype. Seventeen nodulins are found in effective nodules including five leghemoglobins. Only one nodulin gene is expressed in the bacteria-free nodules elicited by the exoB mutant. Other nodulin genes (leghemoglobin and nine others) are expressed in fix21-induced nodules. The genes for nodule-enhanced glutamine synthetase as well as for all the other nodulins are expressed in nodules induced by the nifH mutant. The expression of genes for the nodulins, including leghemoglobin, is independent of the nitrogen-fixing ability of the nodule and appears to correlate with the differentiation of densely cytoplasmic host cells in the nodule and, to some extent, with bacterial release from infection threads.  相似文献   

5.
Werner  Dietrich  Mörschel  Erhard  Kort  Renate  Mellor  Robert B.  Bassarab  Stephan 《Planta》1984,162(1):8-16
In nodules of Glycine max cv. Mandarin infected with a nod +fix- mutant of Rhizobium japonicum (RH 31-Marburg), lysis of bacteroids was observed 20 d after infection, but occurred in the region around the host cell nucleus, where lytic compartments were formed. Bacteroids, and peribacteroid membranes in other parts of the host cell remained stable until senescence (40d after infection). With two other nod+ fix- mutants of R. japonicum either stable bacteroids and peribacteroid membranes were observed throughout the cell (strain 61-A-165) or a rapid degeneration of bacteroids without an apparent lysis (strain USDA 24) occurred. The size distribution of RH 31-Marburg-infected nodules exhibited only two maxima compared with four in wild-type nodules and nodule leghaemoglobin content was found to be reduced to about one half that of the wild type. The RH 31-Marburg-nodule type is discussed in relation to the stability of the bacteroids and the peribacteroid membrane system in soybean.  相似文献   

6.
Summary A cDNA clone (pcPvNGS-01) to glutamine synthetase (GS) mRNA from root nodules of Phaseolus vulgaris showed cross-hybridization to GS and mRNA from soybean root nodules, thus allowing its use as a probe to study the expression of GS genes during root nodule development in soybeans. Hybrid-select translation of root and nodule RNA of soybean with DNA from pcPvNGS-01, followed by 2D gel electrophoresis, showed six peptides in the root and an additional four peptides in the nodule which represent nodule-specific glutamine synthetase (GSn) gene products. The GSn gene products appeared for the first time between day 11 and 12 after infection, either concomitant with the onset of nitrogenase activity or immediately following it. The levels of expression of the GSn and leghemoglobin genes were not affected in young Fix- nodules formed by Bradyrhizobium japonicum strains that are defective in nitrogenase activity, suggesting that the induction of these two sets of host genes take place independent of nitrogenase activity. However, in Fix- nodules that are incapable of maintaining the peribacteroid membrane, GSn gene products were not detected while 1ba, 1bc2 and 1bc3 appeared. In both the timing of appearance during root nodule development and the effect of different bacterial mutations on the expression, GSn genes differ from most other nodulin genes examined (30), suggesting different regulatory mechanisms.  相似文献   

7.
The establishment of the nitrogen‐fixing symbiosis between soybean and Bradyrhizobium japonicum is a complex process. To document the changes in plant metabolism as a result of symbiosis, we utilized laser ablation electrospray ionization‐mass spectrometry (LAESI‐MS) for in situ metabolic profiling of wild‐type nodules, nodules infected with a B. japonicum nifH mutant unable to fix nitrogen, nodules doubly infected by both strains, and nodules formed on plants mutated in the stearoyl‐acyl carrier protein desaturase (sacpd‐c) gene, which were previously shown to have an altered nodule ultrastructure. The results showed that the relative abundance of fatty acids, purines, and lipids was significantly changed in response to the symbiosis. The nifH mutant nodules had elevated levels of jasmonic acid, correlating with signs of nitrogen deprivation. Nodules resulting from the mixed inoculant displayed similar, overlapping metabolic distributions within the sectors of effective (fix+) and ineffective (nifH mutant, fix?) endosymbionts. These data are inconsistent with the notion that plant sanctioning is cell autonomous. Nodules lacking sacpd‐c displayed an elevation of soyasaponins and organic acids in the central necrotic regions. The present study demonstrates the utility of LAESI‐MS for high‐throughput screening of plant phenotypes. Overall, nodules disrupted in the symbiosis were elevated in metabolites related to plant defense.  相似文献   

8.
Ineffective nodules of peanut induced by two nod+fixstrains of Bradyrhizobium sp. were compared with the ones inducedby nod+fix+ strain NC92. One of the fix strains, 639is a transconjugate Tn5 mutant of NC92, while the other, 7091,is an isolate from ICRISAT soil. Both induce small nodules lackingleghemoglobin and nitrogen-fixing activity. Ultrastructuralobservations revealed that the nodules of 639, have enlargedperibacteroid space and lack persistence of nodule function.The 7091-induced nodules showed impediment in bacteroid releaseand differentiation. In both the ineffective nodules large amountsof lipid bodies were found to accumulate several times in excess,compared to the effective NC92 nodules. The large lipid accumulationin absence of nitrogen fixation supports the hypothesis thatin peanut nodules lipid bodies are utilized as a supplementarysource of carbon and energy for nitrogen fixation. Peanut, lipid bodies, nitrogen fixation, nod+fix Bradyrhizobium, ultrastructure  相似文献   

9.
Nodule formation on alfalfa (Medicago sativa L.) roots was determined at different inoculum dosages for wild-typeRhizobium meliloti strain RCR2011 and for various mutant derivatives with altered nodulation behavior. The number of nodules formed on the whole length of the primary roots was essentially constant regardless of initial inoculum dosage or subsequent bacterial multiplication, indicative of homeostatic regulation of total nodule number. In contrast, the number of nodules formed in just the initially susceptible region of these roots was sigmoidally dependent on the number of wild-type bacteria added, increasing rapidly at dosages above 5·103 bacteria/plant. This behavior indicates the possible existence of a threshold barrier to nodule initiation in the host which the bacteria must overcome. When low dosages of the parent (103 cells/plant) were co-inoculated with 106 cells/plant of mutants lacking functionalnodA, nodC, nodE, nodF ornodH genes, nodule initiation was increased 10- to 30-fold. Analysis of nodule occupancy indicated that these mutants were able to help the parent (wild-type) strain initiate nodules without themselves occupying the nodules. Co-inoculation withR. trifolii orAgrobacterium tumefaciens cured of its Ti plasmid also markedly stimulated nodule initiation by theR. meliloti parent strain. Introduction of a segment of the symbiotic megaplasmid fromR. meliloti intoA. tumefaciens abolished this stimulation.Bradyrhizobium japonicum and a chromosomal Tn5 nod- mutant ofR. meliloti did not significantly stimulate nodule initiation when co-inoculated with wild-typeR. meliloti. These results indicate that certainnod gene mutants and members of theRhizobiaceae may produce extracellular signals that supplement the ability of wild-typeR. meliloti cells to induce crucial responses in the host.Abbreviations EH emergent root hairs - kb kilobase - RDU relative distance unit - RT root tip This is journal article No. 188-87 of the Ohio Agricultural Research and Development Center  相似文献   

10.
Rhizobia are soil bacteria which symbiotically infect legume roots and generate nodules in which they fix atmospheric nitrogen for the plant in exchange for photosynthetically fixed carbon. A crucial aspect of signal exchange between these symbionts is the secretion of phenolic compounds by the host root which induce nodulation gene expression in the bacteria. Stimulation of nod gene expression by host phenolics is required for nodule formation, is biochemically specific at 10-6 M, and is mediated by nodD. We and others have shown that rhizobia display chemotaxis to 10-9 M of the same phenolic compounds. Chemotaxis to inducer phenolics is selectively reduced or abolished by mutations in certain nod genes governing nodulation efficiency or host specificity. Conversely, mutations in rhizobia that affect general motility or chemotaxis have substantial effects on nodulation efficiency and competitiveness. These findings suggest that microbes entering the rhizosphere environment may utilize minor, non-nutrient components in root exudates as signals to guide their movement towards the root surface and elicit changes in gene expression appropriate to this environment.  相似文献   

11.
Summary Cloned cDNAs corresponding to mRNAs which accumulate in nitrogen-fixing root nodules of soybean (nodulin mRNAs) were used as probes to investigate the sizes, sequence relationships, tissue specificities and developmental accumulations of individual nodulin mRNA sequences. Northern blot analysis indicated that the NodB, NodC and NodD mRNA sequences are 1 150, 770, and 3 150 nucleotides long, respectively, which is consistent with the previously determined sizes of the hybrid-selected translation products (27 000, 24 000 and 100 000 MW, respectively). The NodA clones pNodA15 and pNodA25 hybridized to two mRNAs of lengths 1 600 and 1 100 nucleotides, indicating that they contain significant sequence homologies. However, increasing the hybridization stringency showed that the pNodA15 clone encodes the 1 600 nucleotide mRNA corresponding to the major NodA hybrid-selected translation product (44 000 MW) while pNodA25 encodes an mRNA of 1 100 nucleotides. The latter probably corresponds to one of two smaller (23 500 and 24 500 MW) in vitro translation products. RNA dot-blot hybridizations indicated that nodulin and leghemoglobin mRNAs began to appear and accumulate in Rhizobium infected root tissue very early (day 3 to 5) and reached fully induced levels by day 11. This accumulation was specific for nodule tissue (except for the NodD sequence) and preceded the accumulation of nitrogen fixation activity. Nodules produced by different effective Rhizobium strains accumulated similar levels of leghemoglobin and nodulin mRNAs while ineffective strains had a pleiotropic affect. While one ineffective strain (61A24) gave reduced levels of all these mRNAs, the other (SM5) gave levels which were nearly normal by the time nitrogen fixation activity should have reached its maximal level (day 17). Thus, leghemoglobin and nodulin genes are switched on soon after infection, prior to nodule morphogenesis, and the switch occurs prior to and is independent of nitrogen fixation activity.  相似文献   

12.
In the slow-growing soybean symbiont, Bradyrhizobium japonicum (strain 110), a nifA-like regulatory gene was located immediately upstream of the previously mapped fixA gene. By interspecies hybridization and partial DNA sequencing the gene was found to be homologous to nifA from Klebsiella pneumoniae and Rhizobium meliloti, and to a lesser extent, also to ntrC from K. pneumoniae. The B. japonicum nifA gene product was shown to activate B. japonicum and K. pneumoniae nif promoters (using nif::lacZ translational fusions) both in Escherichia coli and B. japonicum backgrounds. In the heterologous E. coli system activation was shown to be dependent on the ntrA gene product. Site-directed insertion and deletion/replacement mutagenesis revealed that nifA is probably the promoter-distal cistron within an operon. NifA- mutants were Fix- and pleiotropic: (i) they were defective in the synthesis of several proteins including the nifH gene product (nitrogenase Fe protein); the same proteins had been known to be repressed under aerobic growth of B. japonicum but derepressed at low O2 tension; (ii) the mutants had an altered nodulation phenotype inducing numerous, small, widely distributed soybean nodules in which the bacteroids were subject to severe degradation. These results show that nifA not only controls nitrogenase genes but also one or more genes involved in the establishment of a determinate, nitrogen-fixing root nodule symbiosis.  相似文献   

13.
Rhizobium, Bradyrhizobium and Azorhizobium can elicit the formation of N2-fixing nodules on the roots or stems of their leguminous host plants. The nodule formation involves several developmental steps determined by different sets of genes from both partners, the gene expression being temporally and spatially coordinated. The plant proteins that are specifically synthesised during the formation and function of the nodule are called nodulins. The nodulins that are expressed before the onset of N2 fixation are termed early nodulins. These proteins are probably involved in the infection process as well as in nodule morphogenesis rather than in nodule function. The nodulins expressed just before or during N2 fixation are termed late nodulins and they participate in the function of the nodule by creating the physiological conditions required for nitrogen fixation, ammonium assimilation and transport. In this review we will describe nodulins, nodulin genes and the relationship between nodulin gene expression and nodule development. The study of nodulin gene expression may provide insight into root-nodule development and the mechanism of communication between bacteria and host plant.J.A. Muñoz and A.J. Palomares are with the Departamento de Microbiologia y Parasitología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain. P. Ratet is with the Institut des Sciences Végétales, CNRS, Avenue de la Terrasse, F-91198 Gif-sur-Yvette, Fance  相似文献   

14.
Summary The 17 kb region between the Bradyrhizobium japonicum nitrogenase genes (nifDK and nifH) was investigated for the presence of further nif or fix genes by site-directed insertion or deletion/replacement mutagenesis and interspecies hybridization. Mutant strains were tested for their ability to reduce acetylene in free-living, microaerobic culture (Nif phenotype) and in soybean root nodules (Fix phenotype). The presence of a gene, previously identified by hybridization with the Klebsiella pneumoniae nifB gene, was proved by isolation of a nifB insertion mutant which was completely Nif- and Fix-. Three other regions were found to be homologous to the K. pneumoniae genes nifE, nifN, and nifS, NifE and nifN insertion mutants were completely Nif-/Fix- whereas nifS mutants were leaky with 30% residual Fix activity. Taken together, the data show that the B. japonicum genome harbours a cluster of closely adjacent genes which are directly concerned with nitrogenase function.  相似文献   

15.
Summary Heme-deficient mutants of Rhizobium and Bradyrhizobium have been found to exhibit diverse phenotypes with respect to symbiotic interactions with plant hosts. We observed that R. meliloti hemA mutants elicit nodules that do not contain intracellular bacteria; the nodules contain either no infection threads (empty nodule phenotype) or aberrant infection threads that failed to release bacteria (Bar phenotype). These mutant nodules expressed nodulin genes associated with nodules arrested at an early stage of development, including ENOD2, Nms-30, and four previously undescribed nodulin genes. These nodules also failed to express any of six late nodulin genes tested by hybridization, including leghemoglobin, and twelve tested by in vitro translation product analysis which are not yet correlated with specific cloned genes. We observed that R. meliloti leucine and adenosine auxotrophs induced invaded Fix nodules that expressed late nodulin genes, suggesting that it is not auxotrophy per se that causes the hemA mutants to elicit Bar or empty nodules. Because R. meliloti hemA mutants elicit nodules that do not contain intracellular bacteria, it is not possible to decide whether or not the Fix phenotype of these nodules is a direct consequence of the failure of R. meliloti to supply the heme moiety of hololeghemoglobin. Our results demonstrate the importance of establishing the stage in development at which a mutant nodule is arrested before conclusions are drawn about the role of small metabolite exchange in the symbiosis.  相似文献   

16.
A broad-host-range plasmid, pEA2-21, containing a Bradyrhizobium japonicum nodABC'-'lacZ translational fusion was used to identify strain-specific inhibitors of the genes required for soybean nodulation, the common nod genes. The responses of type strains of B. japonicum serogroups USDA 110, USDA 123, USDA 127, USDA 129, USDA 122, and USDA 138 to nod gene inhibitors were compared. Few compounds inhibited nod gene expression in B. japonicum USDA 110. In contrast, nod gene expression in strains belonging to several other serogroups was inhibited by most of the flavonoids tested. However, the application of two of these strain-specific compounds, chrysin and naringenin, had little effect on the pattern of competition between indigenous and inoculum strains of B. japonicum in greenhouse and field trials. Preliminary studies with radiolabeled chrysin and naringenin suggest that the different responses to nod gene inhibitors may be partly due to the degree to which plant flavonoids can be metabolized by each strain.  相似文献   

17.
18.
Summary The development of spontaneous nodules, formed in the absence ofRhizobium and combined nitrogen, on alfalfa (Medicago sativa L. cv. Vernal) was investigated at the light and electron microscopic level and compared to that ofRhizobium-induced normal nodules. Spontaneous nodules were initiated from cortical cell divisions in the inner cortex next to the endodermis, i.e., the site of normal nodule development. These nodules, on uninoculated roots, were white multilobed structures, histologically composed of nodule meristems, cortex, endodermis, central zone and vascular strands. Nodules were devoid of intercellular or intracellular bacteria confirming microbiological tests. Early development of spontaneous nodules was initiated by series of anticlinal followed by periclinal divisions of dedifferentiated cells in the inner cortex of the root. These cells formed the nodular meristem from which the nodule developed. The cells in the nodule meristems divided unequally and differentiated into two distinct cell types, one larger type being filled with numerous membrane-bound starch grains, and the other smaller type with very few starch grains. There were no infection threads or bacteria in the spontaneous nodules at any stage of development. This size differentiation is suggestive of the different cell sizes seen inRhizobium-induced nodules, where the larger cell type harbours the invading bacteria and the smaller type is essential in supportive metabolic roles. The ontogenic studies further support the claim that these structures are nodules rather than aberrant lateral roots, and that plant possess all the genetic information needed to develop a nodule with distinct cell types. Our results suggest that bacteria and therefore theirnod genes are not necessarily involved in the ontogeny and morphogenesis of spontaneous and normal nodules in alfalfa.Abbreviations EH smallest emergent root hair - EM electron microscope - enod2 early nodulin2 gene - RT root tip - RER rough endoplasmic reticulum - YEMG yeast extract-mannitol-gluconate  相似文献   

19.
20.
Summary Using cloned Rhizobium phaseoli nodulation (nod) genes as hybridization probes homologous restriction fragments were detected in the genome of the slow-growing soybean symbiont, Bradyrhizobium japonicum strain 110. These fragments were isolated from a cosmid library, and were shown to lie 10 kilobasepairs (kb) upstream from the nifA and fixA genes. Specific nod probes from Rhizobium leguminosarum were used to identify nodA-, nodB-, and nodC-like sequences clustered within a 4.5 kb PstI fragment. A mutant was constructed in which the kanamycin resistance gene from Tn5 was inserted into the nodA homologous B. japonicum region. This insertion was precisely located, by DNA sequencing, to near the middle of the nodA gene. B. japonicum mutants carrying this insertion were completely nodulation deficient (Nod-).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号