首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We characterized the interaction of Acanthamoeba actophorin, a member of ADF/cofilin family, with filaments of amoeba and rabbit skeletal muscle actin. The affinity is about 10 times higher for muscle actin filaments (Kd = 0.5 microM) than amoeba actin filaments (Kd = 5 microM) even though the affinity for muscle and amoeba Mg-ADP-actin monomers (Kd = 0.1 microM) is the same (Blanchoin, L., and Pollard, T. D. (1998) J. Biol. Chem. 273, 25106-25111). Actophorin binds slowly (k+ = 0.03 microM-1 s-1) to and dissociates from amoeba actin filaments in a simple bimolecular reaction, but binding to muscle actin filaments is cooperative. Actophorin severs filaments in a concentration-dependent fashion. Phosphate or BeF3 bound to ADP-actin filaments inhibit actophorin binding. Actophorin increases the rate of phosphate release from actin filaments more than 10-fold. The time course of the interaction of actophorin with filaments measured by quenching of the fluorescence of pyrenyl-actin or fluorescence anisotropy of rhodamine-actophorin is complicated, because severing, depolymerization, and repolymerization follows binding. The 50-fold higher affinity of actophorin for Mg-ADP-actin monomers (Kd = 0.1 microM) than ADP-actin filaments provides the thermodynamic basis for driving disassembly of filaments that have hydrolyzed ATP and dissociated gamma-phosphate.  相似文献   

2.
Understanding the mechanism of actin polymerization and its regulation by associated proteins requires an assay to monitor polymerization dynamics and filament topology simultaneously. The only assay meeting these criteria is total internal reflection fluorescence microscopy (Amann and Pollard, 2001; Fujiwara et al., 2002). The fluorescence signal is fourfold stronger with actin labeled on Cys-374 with Oregon green rather than rhodamine. To distinguish growth at barbed and pointed ends we used image drift correction and maximum intensity projections to reveal points where single N-ethylmaleimide inactivated myosins attach filaments to the glass coverslip. We estimated association rates at high actin concentrations and dissociation rates near and below the critical actin concentration. At the barbed end, the association rate constant for Mg-ATP-actin is 7.4 microM(-1) s(-1) and the dissociation rate constant is 0.89 s(-1). At the pointed end the association and dissociation rate constants are 0.56 microM(-1) s(-1) and 0.19 s(-1). When vitamin D binding protein sequesters all free monomers, ADP-actin dissociates from barbed ends at 1.4 s(-1) and from pointed ends at 0.16 s(-1) regardless of buffer nucleotide.  相似文献   

3.
The involvement of interactions between ATP-actin and ADP-actin in actin polymerization has been studied. It has been found that ATP-actin and ADP-actin can copolymerize and that the rate of nucleation is enhanced when both ATP-actin and ADP-actin are present in solution. The fact that the heterologous interaction between ATP-actin (T) and ADP-actin (D) is stronger than either of the homologous reactions, T-T and D-D, agrees with the kinetic data in the accompanying paper (Carlier, M.-F., Pantaloni, D., and Korn, E.D. (1985) J. Biol. Chem. 260, 6565-6571) which show that filament ends having the DT conformation are more stable than those having the TT conformation. These data are incorporated into a model for actin polymerization in ATP in which the kinetic parameters for polymerization depend on the nature of the nucleotide (ADP or ATP) bound to the three terminal subunits of the actin filament.  相似文献   

4.
Interaction of plasma gelsolin with ADP-actin   总被引:3,自引:0,他引:3  
In the presence of Ca2+, gelsolin forms a very tight, stoichiometric complex with 2 molecules of ADP-G-actin. Removal of free Ca2+ causes the 1:2 complex to dissociate to a 1:1 complex. Gelsolin accelerates the very slow polymerization of ADP-actin, apparently by accelerating the rate of nucleation, but the number concentration of filaments formed is probably less than the gelsolin concentration, indicating that the GA2 complex is not a true nucleus. These results are similar to those obtained for the interaction of gelsolin with ATP-G-actin. Both kinetic and equilibrium measurements demonstrate that the critical concentration of gelsolin-capped ADP-actin filaments (8 microM in 1 mM MgCl2 and 0.2 mM ADP) is the same as for the uncapped filaments, proving that the critical concentration is the same at both ends of the equilibrium polymer in ADP as predicted by theory. The association and dissociation rate constants for the addition of ADP-G-actin at the pointed end of an ADP-F-actin filament are estimated to be 4.6 X 10(4) M-1 s-1 and 0.4 s-1, respectively, about 15-fold lower than the rate constants at the barbed end.  相似文献   

5.
The polymerization of scallop β-like actin is significantly slower than that of skeletal muscle α-actin. To reveal which steps of polymerization contribute to this difference, we estimated the efficiency of nucleation of the two actins, the rates of filament elongation at spontaneous and gelsolin-nucleated polymerization and the turnover rates of the filament subunits at steady-state. Scallop actin nucleated nearly twice less efficient than rabbit actin. In actin filaments with free ends, when dynamics at the barbed ends overrides that at the pointed ends, the relative association rate constants of α- and β-actin were similar, whereas the relative dissociation rate constant of β-ATP-actin subunits was 2- to 3-fold higher than that of α-actin. The 2- to 3-fold faster polymerization of skeletal muscle versus scallop Ca-actin was preserved with gelsolin-capped actin filaments when only polymerization at the pointed end is possible. With gelsolin-induced polymerization, the rate constants of dissociation of ATP-actin subunits from the pointed ends were similar, while the association rate constant of β-actin to the pointed filament ends was twice lower than that of α-actin. This difference may be of physiological relevance for functional intracellular sorting of actin isoforms.  相似文献   

6.
Our previous work (Carlier, M.-F., and Pantaloni, D. (1986) Biochemistry 25, 7789-7792) had shown that F-ADP-Pi-actin is a major intermediate in ATP-actin polymerization, due to the slow rate of Pi release following ATP cleavage on filaments. To understand the mechanism of ATP-actin polymerization, we have prepared F-ADP-Pi-actin and characterized its kinetic parameters. 32Pi binds to F-ADP-actin with a stoichiometry of 1 mol/mol of F-actin subunit and an equilibrium dissociation constant Kpi of 1.5 mM at pH 7.0 Kpi increases with pH, indicating that the H2PO-4 species binds to F-actin. ADP-Pi-actin subunits dissociate much more slowly from filament ends than ADP-actin subunits; therefore, the stability of filaments in ATP is due to terminal ADP-Pi subunits. The slow rate of dissociation of ADP-Pi-actin also explains the decrease in critical concentration of ADP-actin in the presence of Pi reported by Rickard and Sheterline (Richard, J. E., and Sheterline, P. (1986) J. Mol. Biol. 191, 273-280). The effect of Pi on the rate of actin dissociation from filaments is much more pronounced at the barbed end than at the pointed end. Using gelsolin to block the barbed end, we have shown that the two ends are energetically different in the presence of ATP and saturating Pi, but less different than in the absence of Pi. The results are interpreted within a new model for actin polymerization. It is possible that phosphate binding to F-actin can regulate motile events in muscle and nonmuscle cells.  相似文献   

7.
Preparation and polymerization of skeletal muscle ADP-actin   总被引:4,自引:0,他引:4  
Skeletal muscle ADP-G-actin was prepared from ADP-F-actin, which had been freed of residual ATP by repeated sonication, by depolymerization in 5 mM Tris-HCl, 0.2 mM ADP, 0.2 mM dithiothreitol, 0.1 mM CaCl2, 0.1 mM MgCl2, and 0.01% NaN3, pH 8.0. The ADP had been freed of traces of ATP by DEAE-chromatography, and 5 microM diadenosine pentaphosphate was added to inhibit myokinase activity. The kinetics of the spontaneous polymerization of ADP-actin in 1 mM MgCl2 + 0.1 M KCl were compatible with the simple nucleation-elongation model previously used to explain the polymerization of ATP-actin. The critical concentrations of ADP-actin were 8.0 and 2.0 microM in 1 mM MgCl2 and 1 mM MgCl2 + 0.1 M KCl, respectively. These values are 20-30-fold higher than the corresponding values in ATP. Using cross-linked actin trimers to nucleate polymerization, the association rate constants were found to be 0.8 and 0.9 microM-1 S-1 in MgCl2 and MgCl2 + KCl, respectively, which are 0.4 and 0.2 times the values for ATP-actin. The dissociation rate constants, calculated from the critical concentrations and the association rate constants, were 6.4 and 1.8 S-1, respectively, which are 10 and 5 times the corresponding values for ATP-actin.  相似文献   

8.
Polymerization under sonication has been developed as a new method to study the rapid polymerization of actin with a large number of elongating sites. The theory proposed assumes that filaments under sonication are maintained at a constant length by the constant input of energy. The data obtained for the reversible polymerization of ADP-actin under sonication have been successfully analyzed according to the proposed model and, therefore, validate the model. The results obtained for the polymerization of ATP-actin under sonication demonstrate the involvement of ATP hydrolysis in the polymerization process. At high actin concentration, polymerization was fast enough, as compared to ATP hydrolysis on the F-actin, to obtain completion of the reversible polymerization of ATP-actin before significant hydrolysis of ATP occurred. A critical concentration of 3 microM was determined as the ratio of the dissociation and association rate constants for the interaction of ATP-actin with the ATP filament ends in 1 mM MgCl2, 0.2 mM ATP. The plot of the rate of elongation of filaments versus actin monomer concentration exhibited an upward deviation at high actin concentration that is consistent with this result. The fact that F-actin at steady state is more stable than the ATP-F-actin polymer at equilibrium suggests that the interaction between ADP-actin and ATP-actin subunits at the end of the ATP-capped filament is much stronger than the interaction between two ATP-actin subunits.  相似文献   

9.
It has recently been reported that polymer actin made from monomer containing ATP (ATP-actin) differed in EM appearance and rheological characteristics from polymer made from ADP-containing monomers (ADP-actin). Further, it was postulated that the ATP-actin polymer was more rigid due to storage of the energy released by ATP hydrolysis during polymerization (Janmey et al. 1990. Nature 347:95-99). Electron micrographs of our preparations of ADP-actin and ATP-actin polymers show no major differences in appearance of the filaments. Moreover, the dynamic viscosity parameters G' and G" measured for ATP-actin and ADP-actin polymers are very different from those reported by Janmey et al., in absolute value, in relative differences, and in frequency dependence. We suggest that the relatively small differences observed between ATP-actin and ADP-actin polymer rheological parameters could be due to small differences either in flexibility or, more probably, in filament lengths. We have measured nucleotide exchange on ATP-actin and ADP-actin polymers by incorporation of alpha-32P-ATP and found it to be very slow, in agreement with earlier literature reports, and in contradiction to the faster exchange rates reported by Janmey et al. This exchange rate is much too slow to cause "reversal" of ADP-actin polymer ATP-actin polymer as reported by Janmey et al. Thus our results do not support the notion that the energy of actin-bound ATP hydrolysis is trapped in and significantly modifies the actin polymer structure.  相似文献   

10.
The precise regulation of actin filament polymerization and depolymerization is essential for many cellular processes and is choreographed by a multitude of actin-binding proteins (ABPs). In higher plants the number of well characterized ABPs is quite limited, and some evidence points to significant differences in the biochemical properties of apparently conserved proteins. Here we provide the first evidence for the existence and biochemical properties of a heterodimeric capping protein from Arabidopsis thaliana (AtCP). The purified recombinant protein binds to actin filament barbed ends with Kd values of 12-24 nM, as assayed both kinetically and at steady state. AtCP prevents the addition of profilin actin to barbed ends during a seeded elongation reaction and suppresses dilution-mediated depolymerization. It does not, however, sever actin filaments and does not have a preference for the source of actin. During assembly from Mg-ATP-actin monomers, AtCP eliminates the initial lag period for actin polymerization and increases the maximum rate of polymerization. Indeed, the efficiency of actin nucleation of 0.042 pointed ends created per AtCP polypeptide compares favorably with mouse CapZ, which has a maximal nucleation of 0.17 pointed ends per CapZ polypeptide. AtCP activity is not affected by calcium but is sensitive to phosphatidylinositol 4,5-bisphosphate. We propose that AtCP is a major regulator of actin dynamics in plant cells that, together with abundant profilin, is responsible for maintaining a large pool of actin subunits and a surprisingly small population of F-actin.  相似文献   

11.
The role of GTP hydrolysis in microtubule dynamics has been reinvestigated using an analogue of GTP, guanylyl-(alpha, beta)-methylene-diphosphonate (GMPCPP). This analogue binds to the tubulin exchangeable nucleotide binding site (E-site) with an affinity four to eightfold lower than GTP and promotes the polymerization of normal microtubules. The polymerization rate of microtubules with GMPCPP-tubulin is very similar to that of GTP-tubulin. However, in contrast to microtubules polymerized with GTP, GMPCPP-microtubules do not depolymerize rapidly after isothermal dilution. The depolymerization rate of GMPCPP-microtubules is 0.1 s-1 compared with 500 s-1 for GDP-microtubules. GMPCPP also completely suppresses dynamic instability. Contrary to previous work, we find that the beta--gamma bond of GMPCPP is hydrolyzed extremely slowly after incorporation into the microtubule lattice, with a rate constant of 4 x 10(-7) s-1. Because GMPCPP hydrolysis is negligible over the course of a polymerization experiment, it can be used to test the role of hydrolysis in microtubule dynamics. Our results provide strong new evidence for the idea that GTP hydrolysis by tubulin is not required for normal polymerization but is essential for depolymerization and thus for dynamic instability. Because GMPCPP strongly promotes spontaneous nucleation of microtubules, we propose that GTP hydrolysis by tubulin also plays the important biological role of inhibiting spontaneous microtubule nucleation.  相似文献   

12.
Pathology in sickle cell disease begins with nucleation-dependent polymerization of deoxyhemoglobin S into stiff, rodlike fibers that deform and rigidify red cells. We have measured the effect of erythrocyte membranes on the rate of homogeneous nucleation in sickle hemoglobin, using preparations of open ghosts (OGs) with intact cytoskeletons from sickle (SS) and normal adult (AA) red cells. Nucleation rates were measured by inducing polymerization by laser photolysis of carboxy sickle hemoglobin and observing stochastic variation of replicate experiments of the time for the scattering signals to reach 10% of their respective maxima. By optical imaging of membrane fragments added to a hemoglobin solution we contrast the rate of nucleation immediately adjacent to membrane fragments with nucleation in a region of the same solution but devoid of membranes. From analysis of 29,272 kinetic curves obtained, we conclude that the effect of AA OGs is negligible (10% enhancement of nucleation rates +/-20%), whereas SS OGs caused 80% enhancement (+/-20%). In red cells, where more membrane surface is available to Hb, this implies enhancement of nucleation by a factor of 6. These experiments represent a 10-fold improvement in precision over previous approaches and are the first direct, quantitative measure of the impact of erythrocyte membranes on the homogeneous nucleation process that is responsible for polymer initiation in sickle cell disease.  相似文献   

13.
Polymerization of ADP-actin   总被引:17,自引:10,他引:7       下载免费PDF全文
Using hexokinase, glucose, and ATP to vary reversibly the concentrations of ADP and ATP in solution and bound to Acanthamoeba actin, I measured the relative critical concentrations and elongation rate constants for ATP-actin and ADP-actin in 50 mM KCl, 1 mM MgCl2, 1 mM EGTA, 0.1 mM nucleotide, 0.1 mM CaCl2, 10 mM imidazole, pH 7. By both steady-state and elongation rate methods, the critical concentrations are 0.1 microM for ATP-actin and 5 microM for ADP-actin. Consequently, a 5 microM solution of actin can be polymerized, depolymerized, and repolymerized by simply cycling from ATP to ADP and back to ATP. The critical concentrations differ, because the association rate constant is 10 times higher and the dissociation rate constant is five times lower for ATP-actin than ADP-actin. These results show that ATP-actin occupies both ends of actin filaments growing in ATP. The bound ATP must be split on internal subunits and the number of terminal subunits with bound ATP probably depends on the rate of growth.  相似文献   

14.
LIM-kinase activated by GST-Pak1 phosphorylates Acanthamoeba actophorin stoichiometrically and specifically on serine 1. The atomic structure of phosphorylated actophorin determined by X-ray crystallography is essentially identical with the structure of unphosphorylated actophorin. We compared biochemical properties of phosphorylated actophorin, unphosphorylated actophorin and mutants of actophorin with serine 1 replaced by aspartic acid or alanine. Phosphorylation strongly inhibits interaction of actophorin with Mg-ADP- or Mg-ATP-actin monomers and Mg-ADP-actin filaments, so Ser1 phosphorylation directly blocks interaction of actin-depolymerizing factor (ADF)/cofilin proteins with actin. About 30 % of actophorin is phosphorylated in live amoebas grown in suspension culture. Phosphorylation of ADF/cofilin proteins by LIM-kinase or other enzymes will tend to stabilize actin filaments by inhibiting the ability of these proteins to sever and depolymerize older actin filaments that have hydrolyzed their bound ATP and dissociated the phosphate.  相似文献   

15.
We have investigated the effects of profilin on nucleotide binding to actin and on steady state actin polymerization. The rate constants for the dissociation of ATP and ADP from monomeric Mg-actin at physiological conditions are 0.003 and 0.009 s-1, respectively. Profilin increases these dissociation rate constants to 0.08 s-1 for MgATP-actin and 1.4 s-1 for MgADP-actin. Thus, profilin can increase the rate of exchange of actin-bound ADP for ATP by 140-fold. The affinity of profilin for monomeric actin is found to be similar for MgATP-actin and MgADP-actin. Continuous sonication was used to allow study of solutions having sustained high filament end concentrations. During sonication at steady state, F-actin depolymerizes toward the critical concentration of ADP-actin [Pantaloni, D., et al. (1984)J. Biol. Chem. 259, 6274-6283], our analysis indicates that under these conditions a significant number of filaments contain terminal ADP-actin subunits. Addition of profilin to this system increases the polymer concentration and increases the steady state ATPase activity during sonication. These data are explained by the fast exchange of ATP for ADP on the profilin-ADP-actin complex, resulting in rapid ATP-actin regeneration. An important function of profilin may be to provide the growing ends of filaments with ATP-actin during periods when the monomer cycling rate exceeds the intrinsic nucleotide exchange rate of monomeric actin.  相似文献   

16.
Cordon-Bleu is, like Spire, a member of the growing family of WH2 repeat proteins, which emerge as versatile regulators of actin dynamics. They are expressed in morphogenetic and patterning processes and nucleate actin assembly in vitro. Here, we show that Cordon-Bleu works as a dynamizer of actin assembly by combining many properties of profilin with weak filament nucleating and powerful filament severing activities and sequestration of ADP-actin, which altogether generate oscillatory polymerization kinetics. A short lysine-rich sequence, N-terminally adjacent to the three WH2 domains, is required for nucleation and severing. In this context, nucleation requires only one WH2 domain, but filament severing requires two adjacent WH2 domains. A model integrating the multiple activities of Cordon-Bleu and quantitatively fitting the multiphasic polymerization curves is derived. Hence, with similar structural organization of WH2 repeats, Cordon-Bleu and Spire display different functions by selecting different sets of the multifunctional properties of WH2 domains.  相似文献   

17.
Mechanism of the interaction of human platelet profilin with actin   总被引:24,自引:4,他引:20  
We have reexamined the interaction of purified platelet profilin with actin and present evidence that simple sequestration of actin monomers in a 1:1 complex with profilin cannot explain many of the effects of profilin on actin assembly. Three different methods to assess binding of profilin to actin show that the complex with platelet actin has a dissociation constant in the range of 1 to 5 microM. The value for muscle actin is similar. When bound to actin, profilin increases the rate constant for dissociation of ATP from actin by 1,000-fold and also increases the rate of dissociation of Ca2+ bound to actin. Kinetic simulation showed that the profilin exchanges between actin monomers on a subsecond time scale that allows it to catalyze nucleotide exchange. On the other hand, polymerization assays give disparate results that are inconsistent with the binding assays and each other: profilin has different effects on elongation at the two ends of actin filaments; profilin inhibits the elongation of platelet actin much more strongly than muscle actin; and simple formation of 1:1 complexes of actin with profilin cannot account for the strong inhibition of spontaneous polymerization. We suggest that the in vitro effects on actin polymerization may be explained by a complex mechanism that includes weak capping of filament ends and catalytic poisoning of nucleation. Although platelets contain only 1 profilin for every 5-10 actin molecules, these complex reactions may allow substoichiometric profilin to have an important influence on actin assembly. We also confirm the observation of I. Lassing and U. Lindberg (1985. Nature [Lond.] 318:472-474) that polyphosphoinositides inhibit the effects of profilin on actin polymerization, so lipid metabolism must also be taken into account when considering the functions of profilin in a cell.  相似文献   

18.
B Beall  J M Chalovich 《Biochemistry》2001,40(47):14252-14259
Fesselin is a proline-rich actin binding protein that has recently been isolated from smooth muscle [Leinweber, B. D., Fredricksen, R. S., Hoffman, D. R., and Chalovich, J. M. (1999) J. Muscle Res. Cell Motil. 20, 539-545]. Fesselin is similar to synaptopodin [Mundel, P., Heid, H. W., Mundel, T. M., Krüger, M., Reiser, J., and Kriz, W. (1997) J. Cell Biol. 139, 193-204] in terms of its size, isoelectric point, and sequence although synaptopodin is not present in smooth muscle. The function of fesselin is unknown. Evidence is presented here that fesselin accelerates the polymerization of actin. Fesselin was effective on actin isolated from either smooth or skeletal muscle at low ionic strength and in the presence of 100 mM KCl. At low ionic strength, fesselin decreased the time for 50% polymerization to about 1% of that in the absence of fesselin. The lag phase characteristic of the slow nucleation process of polymerization was eliminated as the fesselin concentration was increased from very low levels. Fesselin did not alter the critical concentration for actin but did increase the rate of elongation by approximately 3-fold. The increase in elongation rate constant is insufficient to account for the total increase in polymerization rate. It is likely that fesselin stabilizes the formation of actin nuclei. Time courses of actin polymerization at varied fesselin concentrations and varied actin concentrations were simulated by increasing the rate of nucleation and both the forward and reverse rate constants for elongation.  相似文献   

19.
Actin polymerization is a fundamental cellular process involved in cell structure maintenance, force generation, and motility. Phosphate release from filament subunits following ATP hydrolysis destabilizes the filament lattice and increases the critical concentration (Cc) for assembly. The structural differences between ATP- and ADP-actin are still debated, as well as the energetic factors that underlie nucleotide-dependent filament stability, particularly under crowded intracellular conditions. Here, we investigate the effect of crowding agents on ATP- and ADP-actin polymerization and find that ATP-actin polymerization is largely unaffected by solution crowding, while crowding agents lower the Cc of ADP-actin in a concentration-dependent manner. The stabilities of ATP- and ADP-actin filaments are comparable in the presence of physiological amounts (∼ 30% w/v) and types (sorbitol) of low molecular weight crowding agents. Crowding agents act to stabilize ADP-F-actin by slowing subunit dissociation. These observations suggest that nucleotide hydrolysis and phosphate release per se do not introduce intrinsic differences in the in vivo filament stability. Rather, the preferential disassembly of ADP-actin filaments in cells is driven through interactions with regulatory proteins. Interpretation of the experimental data according to osmotic stress theory implicates water as an allosteric regulator of actin activity and hydration as the molecular basis for nucleotide-dependent filament stability.  相似文献   

20.
The polymerization of the monomeric sheath protein P18 to polysheath was followed by light scattering in 1 mM sodium phosphate buffer, pH 7 at a MgCl2 concentration of 5 mM. Sigmoidal kinetics were observed in the case of spontaneous nucleation. These were well fitted by a mechanism involving a slow nucleation step (rate constant kN = 10(-2) M-1 S-1) followed by propagation steps (k = 10(5) M-1 S-1) in which P18 protomers are added to the ends of the polysheath particles. When sonicated polysheaths or contracted sheaths were added as seeds exponential time courses were observed. From the pseudo first order rate constant and the concentration of seeds the above value for the rate constant of propagation was confirmed. The ability of contracted sheaths to nucleate polysheath formation lends support to the conclusion that polysheaths and contracted sheaths have identical structures and differ in their length distributions only. These were measured from electromicrographs and from the distribution of sedimentation coefficients. Poisson type, kinetically controlled size distributions were found after polymerization of polysheath. An extremely slow redistribution towards an exponential distribution was detected. The spontaneous slow formation of polysheaths is much slower than the formation of extended sheath are core baseplates. Extended sheath is a metastable assembly produce of P18 which either dissociates of contracts to form contracted sheath. Polysheaths and contracted sheaths are extremely stable products but their immediate formation is hindered by high nucleation difficulties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号