首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The S gene of bacteriophage lambda is a late gene required for cell lysis, but unlike the other two lysis genes, R and Rz, it does not code for an endolysin. Earlier studies have shown that the S gene product inhibits respiration and macromolecular synthesis and makes the inner membrane permeable to sucrose. In this study, the effect of the S gene product on a number of Escherichia coli membrane functions (active transport, permeability, respiration, and transhydrogenase and ATPase activity) were measured, and a product of the lambda S gene was identified in the inner membrane fraction by two-dimensional polyacrylamide gel electrophoresis. The results of these experiments indicate that the lambda S product is present in the inner membrane, that it increased the permeability of the membrane for all of the small molecules that were tested, and that its action is reversible. The simplest explanation of these results is that the S gene product forms a hydrophilic pore through the inner membrane, allowing small molecules and lambda lysozyme to pass through.  相似文献   

2.
A second function of the S gene of bacteriophage lambda   总被引:8,自引:6,他引:2       下载免费PDF全文
Infection of Escherichia coli by bacteriophage lambda caused an immediate inhibition of uptake by members of all three classes of E. coli active transport systems and made the inner membrane permeable to sucrose and glycine; however, infection stimulated alpha-methyl glucoside uptake. Phage infection caused a dramatic drop in the ATP pool of the cell, but the membrane did not become permeable to nucleotides. Infection by only one phage per cell was sufficient to cause transport inhibition. However, adsorption of phage to the lambda receptor did not cause transport inhibition; DNA injection was required. The inhibition of transport caused by lambda phage infection was transient, and by 20 min after infection, transport had returned to its initial level. The recovery of transport activity appeared to require a lambda structural protein with a molecular weight of 5,500. This protein was present in wild-type phage and at a reduced level in S7 mutant phage but was missing in S2 and S4 mutant phage. Cells infected with S7 phage had a partial recovery of active transport, whereas cells infected with S2 or S4 phage did not recover active transport. Neither the inhibition of transport caused by phage infection nor its recovery were affected by the protein synthesis inhibitors chloramphenicol and rifampin.  相似文献   

3.
We used photoaffinity cross-linking with the heterobifunctional cross-linker N-hydroxysuccinimidyl 4-azidobenzoate (HSAB) to covalently link polyomavirus to a mouse kidney cell surface component. The virus-HSAB combination was adsorbed to the cells and then cross-linked and isolated in monopinocytotic vesicles from the cells after endocytosis. The cross-linked product was identified on sodium dodecyl sulfate-polyacrylamide gels by the presence of a new band carrying 125I-labeled virion protein with a higher molecular mass than the normal virion protein bands. A single new band, with an apparent molecular mass of 120 kilodaltons (120 kDa), was identified by this procedure. This band was formed only in the presence of the HSAB cross-linker when virions were bound to the cells. The band also copurified with cross-linked virions when virion-containing vesicles were treated with detergent to remove the cell membrane. Antibody treatments that blocked up to 100% of virus binding and internalization also blocked cross-linking, as measured by the formation of the 120-kDa band. The 120-kDa band was characterized by preparation of antibody against the excised band from the gel. This antibody was shown to have the expected dual specificity for polyomavirus VP1 sequences and plasma membrane proteins, as analyzed on Western blots. The anti-120-kDa antibody was also shown by immunofluorescence to bind to the surface of mouse kidney cells. These data have demonstrated that molecules of possible biological significance in the binding of polyomavirus to mouse kidney cells have been cross-linked and that cell surface molecules have been identified that may be characterized further for possible receptor function in polyomavirus attachment.  相似文献   

4.
S W Runge 《BioTechniques》1992,12(5):630-631
Current methods of analyzing fusion proteins from lambda gt11 clones involve either subcloning of the insert DNA into a plasmid expression vector or production of lambda gt11 lysogens that are subsequently induced. Both of these methods can be quite time-consuming. The present communication describes a novel strategy for induction of the fusion protein that is both simple and rapid. Liquid cultures of E. coli Y1090R- infected with the lambda gt11 clone were induced directly to produce the fusion protein. Following the preparation of a crude bacterial cell lysate, fusion products were subjected to Western blot analysis.  相似文献   

5.
Cellular location of Mu DNA replicas.   总被引:4,自引:2,他引:2       下载免费PDF全文
To ascertain the form and cellular location of the copies of bacteriophage Mu DNA synthesized during lytic development, DNA from an Escherichia coli lysogen was isolated at intervals after induction of the Mu prophage. Host chromosomes were isolated as intact, folded nucleoids, which could be digested with ribonuclease or heated in the presence of sodium dodecyl sulfate to yield intact, unfolded nucleoid DNA. Almost all of the Mu DNA in induced cells was associated with the nucleoids until shortly before cell lysis, even after unfolding of the nucleoid structure. We suggest that the replicas of Mu DNA are integrated into the host chromosomes, possibly by concerted replication-integration events, and are accumulated there until packaged shortly before cell lysis. Nucleoids also were isolated from induced lambda lysogens and from cells containing plasmid DNA. Most of the plasmid DNA sedimented independently of the unfolded nucleoid DNA, whereas 50% or more of the lambda DNA from induced lysogens cosedimented with unfolded nucleoid DNA. Possible explanations for the association of extrachromosomal DNA with nucleoid DNA are discussed.  相似文献   

6.
The outer membrane of Escherichia coli was altered as a consequence of lysogeny by bacteriophages P1 and P1 cmts. The predominant change was a reduction in the size of lipopolysaccharide to a heptose-deficient form. P1 cmts lysogens were still sensitive to several bacteriophages but were resistant to lambda vir. Neither whole cells nor solubilized outer membranes from P1 cmts lysogens were able to inactivate lambda vir, and 32P-labeled lambda vir was unable to adsorb to P1 cmts lysogens. P1 cmts lysogens were also affected in maltose transport. The level of periplasmic maltose-binding protein was reduced somewhat, but there was no significant reduction in the level of the outer membrane lambda receptor (LamB). These membrane abnormalities were all corrected in strains cured of P1 cmts. It is suggested that P1 cmts affects lipopolysaccharide biosynthesis by a phage conversion mechanism and consequently the function of the lambda receptor.  相似文献   

7.
Isolation of an ompC-like outer membrane protein gene from Salmonella typhi   总被引:3,自引:0,他引:3  
We have isolated the structural gene for an outer membrane protein of Salmonella typhi, from a genomic library constructed in bacteriophage lambda 1059, using the Escherichia coli ompC gene as a heterologous probe. E. coli ompC codes for an outer membrane pore protein (porin) that is induced preferentially at high osmolarity and high temperature. The S. typhi ompC-like gene was subcloned in pBR322 and introduced into E. coli HB101 and into P678-54, a minicell-producing strain. In both strains it expressed a 38.5-kDa protein, which was incorporated into the outer membrane envelope and comigrated with an S. typhi outer membrane protein which was expressed both at low and high osmolarity in vivo.  相似文献   

8.
Polyclonal antibodies have been raised against endonuclease V from the bacteriophage T4. This rabbit serum, from which endemic E. coli antibodies have been removed, reacts with a single protein from T4-infected E. coli with a molecular weight of 16078 dalton. It was confirmed that these antibodies were directed against endonuclease V through the inhibition of the pyrimidine dimer specific nicking activity of endonuclease V in an in vitro nicking assay. A phage lambda gt11 T4 dC DNA library was screened for phage which produced a beta-galactosidase-endonuclease V fusion protein. Immunopositive clones were detected at a frequency of 0.25% of the plaques in the library. Restriction enzyme analyses of the DNA from 45 of these phage showed that all contained a 1.8 kb T4 EcoRI fragment which had been inserted within lambda gt11 in a single orientation. Western analysis of proteins which were produced from an induction of lysogens made from these phage reveals a single fusion protein band with a molecular weight slightly larger than native beta-galactosidase.  相似文献   

9.
Bacteriophage lambda uses a holin-endolysin system for host cell lysis. R, the endolysin, has muralytic activity. S, the holin, is a small membrane protein that permeabilizes the inner membrane at a precisely scheduled time after infection and allows the endolysin access to its substrate, resulting in host cell lysis. lambda S has a single cysteine at position 51 that can be replaced by a serine without loss of the holin function. A collection of 27 single-cysteine products of alleles created from lambda S(C51S) were tested for holin function. Most of the single-cysteine variants retained the ability to support lysis. Mutations with the most defective phenotype clustered in the first two hydrophobic transmembrane domains. Several lines of evidence indicate that S forms an oligomeric structure in the inner membrane. Here we show that oligomerization does not depend on disulfide bridge formation, since the cysteineless S(C51S) (i) is functional as a holin and (ii) shows the same oligomerization pattern as the parental S protein. In contrast, the lysis-defective S(A52V) mutant dimerizes but does not form cross-linkable oligomers. Again, dimerization does not depend on the natural cysteine, since the cysteineless lysis-defective S(A52V/C51S) is found in dimers after treatment of the membrane with a cross-linking agent. Furthermore, under oxidative conditions, dimerization via the natural cysteine is very efficient for S(A52V). Both S(A52V) (dominant negative) and S(A48V) (antidominant) interact with the parental S protein, as judged by oxidative disulfide bridge formation. Thus, productive and unproductive heterodimer formation between the parental protein and the mutants S(A52V) and S(A48V), respectively, may account for the dominant and antidominant lysis phenotypes. Examination of oxidative dimer formation between S variants with single cysteines in the hydrophobic core of the second membrane-spanning domain revealed that positions 48 and 51 are on a dimer interface. These results are discussed in terms of a three-step model leading to S-dependent hole formation in the inner membrane.  相似文献   

10.
We have examined the functional role of two internal cysteine residues of the F-plasmid TraV outer membrane lipoprotein. Each was mutated to a serine separately and together to yield three mutant traV genes: traV(C10S), traV(C18S), and traV(C10S/C18S). All three cysteine mutations complemented a traV mutant for DNA donor activity and for sensitivity to donor-specific bacteriophage; however, when measured by a transduction assay, the donor-specific DNA bacteriophage sensitivities of the traV(C18S) and, especially, traV(C10S/C18S) mutant strains were significantly less than those of the traV(+) and traV(C10S) strains. Thus, unlike the Agrobacterium tumefaciens T-plasmid-encoded VirB7 outer membrane lipoprotein, TraV does not require either internal cysteine to retain significant biological activity. By Western blot analysis, all three mutant TraV proteins were shown to accumulate in the outer membrane. However, by nonreducing gel electrophoresis, wild-type TraV and especially the TraV(C18S) mutant were shown to form mixed disulfides with numerous cell envelope proteins. This was not observed with the TraV(C10S) or TraV(C10S/C18S) proteins. Thus, it appears that TraV C10 is unusually reactive and that this reactivity is reduced by C18, perhaps by intramolecular oxidation. Finally, whereas the TraV(C10S) and TraV(C18S) proteins fractionated primarily with the outer membrane, as did the wild-type protein, the TraV(C10S/C18S) protein was found in osmotic shock fluid and inner membrane fractions as well as outer membrane fractions. Hence, at least one cysteine is required for the efficient localization of TraV to the outer membrane.  相似文献   

11.
Summary Human S-protein is a serum glycoprotein that binds and inhibits the activated complement complex, mediates coagulation through interaction with antithrombin III and plasminogen activator inhibitor I, and also functions as a cell adhesion protein through interactions with extracellular matrix and cell plasma membranes. A full length cDNA clone for human S-protein was isolated from a lambda gt11 cDNA library of mRNA from the HepG2 hepatocellular carcinoma cell line using mixed oligonucleotide sequences predicted from the amino-terminal amino acid sequence of human S-protein. The cDNA clone in lambda was subcloned into pUC18 for Southern and Northern blot experiments. Hybridization with radiolabeled human S-protein cDNA revealed a single copy gene encoding S-protein in human and mouse genomic DNA. In addition, the S-protein gene was detected in monkey, rat, dog, cow and rabbit genomic DNA. A 1.7 Kb mRNA for S-protein was detected in RNA from human liver and from the PLC/PRF5 human hepatoma cell line. No S-protein mRNA was detected in mRNA from human lung, placenta, or leukocytes or in total RNA from cultured human embryonal rhabdomyosarcoma (RD cell line) or cultured human fibroblasts from embryonic lung (IMR90 cell line) and neonatal foreskin. A 1.6 Kb mRNA for S-protein was detected in mRNA from mouse liver and brain. No S-protein mRNA was detected in mRNA from mouse skeletal muscle, kidney, heart or testis.  相似文献   

12.
Structure of cryptic lambda prophages   总被引:9,自引:0,他引:9  
When Escherichia coli cells lysogenic for bacteriophage lambda are induced with ultraviolet light, cells carrying cryptic lambda prophages are occasionally found among the apparently cured survivors. The lambda variant crypticogen (lambda crg) carries an insertion of the transposable element IS2, which increases the frequency of cryptic lysogens to about 50% of cured cells: 43 of these cryptic prophages have been characterized. They all contain substitutions that replace the early segment of the prophage genome (from the IS2 to near the cos site) with a duplicate copy of a large segment of the host chromosome. The right end of the substitution always results from recombination between the nin-QSR-cos region of the prophage and the homologous incomplete lambdoid prophage Qsr' at 12.5 minutes in the E. coli chromosome. The left end of the substitution is usually a crossover that recombines the IS2 element in the prophage with an E. coli IS2 at 8.5 minutes, near the lac gene, or with a second IS2 located counterclockwise from leu at 2 minutes, generating duplications of at least 200,000 bases. Five cryptic lysogens derived from cells lysogenic for a reference strain of lambda (which lacks the IS2 present in lambda crg) have been characterized. They contain substitutions whose right termini are generated by a crossover with the Qsr' prophage. The left termini of these substitutions are formed either by a crossover between the lambda exo gene and a short exo-homologous segment of Qsr' (2/5), or by a crossover between sequences to the left of attL and an unmapped distant region of the host chromosome (3/5). The large duplications carried by these cryptic lysogens are stable, unlike tandem duplications, and so may significantly influence the cell's evolutionary potential.  相似文献   

13.
Selective retention of recombinant plasmids coding for human insulin   总被引:3,自引:0,他引:3  
Plasmids may be lost from Escherichia coli K-12 hosts that are cultured without selection for plasmid retention. This is particularly true for chimeric plasmids that incorporate genes for human insulin into vectors derived from pBR322. The cIts857 gene of bacteriophage lambda was inserted into the bla gene of the human-insulin-coding plasmids, pIA7 delta 4 delta 1, pIB7 delta 4 delta 1 and pHI7 delta 4 delta 1, generating the new plasmids pPR17, pPR18 and pPR19, respectively, which produced the thermosensitive lambda repressor. The cI gene was downstream from the pM and pbla promoters, so that it may have been expressed from either or both promoters. Separate E. coli K-12 RV308 host strains containing the new recombinants were lysogenized with the repressor-defective bacteriophage lambda cI90. Loss of the plasmid from the lysogens causes concomitant loss of the lambda repressor and cell death, because the prophage is induced to enter the lytic growth cycle. The system effectively forces retention of the plasmid in all viable cells in the culture.  相似文献   

14.
《Gene》1996,168(1):1-8
The Rz1 gene of bacteriophage λ is located within the Rz lysis gene. It codes for the 6.5-kDa prolipoprotein (Rz1) which undergoes N-terminal signal sequence cleavage and post-translational lipid modification of the N-terminal Cys of the mature protein. Globomycin, the antibiotic which inhibits bacterial signal peptidase II, specific for prolipoproteins containing diacylglyceryl cysteine [Hayashi and Wu, J. Bioenerg. Biomembr. 22 (1990) 451–471] inhibits the N-terminal sequence cleavage of the Rz1 precursor. The mature protein is rich in Pro, which constitutes 25% of its amino acids (aa). Using a computer-predicted, synthetic, 15-aa antigenic determinant of Rz1 polyclonal anti-Rz[46–60] antibodies, were obtained, and employed to localize Rz1 in bacterial fractions. In induced Escherichia coli λ lysogens Rz1 was found almost exclusively in the outer membrane (OM). In a strain overproducing Rz1 from the pSB54 plasmid, it was distributed in all the fractions. OM, fraction A and inner membrane (IM). Expression of Rz1 from the pSB54 caused enlargement of fraction A, corresponding to the adhesion sites of OM and IM. Such an enlargement was previously observed in induced λ lysogens, shortly before the onset of lysis.  相似文献   

15.
Heat shock induces protein aggregation in Escherichia coli and E. coli (lambda cl857). The aggregates (S fraction) appear 15 min post-induction and are separable from membranes by sucrose density-gradient centrifugation. The S fraction quickly disappears in wild type strains but persists in rpoH mutant with concomitant quick inner membrane destruction. We propose that: (1) the disappearance of the S fraction reflects a rpoH-dependent processing, (2) the membrane destruction explains the lethality of the rpoH mutation at elevated temperatures; and (3) the protection of the inner membrane integrity is an important physiological function of the heat-shock response. We assume that the S fraction of aggregated proteins represents the signal inducing the heat-shock response. The prophage thermo-induction results in an increase (35 min post-induction) in the A fraction resembling that of the adhesion zones of the membranes. This fraction is greater than the corresponding fraction from uninduced cells. The increase is mediated by the lambda late genes, since it is absent in the induced E. coli (lambda cl857 Qam21). Since heat shock is widely used for induction of the lambda promoters in expression vectors it is possible that the formation of the protein aggregates (though transient in WT strains) and/or the fragility of membranes in rpoH mutants may be the cause of poor expression of cloned genes or may lead to mistaken localization of their expression products.  相似文献   

16.
Infection of Escherichia coli by bacteriophage lambda depends on two membrane protein complexes: (i) maltoporin (LamB) in the outer membrane for adsorption and (ii) the IIC(Man)-IID(Man) complex of the mannose transporter in the inner membrane for DNA penetration. IIC(Man) and IID(Man) are components of the phosphoenolpyruvate: sugar phosphotransferase system (PTS) which together with the IIAB(Man) subunit mediate transport and phosphorylation of sugars. To identify structural determinants important for penetration of lambda DNA, the homologous IIC-IID complexes of E. coli, K. pneumoniae and B. subtilis, and chimeric complexes between the IIC and IID were characterized. All three complexes support sugar transport in E. coli. Only IIC-IID of E. coli and B. subtilis also support bacteriophage lambda infection. The six chimeric complexes had lost transport activity, but three containing IIC of E. coli or B. subtilis continue to support bacteriophage lambda infection. Complexes containing IIC(Man) and fusion proteins between truncated IID(Man) and alkaline phosphatase or beta-galactosidase support penetration of lambda DNA if less than 100 residues are missing from the C-terminus of IID(Man). Truncation of IIC(Man) renders the complex unstable. Taken together, these results suggest, that IIC is the major specificity determinant for lambda infection but that the IIC subunit is stably expressed only in a complex with the IID subunit. Lambda DNA in transit across the periplasmic space, but not transforming plasmid DNA, is inaccessible to the non-specific nuclease NucA of Anabaena sp. targeted to the periplasmic space either in soluble form or as a fusion protein to the C-terminus of IID(Man).  相似文献   

17.
P L Moreau  M Fanica  R Devoret 《Biochimie》1980,62(10):687-694
In mitomycin C-treated lambda lysogens, even though the rate of synthesis of RecA protein was greatly reduced by a low concentration of rifampicin (4 microgram/ml), induction of prophage lambda occurred readily as assessed by (i) cell lysis of the lysogens, (ii) production of progeny phage, and (iii) extensive cleavage of lambda repressor. The extent and the rate of cleavage of lambda repressor were not significantly affected by the low rate of synthesis of RecA protein resulting from rifampicin action. However, the yield of phage progeny was reduced and lysis of the cells was slightly delayed. We conclude that in RecA+ bacteria, induction of prophage lambda does not require full induction of RecA protein synthesis.  相似文献   

18.
Various mutations in the tolQRAB gene cluster of Escherichia coli render the bacteria tolerant to high concentrations of the E, A, or K colicins as well as tolerant to infection by the single-stranded filamentous bacteriophage. The nucleotide sequence of a 2.8-kilobase fragment containing the tolA and tolB genes was determined. This sequence predicts TolA to be a 421-amino-acid protein of molecular mass 44,190 daltons. Studies using minicells show it to be associated with the inner membrane, presumably via a 21-amino-acid hydrophobic sequence between residues 13 and 35. The remaining 387 residues on the carboxyl side of this region are located in the periplasm. Within this region of TolA is a 230-residue portion that is predicted to form a very long helical segment. This region is rich in alanine, lysine, and glutamic and aspartic acids. The TolB protein is predicted to contain 431 amino acids. Localization studies using minicells show two proteins encoded by this open reading frame. The larger protein of 47.5 kilodaltons appears to be associated with the membrane fractions. The smaller protein is 43 kilodaltons in size and is found with the periplasmic components of the cell.  相似文献   

19.
Summary Two distinct phases characterized by different levels of immunity that appear in some E. coli strains lysogenic for reduced immunity mutants of bacteriophage lambda are identified as single and tandem double lysogens respectively on the basis of DNA-DNA hybridization experiments and the requirement of the phage xis function for the transition from a single to a double, and of the host recA function for the transition from a double to a single lysogen (in a xis - condition). Rim lysogens with a further increase in immunity, containing some 5 copies of the lambda genome per host genome, have also been observed.It is argued that the different levels of immunity are a direct reflection of the CI gene dosage effect.An unexplained finding is that rim single lysogens yield double lysogens with a frequency of near 1% per generation, whereas cured cells fail to appear even at a frequency 100 times lower.  相似文献   

20.
A bacteriophage T4 gene which functions to inhibit Escherichia coli Lon protease has been identified. This pin (proteolysis inhibition) gene was selected for its ability to support plaque formation by a lambda Ots vector at 40 degrees C. Southern blot experiments indicated that this T4 gene is included within the 4.9-kilobase XbaI fragment which contains gene 49. Subcloning experiments showed that T4 gene 49.1 (designated pinA) is responsible for the ability of the Ots vector to form plaques at 40 degrees C. Deficiencies in Lon protease activity are the only changes known in E. coli that permit lambda Ots phage to form plaques efficiently at 40 degrees C. lon+ lysogens of the lambda Ots vector containing pinA permitted a lambda Ots phage to form plaques efficiently at 40 degrees C. Furthermore, these lysogens, upon comparison with similar lysogens lacking any T4 DNA, showed reduced levels of degradation of puromycyl polypeptides and of canavanyl proteins. The lon+ lysogens that contained pinA exhibited other phenotypic characteristics common to lon strains, such as filamentation and production of mucoid colonies. Levels of degradation of canavanyl proteins were essentially the same, however, in null lon lysogens which either contained or lacked pinA. We infer from these data that the T4 pinA gene functions to block Lon protease activity; pinA does not, however, appear to block the activity of proteases other than Lon that are involved in the degradation of abnormal proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号