首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
A parsimony optimization of the presence of high-frequency flapping flight onto a phylogeny of 29 species of birds shows that this is a derived character state that has been acquired at least four independent times: by the last common ancestor of Alcidae, that of Podicipedidae, that of Anatidae, and that of Rallidae. Cineradiographic analysis has shown that the furculae of birds underwent extraordinary deformations during the wingbeat cycle. Cyclical deformations are known to produce microfractures in the bone tissue, which may be a stimulus for Haversian remodelling, a mechanism of resorption and reconstruction of bone tissue that may repair bone microdamage. In the present study, we performed a comparative analysis in a phylogenetic context to test the effect of the frequency of cyclical deformations and body mass on the rate of Haversian remodelling in the furculae of birds. A variation partitioning analysis showed that the type of flight (high-frequency flapping flight vs. other kinds of flight of lower wing beat frequency) and body mass explained a significant portion of Haversian bone density (the outcome of Haversian remodelling) and that the phylogeny also explained a significant part of this variation. This phylogenetic signal on Haversian bone density variation may be the outcome of phylogenetic signal on the proximate causes producing Haversian remodelling.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 91 , 729–738.  相似文献   

2.
Legendre, L, Le Roy, N, Martinez‐Maza, C, Montes, L, Laurin, M & Cubo, J. (2012). Phylogenetic signal in bone histology of amniotes revisited. —Zoologica Scripta, 42, 44–53. There is currently a debate about the presence of a phylogenetic signal in bone histological data, but very few rigorous tests have fuelled the discussions on this topic. Here, we performed new analyses using a larger set of seven histological traits and including 25 taxa (nine extinct and 16 extant taxa), using three methods: the phylogenetic eigenvector regression, the tree length distribution and the regressions on distance matrices. Our results clearly show that the phylogenetic signal in our sample of bone histological characters is strong, even after correcting for multiple testing. Most characters exhibit a significant phylogenetic signal according to at least one of our three tests, with the phylogeny often explaining 20–60% of the variation in the histological characters. Thus, we conclude that the phylogenetic comparative method should be systematically used in interspecific analyses of bone histodiversity to avoid problems of non‐independence among observations.  相似文献   

3.
Phylogenetically closely related species tend to be more similar to each other than to more distantly related ones, a pattern called phylogenetic signal. Appropriate tests to evaluate the association between phylogenetic relatedness and trait variation among species are employed in a myriad of eco-evolutionary studies. However, most tests available to date are only suitable for datasets describing continuous traits, and are most often applicable only for single trait analysis. The Mantel test is a useful method to measure phylogenetic signal for multiple (continuous, binary and/or categorical) traits. However, the classical Mantel test does not incorporate any evolutionary model (EM) in the analysis. Here, we describe a new analytical procedure, which incorporates explicitly an evolutionary model in the standard Mantel test (EM-Mantel). We run numerical simulations to evaluate its statistical properties, under different combinations of species pool size, trait type and number. Our results showed that EM-Mantel test has appropriate type I error and acceptable power, which increases with the strength of phylogenetic signal and with species pool size but depended on trait type. EM-Mantel test is a good alternative for measuring phylogenetic signal in binary and categorical traits and for datasets with multiple traits.  相似文献   

4.
Bone vascular canals occur irregularly in tetrapods; however, the reason why a species has or lacks bone canals remains poorly understood. Basically, this feature could depend on phylogenetic history, or result from diverse causes, especially cortical accretion rate. The Varanidae, a monophyletic clade that includes species with impressive size differences but similar morphologies, is an excellent model for this question. Cortical vascularization was studied in 20 monitor species, on three bones (femur, fibula, and tibia) that differ in their shaft diameters, and in the absolute growth speed of their diaphyseal cortices. In all species smaller than 398 mm SVL (133-397 mm in sample), bone cortices lack vascular canals, whereas all larger species (460-1,170 mm in sample) display canals. The size 398-460 mm SVL is thus a threshold for the appearance of the canals. The distribution of vascular and avascular bone tissues among species does not precisely reflect phylogenetic relationships. When present, vascular canals always occur in the femur and tibia, but are less frequent, sparser, and thinner in the fibula. Vascular density increases linearly with specific size but decreases exponentially during individual growth. In most species, canal orientation varies between individuals and is diverse in a single section. No clear relationship exists between canal orientation and vascular density. These results suggest that: a) the occurrence and density of bone vascular canals are basically dependant on specific size, not phylogenetic relationships; b) vascular density reflects the absolute growth rates of bone cortices; c) the orientation of vascular canals is a variable feature independent of phylogeny or growth rate.  相似文献   

5.
Aim Wood properties are related to tree physiology and mechanical stability and are influenced by both phylogeny and the environment. However, it remains unclear to what extent geographical gradients in wood traits are shaped by either phylogeny or the environment. Here we aimed to disentangle the influences of phylogeny and the environment on spatial trends in wood traits. Location China. Methods We compiled a data set of 11 wood properties for 618 tree species from 98 sampling sites in China to assess their phylogenetic and spatial patterns, and to determine how many of the spatial patterns in wood properties are attributable to the environment after correction for phylogenetic influences. Result All wood traits examined exhibited significant phylogenetic signal. The widest divergence in wood traits was observed between gymnosperms and angiosperms, Rosids and Asterids, Magnoiliids and Eudicots, and in Lamiales. For most wood traits, the majority of trait variation was observed at genus and species levels. The mechanical properties of wood showed correlated evolution with wood density. Most of the mechanical properties of wood exhibited significant latitudinal variation but limited or no altitudinal variation, and were positively correlated with mean annual precipitation based on both Pearson's correlation analysis and the phylogenetic comparative method. Correlations at family level between mean annual temperature and wood density, compression strength, cross‐section hardness, modulus of elasticity and volumetric shrinkage coefficient became significant after correction for phylogenetic influences. Main conclusions Phylogeny interacted with the environment in shaping the spatial patterns of wood traits of trees across China because most wood properties showed strong phylogenetic conservatism and thus affected environmental tolerances and distributions of tree species. Mean annual precipitation was a key environmental factor explaining the spatial patterns of wood traits. Our study provides valuable insights into the geographical patterns in productivity, distribution and ecological strategy of trees linking to wood traits.  相似文献   

6.
Phytoplankton species traits have been used to successfully predict the outcome of competition, but these traits are notoriously laborious to measure. If these traits display a phylogenetic signal, phylogenetic distance (PD) can be used as a proxy for trait variation. We provide the first investigation of the degree of phylogenetic signal in traits related to competition in freshwater green phytoplankton. We measured 17 traits related to competition and tested whether they displayed a phylogenetic signal across a molecular phylogeny of 59 species of green algae. We also assessed the fit of five models of trait evolution to trait variation across the phylogeny. There was no significant phylogenetic signal for 13 out of 17 ecological traits. For 7 traits, a non-phylogenetic model provided the best fit. For another 7 traits, a phylogenetic model was selected, but parameter values indicated that trait variation evolved recently, diminishing the importance of common ancestry. This study suggests that traits related to competition in freshwater green algae are not generally well-predicted by patterns of common ancestry. We discuss the mechanisms by which the link between phylogenetic distance and phenotypic differentiation may be broken.  相似文献   

7.
Histological methods for the estimation of age at death using cortical bone are based on the evaluation of microstructural changes over time. Since histological analysis is a destructive method, most techniques attempt to limit the amount of cortical bone needed for analysis. Sample location, however, can have a significant effect on the accuracy of these methods. Furthermore, research demonstrates that both intersection and intrasection variation is present at the midshaft of the femur, which is the primary location for estimating age at death in humans. This research determines the extent of regional variation within the adult human femur and its effect on age estimation. Secondary osteon lamellae and Haversian canal ratio and cortical thickness were quantified. Thompson's All Males Left Femur regression equation was used to estimate age. Results show that significant regional variation occurs in the estimated ages derived from the posterior aspect of the femoral shaft and significant intrasection variation occurs in age estimates from the mid and mid-distal cross-sections. Thus, the inter and intrasection variation that occurs in bone remodeling within the femoral cortex has the potential to produce significant differences amongst age estimates taken from various femoral diaphyseal locations compared to the age estimated from the standard location used in Thompson's core method (1978). The results indicate that the use of this histological method is dependant on the ability to correctly identify the four anatomical locations, but the extracted core used for age estimation is not necessarily confined to the anterior midshaft.  相似文献   

8.
Plant clades may exhibit little or wide morphological variation as a result of (1) the retention of ancestral characteristics or phylogenetic signal, (2) character displacement, or (3) random phenotypic drift or convergence. Understanding the taxonomy and systematics of many plant lineages has been challenging due to continuous intra‐ and interspecific morphological variation. To assess which evolutionary hypothesis could explain the morphological diversity in the genus Geonoma (Arecaceae), we performed a Mantel test between phylogenetic and morphological distances of 54 taxa, and tested for phylogenetic signal using Blomberg's K‐statistic on continuous variables, and a randomization of character states. To obtain a phylogenetic (patristic) distance matrix for Geonoma, we constructed a molecular phylogeny of tribe Geonomateae using three nuclear DNA regions. A positive relationship between the patristic and a 26‐discrete‐character distance matrix (R2 = 0.55, P < 0.001) supported the phylogenetic signal hypothesis. The randomization test showed that signal was present in 16 characters. No relationship was evident using a 17‐quantitative‐variable distance matrix (R2 = 0.07, P = 0.13), supporting the random drift hypothesis or convergence, and all 17 K‐values were close to 0, suggesting less phylogenetic signal than under the Brownian model. If most morphological variables traditionally used to classify Geonoma evolved randomly or convergently, it might explain Geonoma's challenging taxonomy. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106 , 528–539.  相似文献   

9.
Testing how local environmental conditions influence plant community assembly is important to understand the underlying mechanisms that promote and/or maintain biodiversity. Functional traits are used to find the broad spectrum of resource use strategies that plants use to respond to environmental variation. The patterns and drivers of plant community assembly through the lens of traits and phylogeny; however, remain to be studied in a uniquely biodiversity rich but poorly known fragmented dry Afromontane forest of Ethiopia. Here, we combined trait and community phylogenetic data from thirty sampling plots of 20 × 20 m size to determine the functional and phylogenetic structures and their drivers in a fragmented, human-dominated dry evergreen Afromontane forest. We found phylogenetic and functional clustering of plants in which the effect of environment was found to be trait specific. A weak phylogenetic signal for traits was detected suggesting that species resource use strategies may not be inferred using species phylogenetic distance. Additionally, we found functional traits to be weak in predicting species abundance distribution. Overall, while this study shows a non-random community assembly pattern, it also highlights the importance of deterministic processes being trait specific.  相似文献   

10.
Community assembly processes is the primary focus of community ecology. Using phylogenetic‐based and functional trait‐based methods jointly to explore these processes along environmental gradients are useful ways to explain the change of assembly mechanisms under changing world. Our study combined these methods to test assembly processes in wide range gradients of elevation and other habitat environmental factors. We collected our data at 40 plots in Taibai Mountain, China, with more than 2,300 m altitude difference in study area and then measured traits and environmental factors. Variance partitioning was used to distinguish the main environment factors leading to phylogeny and traits change among 40 plots. Principal component analysis (PCA) was applied to colligate other environment factors. Community assembly patterns along environmental gradients based on phylogenetic and functional methods were studied for exploring assembly mechanisms. Phylogenetic signal was calculated for each community along environmental gradients in order to detect the variation of trait performance on phylogeny. Elevation showed a better explanatory power than other environment factors for phylogenetic and most traits’ variance. Phylogenetic and several functional structure clustered at high elevation while some conserved traits overdispersed. Convergent tendency which might be caused by filtering or competition along elevation was detected based on functional traits. Leaf dry matter content (LDMC) and leaf nitrogen content along PCA 1 axis showed conflicting patterns comparing to patterns showed on elevation. LDMC exhibited the strongest phylogenetic signal. Only the phylogenetic signal of maximum plant height showed explicable change along environmental gradients. Synthesis. Elevation is the best environment factors for predicting phylogeny and traits change. Plant's phylogenetic and some functional structures show environmental filtering in alpine region while it shows different assembly processes in middle‐ and low‐altitude region by different trait/phylogeny. The results highlight deterministic processes dominate community assembly in large‐scale environmental gradients. Performance of phylogeny and traits along gradients may be independent with each other. The novel method for calculating functional structure which we used in this study and the focus of phylogenetic signal change along gradients may provide more useful ways to detect community assembly mechanisms.  相似文献   

11.
Variation in traits across species or populations is the outcome of both environmental and historical factors. Trait variation is therefore a function of both the phylogenetic and spatial context of species. Here we introduce a method that, within a single framework, estimates the relative roles of spatial and phylogenetic variations in comparative data. The approach requires traits measured across phylogenetic units, e.g. species, the spatial occurrences of those units and a phylogeny connecting them. The method modifies the expected variance of phylogenetically independent contrasts to include both spatial and phylogenetic effects. We illustrate this approach by analysing cross-species variation in body mass, geographical range size and species-typical environmental temperature in three orders of mammals (carnivores, artiodactyls and primates). These species attributes contain highly disparate levels of phylogenetic and spatial signals, with the strongest phylogenetic autocorrelation in body size and spatial dependence in environmental temperatures and geographical range size showing mixed effects. The proposed method successfully captures these differences and in its simplest form estimates a single parameter that quantifies the relative effects of space and phylogeny. We discuss how the method may be extended to explore a range of models of evolution and spatial dependence.  相似文献   

12.
Little SA  Kembel SW  Wilf P 《PloS one》2010,5(12):e15161
Present-day correlations between leaf physiognomic traits (shape and size) and climate are widely used to estimate paleoclimate using fossil floras. For example, leaf-margin analysis estimates paleotemperature using the modern relation of mean annual temperature (MAT) and the site-proportion of untoothed-leaf species (NT). This uniformitarian approach should provide accurate paleoclimate reconstructions under the core assumption that leaf-trait variation principally results from adaptive environmental convergence, and because variation is thus largely independent of phylogeny it should be constant through geologic time. Although much research acknowledges and investigates possible pitfalls in paleoclimate estimation based on leaf physiognomy, the core assumption has never been explicitly tested in a phylogenetic comparative framework. Combining an extant dataset of 21 leaf traits and temperature with a phylogenetic hypothesis for 569 species-site pairs at 17 sites, we found varying amounts of non-random phylogenetic signal in all traits. Phylogenetic vs. standard regressions generally support prevailing ideas that leaf-traits are adaptively responding to temperature, but wider confidence intervals, and shifts in slope and intercept, indicate an overall reduced ability to predict climate precisely due to the non-random phylogenetic signal. Notably, the modern-day relation of proportion of untoothed taxa with mean annual temperature (NT-MAT), central in paleotemperature inference, was greatly modified and reduced, indicating that the modern correlation primarily results from biogeographic history. Importantly, some tooth traits, such as number of teeth, had similar or steeper slopes after taking phylogeny into account, suggesting that leaf teeth display a pattern of exaptive evolution in higher latitudes. This study shows that the assumption of convergence required for precise, quantitative temperature estimates using present-day leaf traits is not supported by empirical evidence, and thus we have very low confidence in previously published, numerical paleotemperature estimates. However, interpreting qualitative changes in paleotemperature remains warranted, given certain conditions such as stratigraphically closely-spaced samples with floristic continuity.  相似文献   

13.
Studies examining phylogenetic community structure have become increasingly prevalent, yet little attention has been given to the influence of the input phylogeny on metrics that describe phylogenetic patterns of co-occurrence. Here, we examine the influence of branch length, tree reconstruction method, and amount of sequence data on measures of phylogenetic community structure, as well as the phylogenetic signal (Pagel’s λ) in morphological traits, using Trichoptera larval communities from Churchill, Manitoba, Canada. We find that model-based tree reconstruction methods and the use of a backbone family-level phylogeny improve estimations of phylogenetic community structure. In addition, trees built using the barcode region of cytochrome c oxidase subunit I (COI) alone accurately predict metrics of phylogenetic community structure obtained from a multi-gene phylogeny. Input tree did not alter overall conclusions drawn for phylogenetic signal, as significant phylogenetic structure was detected in two body size traits across input trees. As the discipline of community phylogenetics continues to expand, it is important to investigate the best approaches to accurately estimate patterns. Our results suggest that emerging large datasets of DNA barcode sequences provide a vast resource for studying the structure of biological communities.  相似文献   

14.
Microhabitat use is an important component of anuran behavior in both the tadpole and the adult stages. It is potentially influenced by phylogeny and extant ecological factors acting as selective pressures, such as predation, competition, or physical habitat properties. We aimed to test whether patterns of microhabitat use vary among species, habitats and sites, and how much of this variation can be explained by phylogenetic relatedness. We collected data on microhabitat use at five different sites, where we obtained a total of 4,230 records of individual tadpoles of 34 species in 15 genera and 7 families, and a total of 1,163 records of adult individuals of 39 species in 16 genera and 8 families. Mantel tests conducted to relate species dissimilarities in microhabitat use and phylogenetic relatedness indicated a weak but significant relationship for adult anurans, and no relationship for tadpoles. Our results suggest that microhabitat use is a plastic and variable trait, overcoming phylogenetic signal in tadpoles. In adult anurans, very little of the variation in microhabitat use can be explained by phylogenetic relatedness. Microhabitat use is not a good predictor of phylogeny, but it may be a very interesting subject to study natural selection and adaptation.  相似文献   

15.
To evaluate rates of evolution, to establish tests of correlation between two traits, or to investigate to what degree the phylogeny of a species assemblage is predictive of a trait value so‐called tests for phylogenetic signal are used. Being based on different approaches, these tests are generally thought to possess quite different statistical performances. In this article, we show that the Blomberg et al. K and K*, the Abouheif index, the Moran's I, and the Mantel correlation are all based on a cross‐product statistic, and are thus all related to each other when they are associated to a permutation test of phylogenetic signal. What changes is only the way phylogenetic and trait similarities (or dissimilarities) among the tips of a phylogeny are computed. The definitions of the phylogenetic and trait‐based (dis)similarities among tips thus determines the performance of the tests. We shortly discuss the biological and statistical consequences (in terms of power and type I error of the tests) of the observed relatedness among the statistics that allow tests for phylogenetic signal. Blomberg et al. K* statistic appears as one on the most efficient approaches to test for phylogenetic signal. When branch lengths are not available or not accurate, Abouheif's Cmean statistic is a powerful alternative to K*.  相似文献   

16.
T-2 toxin is the most toxic of the trichothecene mycotoxins. Its effect on bone microstructure is still unknown. This study focuses on acute effects of the T-2 toxin on compact and trabecular bone tissues structure of rabbits after a single intramuscular administration. Experimental E group (n?=?4) consisted of animals which were intramuscularly injected with T-2 toxin at dose 0.08 mg.kg?1 body weight 72 h before slaughter. Group C (n?=?4) without T-2 toxin application served as a control. An absence of primary vascular longitudinal bone tissue near endosteal surfaces, its deposition on periosteal surfaces and a lower density of secondary osteons in the middle part of the substantia compacta were observed in both females and males injected with T-2 toxin. On the contrary, morphometrical analysis of the compact bone showed no demonstrable alternations in the sizes of primary osteons’ vascular canals, Haversian canals or secondary osteons between rabbits from E and C groups. Also, no significant effects of the T-2 toxin on trabecular bone morphometry and cortical bone thickness were observed between rabbits of either sex. The single intramuscular application of T-2 toxin at the dose used in our study affects only qualitative histological characteristics of the compact bone in rabbits.  相似文献   

17.
Amniote egg and eggshell morphology is a rich source of characters to link aspects of reproductive biology with systematics. Extensive work concerning both anatomy and phylogenetic assignability has been done on fossil bird and dinosaur eggs, but little is known for extant sauropsids. The utility of eggshell characters for phylogenetic analyses is tested and discussed for extant side-necked turtles (Pleurodira), and the diversity of egg ultrastructure is examined in several species. Egg gross morphology and eggshell ultrastructure of 12 species of extant side-necked turtles was documented using scanning electron microscopy. Thirteen eggshell characters were scored and mapped on a composite phylogeny and ancestral character states were reconstructed. Many of the characters do not show a phylogenetic signal according to a test comparing the number of steps on the chosen phylogeny with that on randomly generated trees. The presence of conservative, clade-supporting features could be demonstrated, and the following clades are supported by several characters: the Elseya-Emydura entity, short-necked Australasian chelids, is backed by two characters, and two additional characters could potentially support this group. Three characters support the monophyly of South American chelids, whereas two characters argue for the exclusion of Hydromedusa, a long-necked form resembling Australian chelids rather than South American forms, from this clade.  相似文献   

18.
19.
20.
To understand the evolution of ecological niches it is important to know whether niche evolution is constrained by phylogeny. We approached this question for Sylvia warblers by testing if closely related species are more similar in 20 ecologically relevant morphological traits than distantly related species. Phylogenetic relatedness was quantified using a molecular phylogeny based on the mitochondrial cytochrome b gene. By Principal Component Analysis (PCA) two major niche axes were extracted. We tested the individual ecomorphological traits and the positions of the species on the PCA axes for phylogenetic effects using Mantel tests. The results demonstrated small but significant phylogenetic effects only for the length of the middle toe, a trait probably correlated with locomotion. In general, however, phylogenetic effects were very weak. This suggests that ecological niches in passerine birds have the potential to evolve rapidly and are not subject to major phylogenetic constraints.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号