首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Clathrin-mediated endocytosis proceeds by a sequential series of reactions catalyzed by discrete sets of protein machinery. The final reaction in clathrin-mediated endocytosis is membrane scission, which is mediated by the large guanosine triophosphate hydrolase (GTPase) dynamin and which may involve the actin-dependent recruitment of N-terminal containing BIN/Amphiphysin/RVS domain containing (N-BAR) proteins. Optical microscopy has revealed a detailed picture of when and where particular protein types are recruited in the ~20-30 s preceding scission. Nevertheless, the regulatory mechanisms and functions that underpin protein recruitment are not well understood. Here we used an optical assay to investigate the coordination and interdependencies between the recruitment of dynamin, the actin cytoskeleton, and N-BAR proteins to individual clathrin-mediated endocytic scission events. These measurements revealed that a feedback loop exists between dynamin and actin at sites of membrane scission. The kinetics of dynamin, actin, and N-BAR protein recruitment were modulated by dynamin GTPase activity. Conversely, acute ablation of actin dynamics using latrunculin-B led to a ~50% decrease in the incidence of scission, an ~50% decrease in the amplitude of dynamin recruitment, and abolished actin and N-BAR recruitment to scission events. Collectively these data suggest that dynamin, actin, and N-BAR proteins work cooperatively to efficiently catalyze membrane scission. Dynamin controls its own recruitment to scission events by modulating the kinetics of actin and N-BAR recruitment to sites of scission. Conversely actin serves as a dynamic scaffold that concentrates dynamin and N-BAR proteins at sites of scission.  相似文献   

2.
Amphiphysin, a protein that is highly concentrated in nerve terminals, has been proposed to function as a linker between the clathrin coat and dynamin in the endocytosis of synaptic vesicles. Here, using a cell-free system, we provide direct morphological evidence in support of this hypothesis. Unexpectedly, we also find that amphiphysin-1, like dynamin-1, can transform spherical liposomes into narrow tubules. Moreover, amphiphysin-1 assembles with dynamin-1 into ring-like structures around the tubules and enhances the liposome-fragmenting activity of dynamin-1 in the presence of GTP. These results show that amphiphysin binds lipid bilayers, indicate a potential function for amphiphysin in the changes in bilayer curvature that accompany vesicle budding, and imply a close functional partnership between amphiphysin and dynamin in endocytosis.  相似文献   

3.
Accessory protein recruitment motifs in clathrin-mediated endocytosis   总被引:11,自引:0,他引:11  
Clathrin-mediated endocytosis depends upon the interaction of accessory proteins with the alpha-ear of the AP-2 adaptor. We present structural characterization of these regulatory interactions. DPF and DPW motif peptides derived from eps15 and epsin bind in type I beta turn conformations to a conserved pocket on the alpha-ear platform. We show evidence for a second binding site that is DPW motif specific. The structure of a complex with an AP-2 binding segment from amphiphysin reveals a novel binding motif that we term FxDxF, which is engaged in an extended conformation by a unique surface of the platform domain. The FxDxF motif is also used by AP180 and the 170 kDa isoform of synaptojanin and can be found in several potential endocytic proteins, including HIP1, CD2AP, and PLAP. A mechanism of clathrin assembly regulation is suggested by three different AP-2 engagement modes.  相似文献   

4.
The GTPase dynamin plays an essential role in clathrin-mediated endocytosis [1] [2] [3]. Substantial evidence suggests that dynamin oligomerisation around the necks of endocytosing vesicles and subsequent dynamin-catalysed GTP hydrolysis is responsible for membrane fission [4] [5]. The pleckstrin homology (PH) domain of dynamin has previously been shown to interact with phosphoinositides, but it has not been determined whether this interaction is essential for dynamin's function in endocytosis [6] [7] [8] [9]. In this study, we address the in vivo function of the PH domain of dynamin by assaying the effects of deletions and point mutations in this region on transferrin uptake in COS-7 fibroblasts. Overexpression of a dynamin construct lacking its entire PH domain potently blocked transferrin uptake, as did overexpression of a dynamin construct containing a mutation in the first variable loop of the PH domain. Structural modelling of this latter mutant suggested that the lysine residue at position 535 (Lys535) may be critical in the coordination of phosphoinositides, and indeed, the purified mutant no longer interacted with lipid nanotubes. Interestingly, the inhibitory phenotype of cells expressing this dynamin mutant was partially relieved by a second mutation in the carboxy-terminal proline-rich domain (PRD), one that prevents dynamin from binding to the Src homology 3 (SH3) domain of amphiphysin. These data demonstrate that dynamin's interaction with phosphoinositides through its PH domain is essential for endocytosis. These findings also support our hypothesis that PRD-SH3 domain interactions are important in the recruitment of dynamin to sites of endocytosis.  相似文献   

5.
Clathrin-mediated endocytosis (CME) involves the recruitment of numerous proteins to sites on the plasma membrane with prescribed timing to mediate specific stages of the process. However, how choreographed recruitment and function of specific proteins during CME is achieved remains unclear. Using genome editing to express fluorescent fusion proteins at native levels and live-cell imaging with single-molecule sensitivity, we explored dynamin2 stoichiometry, dynamics, and functional interdependency with actin. Our quantitative analyses revealed heterogeneity in the timing of the early phase of CME, with transient recruitment of 2–4 molecules of dynamin2. In contrast, considerable regularity characterized the final 20 s of CME, during which ∼26 molecules of dynamin2, sufficient to make one ring around the vesicle neck, were typically recruited. Actin assembly generally preceded dynamin2 recruitment during the late phases of CME, and promoted dynamin recruitment. Collectively, our results demonstrate precise temporal and quantitative regulation of the dynamin2 recruitment influenced by actin polymerization.  相似文献   

6.
Dynamin, a central player in clathrin-mediated endocytosis, interacts with several functionally diverse SH3 domain-containing proteins. However, the role of these interactions with regard to dynamin function is poorly defined. We have investigated a recently identified protein partner of dynamin, SNX9, sorting nexin 9. SNX9 binds directly to both dynamin-1 and dynamin-2. Moreover by stimulating dynamin assembly, SNX9 stimulates dynamin's basal GTPase activity and potentiates assembly-stimulated GTPase activity on liposomes. In fixed cells, we observe that SNX9 partially localizes to clathrin-coated pits. Using total internal reflection fluorescence microscopy in living cells, we detect a transient burst of EGFP-SNX9 recruitment to clathrin-coated pits that occurs during the late stages of vesicle formation and coincides spatially and temporally with a burst of dynamin-mRFP fluorescence. Transferrin internalization is inhibited in HeLa cells after siRNA-mediated knockdown of SNX9. Thus, our results establish that SNX9 is required for efficient clathrin-mediated endocytosis and suggest that it functions to regulate dynamin activity.  相似文献   

7.
The emerging field of mass spectrometry-based chemical proteomics provides a powerful instrument in the target discovery of bioactive small-molecules, such as drugs or natural products. The identification of their macromolecular targets is required for a comprehensive understanding of their bio-pharmacological role and for unraveling their mechanism of action. We report the application of a chemical proteomics approach to the analysis of the cellular interactome of the marine metabolite bolinaquinone (BLQ). BLQ was linked to an opportune α,ω-diamino polyethylene glycol chain and then immobilized on a matrix support. The modified beads were then used as a bait for fishing the potential partners of BLQ in a THP-1 macrophage cell lysate. Surprisingly, we identified clathrin, a protein involved in the cell internalization of proteins, viruses and other biologically relevant macromolecules, as a specific and major BLQ partner. In addition, we verified the biochemical role of BLQ testing its ability to inhibit the clathrin-mediated endocytosis of albumin. This finding indicates BLQ as a new biotechnological tool for cell endocytosis studies and paves the way to further investigation on its potential role in modulating internalization process.  相似文献   

8.
Dynamin GTPase activity is required for its biological function in clathrin-mediated endocytosis; however, the role of self-assembly has not been unambiguously established. Indeed, overexpression of a dynamin mutant, Dyn1-K694A, with impaired ability to self-assemble has been shown to stimulate endocytosis in HeLa cells (Sever et al., Nature 1999, 398, 481). To identify new, assembly-incompetent mutants of dynamin 1, we made point mutations in the GTPase effector/assembly domain (GED) and tested for their effects on self-assembly and clathrin-mediated endocytosis. Mutation of three residues, I690, K694, and I697, suggests that interactions with an amphipathic helix in GED are required for self-assembly. In particular, Dyn1-I690K failed to exhibit detectable assembly-stimulated GTPase activity under all assay conditions. Overexpression of this assembly-incompetent mutant inhibited transferrin endocytosis as potently as the GTPase-defective dominant-negative mutant, Dyn1-K44A. However, worm-like endocytic intermediates accumulated in cells expressing Dyn1-I690K that were structurally distinct from long tubules that accumulated in cells expressing Dyn1-K44A. Together these results provide new structural insight into the role of GED in self-assembly and assembly-stimulated GTPase activity and establish that dynamin self-assembly is essential for clathrin-mediated endocytosis.  相似文献   

9.
Clathrin-mediated endocytosis is one of the major entry routes into a eukaryotic cell. It is driven by protein components that aid the selection of cargo and provide the mechanical force needed to both deform the plasma membrane and detach a vesicle. Clathrin-coated vesicles were first observed by electron microscopy in the early 1960s. In subsequent years, many of the characteristic intermediates generated during vesicle formation have been trapped and observed. A variety of electron microscopy techniques, from the analysis of sections through cells to the study of endocytic intermediates formed in vitro, have led to the proposition of a sequence of events and of roles for different proteins during vesicle formation. In this article, these techniques and the insights gained are reviewed, and their role in providing snap-shots of the stages of endocytosis in atomic detail is discussed.  相似文献   

10.
It has been thought that clathrin-mediated endocytosis is regulated by phosphorylation and dephosphorylation of many endocytic proteins, including amphiphysin I and dynamin I. Here, we show that Cdk5/p35-dependent cophosphorylation of amphiphysin I and dynamin I plays a critical role in such processes. Cdk5 inhibitors enhanced the electric stimulation-induced endocytosis in hippocampal neurons, and the endocytosis was also enhanced in the neurons of p35-deficient mice. Cdk5 phosphorylated the proline-rich domain of both amphiphysin I and dynamin I in vitro and in vivo. Cdk5-dependent phosphorylation of amphiphysin I inhibited the association with beta-adaptin. Furthermore, the phosphorylation of dynamin I blocked its binding to amphiphysin I. The phosphorylation of each protein reduced the copolymerization into a ring formation in a cell-free system. Moreover, the phosphorylation of both proteins completely disrupted the copolymerization into a ring formation. Finally, phosphorylation of both proteins was undetectable in p35-deficient mice.  相似文献   

11.
Synaptojanin 2 is a ubiquitously expressed polyphosphoinositide phosphatase that displays a high degree of homology in its catalytic domains with synaptojanin 1 [1,2]. Neurons of synaptojanin 1-deficient mice display an increase in clathrin-coated vesicles and delayed reentry of recycling vesicles into the fusion-competent vesicle pool, but no defects in early steps of endocytosis [3,4]. Here we show that inhibition of synaptojanin 2 expression via small interfering (si) RNA causes a strong defect in clathrin-mediated receptor internalization in a lung carcinoma cell line. This inhibitory phenotype is rescued by overexpression of wild-type synaptojanin 2, but not of wild-type synaptojanin 1 or mutant synaptojanin 2 that is deficient in 5'-phosphatase activity. In addition, electron-microscopic analysis shows that synaptojanin 2 depletion causes a decrease in clathrin-coated pits and vesicles. These results suggest a role for synaptojanin 2 in clathrin-coated pit formation and imply that lipid hydrolysis is required at an early stage of clathrin-mediated endocytosis. Taken together, our results also indicate that synaptojanin 2 is functionally distinct from synaptojanin 1.  相似文献   

12.
AP-2 complexes are key components in clathrin-mediated endocytosis (CME). They trigger clathrin assembly, interact directly with cargo molecules, and recruit a number of endocytic accessory factors. Adaptor-associated kinase (AAK1), an AP-2 binding partner, modulates AP-2 function by phosphorylating its mu2 subunit. Here, we examined the effects of adenoviral-mediated overexpression of WT AAK1, kinase-dead, and truncation mutants in HeLa cells, and show that AAK1 also regulates AP-2 function in vivo. WT AAK1 overexpression selectively blocks transferrin (Tfn) receptor and LRP endocytosis. Inhibition was kinase independent, but required the full-length AAK1 as truncation mutants were not inhibitory. Although changes in mu2 phosphorylation were not detected, AAK1 overexpression significantly decreased the phosphorylation of large adaptin subunits and the normally punctate AP-2 distribution was dispersed, suggesting that AAK1 overexpression inhibited Tfn endocytosis by functionally sequestering AP-2. Surprisingly, clathrin distribution and EGF uptake were unaffected by AAK1 overexpression. Thus, AP-2 may not be stoichiometrically required for coat assembly, and may have a more cargo-selective function in CME than previously thought.  相似文献   

13.
Bacterial autotransporters are comprised of an N-terminal 'passenger domain' and a C-terminal beta barrel ('beta domain') that facilitates transport of the passenger domain across the outer membrane. Following translocation, the passenger domains of some autotransporters are cleaved by an unknown mechanism. Here we show that the passenger domain of the Escherichia coli O157:H7 autotransporter EspP is released in a novel autoproteolytic reaction. After purification, the uncleaved EspP precursor underwent proteolytic processing in vitro. An analysis of protein topology together with mutational studies strongly suggested that the reaction occurs inside the beta barrel and revealed that two conserved residues, an aspartate within the beta domain (Asp(1120)) and an asparagine (Asn(1023)) at the P1 position of the cleavage junction, are essential for passenger domain cleavage. Interestingly, these residues were also essential for the proteolytic processing of two distantly related autotransporters. The data strongly suggest that Asp(1120) and Asn(1023) form an unusual catalytic dyad that mediates self-cleavage through the cyclization of the asparagine. Remarkably, a very similar mechanism has been proposed for the maturation of eukaryotic viral capsids.  相似文献   

14.
Effects of mutant rat dynamin on endocytosis   总被引:18,自引:17,他引:18       下载免费PDF全文
The process of wound repair in monolayers of the intestinal epithelial cell line, Caco-2BBe, was analyzed by a combination of time-lapse differential interference contrast (DIC) video and immunofluorescence microscopy, and laser scanning confocal immunofluorescence microscopy (LSCIM). DIC video analysis revealed that stab wounds made in Caco-2BBe monolayers healed by two distinct processes: (a) Extension of lamellipodia into the wounds; and (b) Purse string closure of the wound by distinct arcs or rings formed by cells bordering the wound. The arcs and rings which effected purse string closure appeared sharp and sheer in DIC, spanned between two and eight individual cells along the wound border, and contracted in a concerted fashion. Immunofluorescence analysis of the wounds demonstrated that the arcs and rings contained striking accumulations of actin filaments, myosin-II, villin, and tropomyosin. In contrast, arcs and rings contained no apparent enrichment of microtubules, brush border myosin-I immunogens, or myosin- V. LSCIM analysis confirmed the localization of actin filaments, myosin- II, villin, and tropomyosin in arcs and rings at wound borders. ZO-1 (a tight junction protein), also accumulated in arcs and rings around wounds, despite the fact that cell-cell contacts are absent at wound borders. Sucrase-isomaltase, an apically-localized integral membrane protein, maintained an apical localization in cells where arcs or rings were formed, but was found in lamellipodia extending into wounds in cells where arcs failed to form. Time-course, LSCIM quantification of actin, myosin II, and ZO-1 revealed that accumulation of these proteins within arcs and rings at the wound edge began within 5 minutes and peaked within 30-60 minutes of wounding. Actin filaments, myosin-II, and ZO-1 achieved 10-, 3-, and 4-fold enrichments, respectively, relative to cell edges which did not border wounds. The results demonstrate that wounded Caco-2BBe monolayers assemble a novel cytoskeletal structure at the borders of wounds. The results further suggest that this structure plays at least two roles in wound repair; first, mediation of concerted, purse string movement of cells into the area of the wound and second, maintenance of apical/basolateral polarity in cells which border the wound.  相似文献   

15.
Clathrin-mediated endocytosis is the endocytic portal into cells through which cargo is packaged into vesicles with the aid of a clathrin coat. It is fundamental to neurotransmission, signal transduction and the regulation of many plasma membrane activities and is thus essential to higher eukaryotic life. Morphological stages of vesicle formation are mirrored by progression through various protein modules (complexes). The process involves the formation of a putative FCH domain only (FCHO) initiation complex, which matures through adaptor protein 2 (AP2)-dependent cargo selection, and subsequent coat building, dynamin-mediated scission and finally auxilin- and heat shock cognate 70 (HSC70)-dependent uncoating. Some modules can be used in other pathways, and additions or substitutions confer cell specificity and adaptability.  相似文献   

16.
Using novel fluorescent markers, virus-induced modulation of amphiphysin 1 expression, and electron microscopy, we demonstrated that clathrin-mediated endocytosis is the main mechanism of synaptic vesicle retrieval; a hypothesis on the role of a fast “kiss-and-run” mechanism has not been supported. Neirofiziologiya/Neurophysiology, Vol. 39, Nos. 4/5, pp. 388–389, July–October, 2007.  相似文献   

17.
Keratinocyte growth factor receptor (KGFR) is a receptor tyrosine kinase expressed on epithelial cells. Following ligand binding, KGFR is rapidly activated and internalized by clathrin-mediated endocytosis. Among the possible receptor substrates which could be involved in the regulation of KGFR endocytosis and down-modulation, we analyzed here the eps15 protein in view of the proposed general role of eps15 in regulating clathrin-mediated endocytosis as well as that of eps15 tyrosine phosphorylation in the control of regulated endocytosis. Immunoprecipitation and Western blot analysis showed that activated KGFR was not able to phosphorylate eps15, suggesting that eps15 is not a receptor substrate. Double immunofluorescence and confocal microscopy revealed that activated KGFR, differently from epidermal growth factor receptor (EGFR), did not induce recruitment of eps15 to the cell plasma membrane. Microinjection of a monoclonal antibody directed against the C-terminal DPF domain which contains the AP2 binding region of eps15 led to inhibition of both pathways of receptor-mediated endocytosis, the EGFR ligand-induced endocytosis and the transferrin constitutive endocytosis, but did not appear to block the KGFR ligand-induced internalization. Taken together our results indicate that the clathrin-mediated uptake of KGFR is not mediated by eps15.  相似文献   

18.
The existence of neuron-specific endocytic protein isoforms raises questions about their importance for specialized neuronal functions. Dynamin, a GTPase implicated in the fission reaction of endocytosis, is encoded by three genes, two of which, dynamin 1 and 3, are highly expressed in neurons. We show that dynamin 3, thought to play a predominantly postsynaptic role, has a major presynaptic function. Although lack of dynamin 3 does not produce an overt phenotype in mice, it worsens the dynamin 1 KO phenotype, leading to perinatal lethality and a more severe defect in activity-dependent synaptic vesicle endocytosis. Thus, dynamin 1 and 3, which together account for the overwhelming majority of brain dynamin, cooperate in supporting optimal rates of synaptic vesicle endocytosis. Persistence of synaptic transmission in their absence indicates that if dynamin plays essential functions in neurons, such functions can be achieved by the very low levels of dynamin 2.  相似文献   

19.
Wang YT  Linden DJ 《Neuron》2000,25(3):635-647
Cerebellar long-term depression (LTD) is a cellular model system of information storage that may underlie certain forms of motor learning. While cerebellar LTD is expressed as a selective modification of postsynaptic AMPA receptors, this might involve changes in receptor number/distribution, unitary conductance, kinetics, or glutamate affinity. The observation that GluR2-containing synaptic AMPA receptors could be internalized by regulated clathrin-mediated endocytosis suggested that this process could underlie LTD expression. To test this hypothesis, we postsynaptically applied dynamin and amphiphysin peptides that interfere with the clathrin endocytotic complex and found that they blocked LTD expression in cultured Purkinje neurons. In addition, induction of LTD and attenuation of AMPA responses by stimulation of clathrin-mediated endocytosis occluded each other. These findings suggest that the expression of cerebellar LTD requires clathrin-mediated internalization of postsynaptic AMPA receptors.  相似文献   

20.
Zhang J  Fan J  Tian Q  Song Z  Zhang JF  Chen Y 《Cellular signalling》2012,24(11):2043-2050
Endophilin, one of the main accessory proteins involved in clathrin-mediated endocytosis, interacts with other endocytic proteins, such as dynamin, by its SH3 domain. We previously reported that voltage-gated Ca(2+) channels are an integral part of the synaptic vesicle (SV) endocytosis machinery through their interaction with endophilin. Formation of the endophilin-channel complex is Ca(2+) dependent. A glutamate residue, E264, in endophilin is part of the primary Ca(2+) sensor for Ca(2+)-dependent formation of the channel-endophilin complex. We proposed that endophilin exists in two distinct modes (conformations), an open mode in the absence of Ca(2+), and a closed mode in the presence of Ca(2+). Binding of Ca(2+) switches endophilin from its open mode to the closed mode, resulting in dissociation of endophilin from other proteins. The present study is aimed at understanding the functional roles of endophilin in its two different modes, by creating two endophilin mutants, E264A and E264R, to mimic endophilin in its permanent open mode and permanent closed mode respectively. Here, we show that these two modes of endophilin have different effects on how endophilin interacts with other proteins, such as dynamin or β1-adrenergic receptors. In living cells, endophilin in its permanent closed mode does not show obvious effects on agonist-induced internalization of β1-adrenergic receptors. Endophilin, when in its permanent open mode, enhances the short-term synaptic depression in cultured hippocampal neurons, due partly to its failure to dissociate from Ca(2+) channels in the presence of Ca(2+). Our results show that modal switching by Ca(2+) allows endophilin to regulate, more effectively, the clathrin-mediated endocytosis of SV at the nerve terminal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号