首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Bone strain is considered one of the factors inducing bone tissue response to loading. Nevertheless, where animal studies can provide detailed data on bone response, they only offer limited information on experimental bone strains. Including micro-CT-based finite element (micro FE) models in the analysis represents a potent methodology for quantifying strains in bone. Therefore, the main objective of this study was to develop and validate specimen-specific micro FE models for the assessment of bone strains in the rat tibia compression model. Eight rat limbs were subjected to axial compression loading; strain at the medio-proximal site of the tibiae was measured by means of strain gauges. Specimen-specific micro FE models were created and analyzed. Repeated measurements on each limb indicated that the effect of limb positioning was small (COV?= 6.45 ± 2.27 %). Instead, the difference in the measured strains between the animals was high (54.2%). The computational strains calculated at the strain gauge site highly correlated to the measured strains (R 2?=?0.95). Maximum peak strains calculated at exactly 25% of the tibia length for all specimens were equal to 435.11 ± 77.88 microstrains (COV?=?17.19%). In conclusion, we showed that strain gauge measurements are very sensitive to the exact strain gauge location on the bone; hence, the use of strain gauge data only is not recommended for studies that address at identifying reliable relationships between tissue response and local strains. Instead, specimen-specific micro FE models of rat tibiae provide accurate estimates of tissue-level strains.  相似文献   

2.
Understanding the load transfer within a resurfaced femur is necessary to determine the influence of mechanical factors on potential failure mechanisms such as early femoral neck fractures and stress shielding. In this study, an attempt has been made to measure the stem-bone micromotion and implant cup-bone relative displacements (along medial-lateral and anterior-posterior direction), in addition to surface strains at different locations and orientations on the proximal femur and to compare these measurements with those predicted by equivalent FE models. The loading and the support conditions of the experiment were closely replicated in the FE models. A new experimental set-up has been developed, with specially designed fixtures and load application mechanism, which can effectively impose bending and deflection of the tested femurs, almost in any direction. High correlation coefficient (0.92–0.95), low standard error of the estimate (170–379 με) and low percentage error in regression slope (12.8–17.5%), suggested good agreement between the numerical and measured strains. The effect of strain shielding was observed in two (out of eight) strain gauges located on the posterior side. A pronounced strain increase occurred in strain gauges located on the anterior head and neck regions after implantation. Experimentally measured stem-bone micromotion and implant cup-bone relative displacements (0–13.7 μm) were small and similar in trends predicted by the FE models (0–25 μm). Despite quantitative deviations in the measured and numerical results, it appears that the FE model can be used as a valid predictor of the actual strain and stem-bone micromotion.  相似文献   

3.
Primary stability of uncemented resurfacing prosthesis is provided by an interference fit between the undersized implant and the reamed bone. Dependent on the magnitude of interference, the implantation process causes high shear forces and large strains which can exceed the elastic limit of cancellous bone. Plastification of the bone causes reduced stiffness and could lead to bone damage and implant loosening. The purpose in this study was to determine press-fit conditions which allow implantation without excessive plastic bone deformation and sufficient primary stability to achieve bone ingrowth. In particular, the influence of interference, bone quality and friction on the micromotion during walking and stair-climbing was investigated. Therefore elastic and plastic finite element (FE) models of the proximal femur were developed. Implantation was realized by displacing the prosthesis onto the femur while monitoring the contact pressure, plastic bone deformation as well as implantation forces. Subsequently a physiologic gait and stair-climbing cycle was simulated calculating the micromotion at the bone-implant interface. Results indicate that plastic deformation starts at an interference of 30 μm and the amount of plastified bone at the interface increases up to 90% at 150 μm interference. This effect did not reduce the contact pressure if interference was below 80 μm. The micromotion during walking was similar for the elastic and plastic FE models. A stable situation allowing bony ingrowth was achieved for both constitutive laws (elastic, plastic) for walking and stair climbing with at least 60 μm press-fit, which is feasible with clinically used implantation forces of 4 kN.  相似文献   

4.
Finite element (FE) models of long bones are widely used to analyze implant designs. Experimental validation has been used to examine the accuracy of FE models of cadaveric femurs; however, although convergence tests have been carried out, no FE models of an intact and implanted human cadaveric tibia have been validated using a range of experimental loading conditions. The aim of the current study was to create FE models of a human cadaveric tibia, both intact and implanted with a unicompartmental knee replacement, and to validate the models against results obtained from a comprehensive set of experiments. Seventeen strain rosettes were attached to a human cadaveric tibia. Surface strains and displacements were measured under 17 loading conditions, which consisted of axial, torsional, and bending loads. The tibia was tested both before and after implantation of the knee replacement. FE models were created based on computed tomography (CT) scans of the cadaveric tibia. The models consisted of ten-node tetrahedral elements and used 600 material properties derived from the CT scans. The experiments were simulated on the models and the results compared to experimental results. Experimental strain measurements were highly repeatable and the measured stiffnesses compared well to published results. For the intact tibia under axial loading, the regression line through a plot of strains predicted by the FE model versus experimentally measured strains had a slope of 1.15, an intercept of 5.5 microstrain, and an R(2) value of 0.98. For the implanted tibia, the comparable regression line had a slope of 1.25, an intercept of 12.3 microstrain, and an R(2) value of 0.97. The root mean square errors were 6.0% and 8.8% for the intact and implanted models under axial loads, respectively. The model produced by the current study provides a tool for simulating mechanical test conditions on a human tibia. This has considerable value in reducing the costs of physical testing by pre-selecting the most appropriate test conditions or most favorable prosthetic designs for final mechanical testing. It can also be used to gain insight into the results of physical testing, by allowing the prediction of those variables difficult or impossible to measure directly.  相似文献   

5.
Finite Element (FE) models for the simulation of intact and implanted bone find their main purpose in accurately reproducing the associated mechanical behavior. FE models can be used for preclinical testing of joint replacement implants, where some biomechanical aspects are difficult, if not possible, to simulate and investigate in vitro. To predict mechanical failure or damage, the models should accurately predict stresses and strains. Commercially available synthetic femur models have been extensively used to validate finite element models, but despite the vast literature available on the characteristics of synthetic tibia, numerical and experimental validation of the intact and implant assemblies of tibia are very limited or lacking. In the current study, four FE models of synthetic tibia, intact and reconstructed, were compared against experimental bone strain data, and an overall agreement within 10% between experimental and FE strains was obtained. Finite element and experimental (strain gauge) models of intact and implanted synthetic tibia were validated based on the comparison of cortex bone strains. The study also includes the analysis carried out on standard tibial components with cemented and noncemented stems of the P.F.C Sigma Modular Knee System. The overall agreement within 10% previously established was achieved, indicating that FE models could be successfully validated. The obtained results include a statistical analysis where the root-mean-square-error values were always <10%. FE models can successfully reproduce bone strains under most relevant acting loads upon the condylar surface of the tibia. Moreover, FE models, once properly validated, can be used for preclinical testing of tibial knee replacement, including misalignment of the implants in the proximal tibia after surgery, simulation of long-term failure according to the damage accumulation failure scenario, and other related biomechanical aspects.  相似文献   

6.
Osteoporotic (Colles’ type) fractures of the distal radius occur relatively early in lifetime and could estimate risk of fracture of other, more endangered anatomical sites. High-resolution peripheral quantitative computed tomography (HR-pQCT) based micro finite element (μFE) analysis was shown to better predict fracture load of the distal radius than densitometry or histomorphometric measures. As an alternative to μFE, homogenization-based FE (hFE) approach may provide at least equivalent predictive power with reduced computational needs. The aim of this study was to validate the hFE approach with compression tests of 25 distal radius sections extracted at the location which is relevant in Colles’ fractures. HR-pQCT-based input parameters of the hFE models were calibrated with respect to μCT. HR-pQCT-based hFE models were then built and their ability to predict experimental stiffness and ultimate load was compared to those of the density-based parameters, histomorphometric indices and μFE models assessed from the same input images. Bone mineral content was the best non-FE-based predictor (R 2 = 0.86) of ultimate force. Both FE methods were not only the strongest predictors, but provided quantitatively correct fracture loads. The calibrated hFE approach provided closely as strong prediction (R 2 = 0.94) as μFE (R 2 = 0.95), but the former was computationally cheaper. The results of this validation study suggest that FE simulation could be used as an efficient and precise tool to predict Colles’ fracture load.  相似文献   

7.
Post-operative changes in trabecular bone morphology at the cement-bone interface can vary depending on time in service. This study aims to investigate how micromotion and bone strains change at the tibial bone-cement interface before and after cementation. This work discusses whether the morphology of the post-mortem interface can be explained by studying changes in these mechanical quantities. Three post-mortem cement-bone interface specimens showing varying levels of bone resorption (minimal, extensive and intermediate) were selected for this study Using image segmentation techniques, masks of the post-mortem bone were dilated to fill up the mould spaces in the cement to obtain the immediately post-operative situation. Finite element (FE) models of the post-mortem and post-operative situation were created from these segmentation masks. Subsequent removal of the cement layer resulted in the pre-operative situation. FE micromotion and bone strains were analyzed for the interdigitated trabecular bone. For all specimens micromotion increased from the post-operative to the post-mortem models (distally, in specimen 1: 0.1 to 0.5 µm; specimen 2: 0.2 to 0.8 µm; specimen 3: 0.27 to 1.62 µm). Similarly bone strains were shown to increase from post-operative to post-mortem (distally, in specimen 1: −185 to −389 µε; specimen 2: −170 to −824 µε; specimen 3: −216 to −1024 µε). Post-mortem interdigitated bone was found to be strain shielded in comparison with supporting bone indicating that failure of bone would occur distal to the interface. These results indicate that stress shielding of interdigitated trabeculae is a plausible explanation for resorption patterns observed in post-mortem specimens.  相似文献   

8.
The objective of this study was to develop a finite-element (FE) modeling methodology for studying the etiology of a stress fracture (SF). Several variants of three-dimensional FE models of a rat hindlimb, which differed in length or stiffness of tissues, enabling the analyses of mechanical strains and stress in the tibia, were created. We compared the occurrence of SFs in an animal model to validate locations of peak strains/stresses in the FE models. Four Sprague-Dawley male rats, age ~7 wk, were subjected to mechanical cyclic loads of 1.2 Hz and ~6 N, which were delivered to their hindlimb for 30 min, 3 times/wk, up to 12 wk, by using a specially designed apparatus. The results showed that 1) FE modeling predicted the maximal strains/stresses (~220,0 με and ~29 MPa, respectively) between the mid- and proximal thirds of the tibia; 2) in a longer shin, greater and more inhomogeneous tensile strains/stresses were evident, at the same location; 3) anatomical variants in shin length influenced the strain/stress distributions to a greater extent with respect to changes in mechanical properties of tissues; and 4) bone stiffness was more dominant than muscle stiffness in affecting the strain/stress distributions. In the animal study, 35,000 loading cycles were associated with the formation of a SF. The location of the identified SF in the rat limb verified the FE model. We find the suggested model a valuable tool in studying various aspects of SFs.  相似文献   

9.
IntroductionPreviously, a finite element (FE) model of the proximal tibia was developed and validated against experimentally measured local subchondral stiffness. This model indicated modest predictions of stiffness (R2 = 0.77, normalized root mean squared error (RMSE%) = 16.6%). Trabecular bone though was modeled with isotropic material properties despite its orthotropic anisotropy. The objective of this study was to identify the anisotropic FE modeling approach which best predicted (with largest explained variance and least amount of error) local subchondral bone stiffness at the proximal tibia.MethodsLocal stiffness was measured at the subchondral surface of 13 medial/lateral tibial compartments using in situ macro indentation testing. An FE model of each specimen was generated assuming uniform anisotropy with 14 different combinations of cortical- and tibial-specific density-modulus relationships taken from the literature. Two FE models of each specimen were also generated which accounted for the spatial variation of trabecular bone anisotropy directly from clinical CT images using grey-level structure tensor and Cowin’s fabric-elasticity equations. Stiffness was calculated using FE and compared to measured stiffness in terms of R2 and RMSE%.ResultsThe uniform anisotropic FE model explained 53–74% of the measured stiffness variance, with RMSE% ranging from 12.4 to 245.3%. The models which accounted for spatial variation of trabecular bone anisotropy predicted 76–79% of the variance in stiffness with RMSE% being 11.2–11.5%.ConclusionsOf the 16 evaluated finite element models in this study, the combination of Synder and Schneider (for cortical bone) and Cowin’s fabric-elasticity equations (for trabecular bone) best predicted local subchondral bone stiffness.  相似文献   

10.
Finite element (FE) models of long bones constructed from computed-tomography (CT) data are emerging as an invaluable tool in the field of bone biomechanics. However, the performance of such FE models is highly dependent on the accurate capture of geometry and appropriate assignment of material properties. In this study, a combined numerical-experimental study is performed comparing FE-predicted surface strains with strain-gauge measurements. Thirty-six major, cadaveric, long bones (humerus, radius, femur and tibia), which cover a wide range of bone sizes, were tested under three-point bending and torsion. The FE models were constructed from trans-axial volumetric CT scans, and the segmented bone images were corrected for partial-volume effects. The material properties (Young's modulus for cortex, density-modulus relationship for trabecular bone and Poisson's ratio) were calibrated by minimizing the error between experiments and simulations among all bones. The R(2) values of the measured strains versus load under three-point bending and torsion were 0.96-0.99 and 0.61-0.99, respectively, for all bones in our dataset. The errors of the calculated FE strains in comparison to those measured using strain gauges in the mechanical tests ranged from -6% to 7% under bending and from -37% to 19% under torsion. The observation of comparatively low errors and high correlations between the FE-predicted strains and the experimental strains, across the various types of bones and loading conditions (bending and torsion), validates our approach to bone segmentation and our choice of material properties.  相似文献   

11.
A feedback controlled loading apparatus for the rat tail vertebra was developed to deliver precise mechanical loads to the eighth caudal vertebra (C8) via pins inserted into adjacent vertebrae. Cortical bone strains were recorded using strain gages while subjecting the C8 in four cadaveric rats to mechanical loads ranging from 25 to 100 N at 1 Hz with a sinusoidal waveform. Finite element (FE) models, based on micro computed tomography, were constructed for all four C8 for calculations of cortical and trabecular bone tissue strains. The cortical bone strains predicted by FE models agreed with strain gage measurements, thus validating the FE models. The average measured cortical bone strain during 25-100 N loading was between 298 +/- 105 and 1210 +/- 297 microstrain (muepsilon). The models predicted average trabecular bone tissue strains ranging between 135 +/- 35 and 538 +/- 138 mu epsilon in the proximal region, 77 +/- 23-307 +/- 91 muepsilon in the central region, and 155 +/- 36-621 +/- 143 muepsilon in the distal region for 25-100 N loading range. Although these average strains were compressive, it is also interesting that the trabecular bone tissue strain can range from compressive to tensile strains (-1994 to 380 mu epsilon for a 100 N load). With this novel approach that combines an animal model with computational techniques, it could be possible to establish a quantitative relationship between the microscopic stress/strain environment in trabecular bone tissue, and the biosynthetic response and gene expression of bone cells, thereby study bone adaptation.  相似文献   

12.
Fixation of uncemented implant is influenced by peri-prosthetic bone ingrowth, which is dependent on the mechanical environment of the implant–bone structure. The objective of the study is to gain an insight into the tissue differentiation around an acetabular component. A mapping framework has been developed to simulate appropriate mechanical environment in the three-dimensional microscale model, implement the mechanoregulatory tissue differentiation algorithm and subsequently assess spatial distribution of bone ingrowth around an acetabular component, quantitatively. The FE model of implanted pelvis subjected to eight static load cases during a normal walking cycle was first solved. Thereafter, a mapping algorithm has been employed to include the variations in implant–bone relative displacement and host bone material properties from the macroscale FE model of implanted pelvis to the microscale FE model of the beaded implant–bone interface. The evolutionary tissue differentiation was observed in each of the 13 microscale models corresponding to 13 acetabular regions. The total implant–bone relative displacements, averaged over each region of the acetabulum, were found to vary between 10 and 60 \(\upmu \hbox {m}\). Both the linear elastic and biphasic poroelastic models predicted similar mechanoregulatory peri-prosthetic tissue differentiation. Considerable variations in bone ingrowth (13–88 %), interdigitation depth (0.2–0.82 mm) and average tissue Young’s modulus (970–3430 MPa) were predicted around the acetabular cup. A progressive increase in the average Young’s modulus, interdigitation depth and decrease in average radial strains of newly formed tissue layer were also observed. This scheme can be extended to investigate tissue differentiation for different surface texture designs on the implants.  相似文献   

13.
Dual energy X-ray absorptiometry (DXA) is the standard for assessing fragility fracture risk using areal bone mineral density (aBMD), but only explains 60–70% of the variation in bone strength. High-resolution peripheral quantitative computed tomography (HR-pQCT) provides 3D-measures of bone microarchitecture and volumetric bone mineral density (vBMD), but only at the wrist and ankle. Finite element (FE) models can estimate bone strength with 86–95% precision. The purpose of this study is to determine how well vBMD and FE bone strength at the wrist and ankle relate to fracture strength at the hip and spine, and to compare these relationships with DXA measured directly at those axial sites. Cadaveric samples (radius, tibia, femur and L4 vertebra) were compared within the same body. The radius and tibia specimens were assessed using HR-pQCT to determine vBMD and FE failure load. aBMD from DXA was measured at the femur and L4 vertebra. The femur and L4 vertebra specimens were biomechanically tested to determine failure load. aBMD measures of the axial skeletal sites strongly correlated with the biomechanical strength for the L4 vertebra (r = 0.77) and proximal femur (r = 0.89). The radius correlated significantly with biomechanical strength of the L4 vertebra for vBMD (r = 0.85) and FE-derived strength (r = 0.72), but not with femur strength. vBMD at the tibia correlated significantly with femoral biomechanical strength (r = 0.74) and FE-estimated strength (r = 0.83), and vertebral biomechanical strength for vBMD (r = 0.97) and FE-estimated strength (r = 0.91). The higher correlations at the tibia compared to radius are likely due to the tibia’s weight-bearing function.  相似文献   

14.
Periosteal surface pressures have been shown to inhibit bone formation and induce bone resorption, while tensile strains perpendicular to the periosteal surface have been shown to inhibit bone resorption and induce new bone deposition. A new computational model was developed to incorporate these experimental findings into simulations of spontaneous bone straightening in children with congenital posteromedial bowing of the tibia. Three-dimensional finite element models of the periosteum were used to determine the relationships between the defect angle and the distribution of bone surface pressures and strains due to growth-generated tensile strains in the periosteum. These relationships were incorporated into an iterative simulation to model development of a growing, bowed tibia with an initial defect angle of 27°. When periosteal loads were included in the simulation, the defect angle decreased to 10° after 2 years, and the bone straightened by an age of 25 years. When periosteal loads were not included in the simulation, the defect angle decreased to 23° after 2 years, and a defect angle of 9° remained at an age of 25 years. A “modeling drift” bone apposition/resorption pattern appeared only when periosteal loads were included. The results suggest that periosteal pressures and tensile strains induced by bone bowing can accelerate the process of bone straightening and lead to more complete correction of congenital bowing defects. Including the mechanobiological effects of periosteal surface loads in the simulations produced results similar to those seen clinically, with rapid straightening during the first few years of growth.  相似文献   

15.
Metatarsal stress fracture is a common injury observed in athletes and military personnel. Mechanical fatigue is believed to play an important role in the etiology of stress fracture, which is highly dependent on the resulting bone strain from the applied load. The purpose of this study was to validate a subject-specific finite element (FE) modeling routine for bone strain prediction in the human metatarsal. Strain gauge measurements were performed on 33 metatarsals from seven human cadaveric feet subject to cantilever bending, and subject-specific FE models were generated from computed tomography images. Material properties for the FE models were assigned using a published density-modulus relationship as well as density-modulus relationships developed from optimization techniques. The optimized relationships were developed with a ‘training set’ of metatarsals (n = 17) and cross-validated with a ‘test set’ (n = 16). The published and optimized density elasticity equations provided FE-predicted strains that were highly correlated with experimental measurements for both the training (r2  0.95) and test (r2  0.94) sets; however, the optimized equations reduced the maximum error by 10% to 20% relative to the published equation, and resulted in an X = Y type of relationship between experimental measurements and FE predictions. Using a separate optimized density-modulus equation for trabecular and cortical bone did not improve strain predictions when compared to a single equation that spanned the entire bone density range. We believe that the FE models with optimized material property assignment have a level of accuracy necessary to investigate potential interventions to minimize metatarsal strain in an effort to prevent the occurrence of stress fracture.  相似文献   

16.
17.
Implanted rat bones play a key role in studies involving fracture healing, bone diseases or drugs delivery among other themes. In most of these studies the implants integration also depends on the animal daily activity and musculoskeletal loads, which affect the implants mechanical environment. However, the tissue adaption to the physiological loads is often filtered through control groups or not inspected. This work aims to investigate experimentally and numerically the effects of the daily activity on the integration of implants inserted in the rat tibia, and to establish a physiological loading condition to analyse the peri-implant bone stresses during gait. Two titanium implants, single and double cortex crossing, are inserted in the rat tibia. The animals are caged under standard conditions and divided in three groups undergoing progressive integration periods. The results highlight a time-dependent increase of bone samples with significant cortical bone loss. The phenomenon is analysed through specimen-specific Finite Element models involving purpose-built musculoskeletal loads. Different boundary conditions replicating the post-surgery bone–implant interaction are adopted. The effects of the gait loads on the implants integration are quantified and agree with the results of the experiments. The observed cortical bone loss can be considered as a transient state of integration due to bone disuse atrophy, initially triggered by a loss of bone–implant adhesion and subsequently by a cyclic opening of the interface.  相似文献   

18.
It is always recommended to use more implants for supporting a prosthesis in the immediate loading condition than in the classical two-stage treatment procedure. By means of the finite element (FE) method, the influence of the number of implants used in immediately loaded fixed partial prosthesis (FPP) on the load distribution was investigated, considering the abutment geometry. Two 3D FE models were studied employing four implants to support a FPP in the premaxilla. One model was designed with straight abutments and the other with 20°-angled abutments. The results concerning implant displacements, stresses and strains were compared with those of two implant-supported FPPs, obtained in a previous study. A noticeable reduction in the determined biomechanical bone loading was observed with the use of more implants in supporting an immediately loaded prosthesis. This study confirms that the use of additional numbers of implants in an immediately loaded prosthesis is highly recommended.  相似文献   

19.
The aim of this study was to gain insight into the behaviour of the stresses and strains at the bone–implant interface of an implant-supported fixed partial prosthesis (FPP) in the premaxilla under immediate loading and osseointegrated conditions. Finite element models of a four-unit FPP were generated. An extreme condition was simulated, using only two immediately loaded implants in order to derive recommendations for possible clinical application. Straight and 20°-angled abutments and bonded or sliding contact between the bridge and abutment were simulated. In addition, two models were generated with two completely osseointegrated implants. A 150 N load to the prosthesis at a 45° angle to the long axis of each implant was applied. Minor differences were observed in implant displacements, stress and strain distributions of the two abutment designs. However, bone loading exceeded the physiological limits, including a risk of bone atrophy. A considerable decrease in implant displacements and bone loading was observed in the osseointegrated cases. An FPP supported by only two implants cannot be recommended for immediate loading.  相似文献   

20.
Nucleus pulposus (NP) cells of the intervertebral disk (IVD) have unique morphological characteristics and biologic responses to mechanical stimuli that may regulate maintenance and health of the IVD. NP cells reside as single cell, paired or multiple cells in a contiguous pericellular matrix (PCM), whose structure and properties may significantly influence cell and extracellular matrix mechanics. In this study, a computational model was developed to predict the stress–strain, fluid pressure and flow fields for cells and their surrounding PCM in the NP using three-dimensional (3D) finite element models based on the in situ morphology of cell–PCM regions of the mature rat NP, measured using confocal microscopy. Three-dimensional geometries of the extracellular matrix and representative cell–matrix units were used to construct 3D finite element models of the structures as isotropic and biphasic materials. In response to compressive strain of the extracellular matrix, NP cells and PCM regions were predicted to experience volumetric strains that were 1.9–3.7 and 1.4–2.1 times greater than the extracellular matrix, respectively. Volumetric and deviatoric strain concentrations were generally found at the cell/PCM interface, while von Mises stress concentrations were associated with the PCM/extracellular matrix interface. Cell–matrix units containing greater cell numbers were associated with higher peak cell strains and lower rates of fluid pressurization upon loading. These studies provide new model predictions for micromechanics of NP cells that can contribute to an understanding of mechanotransduction in the IVD and its changes with aging and degeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号