首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stressful conditions early in life can give rise to exaggerated stress responses, which, while beneficial in the short term, chronically increase lifetime exposure to stress hormones and elevate disease risk later in life. Using zebra finches Taeniopygia guttata, we show here that individuals whose glucocorticoid stress hormones were experimentally increased for only a brief period in early post-natal life, inducing increased stress sensitivity, had reduced adult lifespans. Remarkably, the breeding partners of such exposed individuals also died at a younger age. This negative effect on partner longevity was the same for both sexes; it occurred irrespective of the partner's own early stress exposure and was in addition to any longevity reduction arising from this. Furthermore, this partner effect continued even after the breeding partnership was terminated. Only 5 per cent of control birds with control partners had died after 3 years, compared with over 40 per cent in early stress-early stress pairs. In contrast, reproductive capability appeared unaffected by the early stress treatment, even when breeding in stressful environmental circumstances. Our results clearly show that increased exposure to glucocorticoids early in life can markedly reduce adult life expectancy, and that pairing with such exposed partners carries an additional and substantial lifespan penalty.  相似文献   

2.
The study of post-reproductive lifespan has been of interest primarily with regard to the extended post-menopausal lifespan seen in humans. This unusual feature of human demography has been hypothesized to have evolved because of the “grandmother” effect, or the contributions that post-reproductive females make to the fitness of their children and grandchildren. While some correlative analyses of human populations support this hypothesis, few formal, experimental studies have addressed the evolution of post-reproductive lifespan. As part of an ongoing study of life history evolution in guppies, we compared lifespans of individual guppies derived from populations that differ in their extrinsic mortality rates. Some of these populations co-occur with predators that increase mortality rate, whereas other nearby populations above barrier waterfalls are relatively free from predation. Theory predicts that such differences in extrinsic mortality will select for differences in the age at maturity, allocation of resources to reproduction, and patterns of senescence, including reproductive declines. As part of our evaluation of these predictions, we quantified differences among populations in post-reproductive lifespan. We present here the first formal, comparative study of the evolution of post-reproductive lifespan as a component of the evolution of the entire life history. Guppies that evolved with predators and that experienced high extrinsic mortality mature at an earlier age but also have longer lifespans. We divided the lifespan into three non-overlapping components: birth to age at first reproduction, age at first reproduction to age at last reproduction (reproductive lifespan), and age at last reproduction to age at death (post-reproductive lifespan). Guppies from high-predation environments live longer because they have a longer reproductive lifespan, which is the component of the life history that can make a direct contribution to individual fitness. We found no differences among populations in post-reproductive lifespan, which is as predicted since there can be no contribution of this segment of the life history to an individual's fitness. Prior work on the evolution of post-reproductive lifespan has been dominated by speculation and correlative analyses. We show here that this component of the life history is accessible to formal study as part of experiments that quantify the different segments of an individual's life history. Populations of guppies subject to different mortality pressures from predation evolved differences in total lifespan, but not in post-reproductive lifespan. Rather than showing the direct effects of selection characterizing other life-history traits, post-reproductive lifespan in these fish appears to be a random add-on at the end of the life history. These findings support the hypothesis that differences in lifespan evolving in response to selection are confined to the reproductive lifespan, or those segments of the life history that make a direct contribution to fitness. We also show, for the first time, that fish can have reproductive senescence and extended post-reproductive lifespans despite the general observation that they are capable of producing new primary oocytes throughout their lives.  相似文献   

3.
Classic theories of ageing evolution predict that increased extrinsic mortality due to an environmental hazard selects for increased early reproduction, rapid ageing and short intrinsic lifespan. Conversely, emerging theory maintains that when ageing increases susceptibility to an environmental hazard, increased mortality due to this hazard can select against ageing in physiological condition and prolong intrinsic lifespan. However, evolution of slow ageing under high‐condition‐dependent mortality is expected to result from reallocation of resources to different traits and such reallocation may be hampered by sex‐specific trade‐offs. Because same life‐history trait values often have different fitness consequences in males and females, sexually antagonistic selection can preserve genetic variance for lifespan and ageing. We previously showed that increased condition‐dependent mortality caused by heat shock leads to evolution of long‐life, decelerated late‐life mortality in both sexes and increased female fecundity in the nematode, Caenorhabditis remanei. Here, we used these cryopreserved lines to show that males evolving under heat shock suffered from reduced early‐life and net reproduction, while mortality rate had no effect. Our results suggest that heat‐shock resistance and associated long‐life trade‐off with male, but not female, reproduction and therefore sexually antagonistic selection contributes to maintenance of genetic variation for lifespan and fitness in this population.  相似文献   

4.
The study of post-reproductive lifespan has been of interest primarily with regard to the extended post-menopausal lifespan seen in humans. This unusual feature of human demography has been hypothesized to have evolved because of the “grandmother” effect, or the contributions that post-reproductive females make to the fitness of their children and grandchildren. While some correlative analyses of human populations support this hypothesis, few formal, experimental studies have addressed the evolution of post-reproductive lifespan. As part of an ongoing study of life history evolution in guppies, we compared lifespans of individual guppies derived from populations that differ in their extrinsic mortality rates. Some of these populations co-occur with predators that increase mortality rate, whereas other nearby populations above barrier waterfalls are relatively free from predation. Theory predicts that such differences in extrinsic mortality will select for differences in the age at maturity, allocation of resources to reproduction, and patterns of senescence, including reproductive declines. As part of our evaluation of these predictions, we quantified differences among populations in post-reproductive lifespan. We present here the first formal, comparative study of the evolution of post-reproductive lifespan as a component of the evolution of the entire life history.

Guppies that evolved with predators and that experienced high extrinsic mortality mature at an earlier age but also have longer lifespans. We divided the lifespan into three non-overlapping components: birth to age at first reproduction, age at first reproduction to age at last reproduction (reproductive lifespan), and age at last reproduction to age at death (post-reproductive lifespan). Guppies from high-predation environments live longer because they have a longer reproductive lifespan, which is the component of the life history that can make a direct contribution to individual fitness. We found no differences among populations in post-reproductive lifespan, which is as predicted since there can be no contribution of this segment of the life history to an individual's fitness.

Prior work on the evolution of post-reproductive lifespan has been dominated by speculation and correlative analyses. We show here that this component of the life history is accessible to formal study as part of experiments that quantify the different segments of an individual's life history. Populations of guppies subject to different mortality pressures from predation evolved differences in total lifespan, but not in post-reproductive lifespan. Rather than showing the direct effects of selection characterizing other life-history traits, post-reproductive lifespan in these fish appears to be a random add-on at the end of the life history. These findings support the hypothesis that differences in lifespan evolving in response to selection are confined to the reproductive lifespan, or those segments of the life history that make a direct contribution to fitness. We also show, for the first time, that fish can have reproductive senescence and extended post-reproductive lifespans despite the general observation that they are capable of producing new primary oocytes throughout their lives.

  相似文献   

5.
Hypotheses exploring the influence of dietary conditions on the life‐history trade‐off between survival and reproductive success are extensively tested in female insects but only rarely explored in males. The present study examines the impact of dietary quality and female access on age‐specific reproduction and survival of the male Mexican fruit fly Anastrepha ludens Loew (Diptera: Tephritidae). There is a clear cost of female access for males with access to dietary protein, measurable as a decrease in life expectancy, which is further influenced by the age when females are introduced. A protein deficient diet reduces the lifespan benefit of virginity and masks the detrimental effect of female access on male life expectancy. Dietary protein is not necessary for reproductive success, although access to protein at eclosion improves the lifetime reproductive success of males compared to when it is delayed. Overall, reproductive success diminishes as the male flies age, regardless of the dietary conditions, providing evidence for reproductive senescence in males. Delaying the males' access to a protein source fails to influence the negative effect of age on reproductive ability. Because age‐specific reproductive rates decline with age, regardless of diet, male fitness does not benefit from lifespan extension. Therefore, males can be expected to allocate available resources towards reproductive effort in favour of an extended lifespan, regardless of mate and protein availability.  相似文献   

6.
Summary The general life history problem concerns the optimal allocation of resources to growth, survival and reproduction. We analysed this problem for a perennial model organism that decides once each year to switch from growth to reproduction. As a fitness measure we used the Malthusian parameterr, which we calculated from the Euler-Lotka equation. Trade-offs were incorporated by assuming that fecundity is size dependent, so that increased fecundity could only be gained by devoting more time to growth and less time to reproduction. To calculate numerically the optimalr for different growth dynamics and mortality regimes, we used a simplified version of the simulated annealing method. The major differences among optimal life histories resulted from different accumulation patterns of intrinsic mortalities resulting from reproductive costs. If these mortalities were accumulated throughout life, i.e. if they were senescent, a bangbang strategy was optimal, in which there was a single switch from growth to reproduction: after the age at maturity all resources were allocated to reproduction. If reproductive costs did not carry over from year to year, i.e. if they were not senescent, the optimal resource allocation resulted in a graded switch strategy and growth became indeterminate. Our numerical approach brings two major advantages for solving optimization problems in life history theory. First, its implementation is very simple, even for complex models that are analytically intractable. Such intractability emerged in our model when we introduced reproductive costs representing an intrinsic mortality. Second, it is not a backward algorithm. This means that lifespan does not have to be fixed at the begining of the computation. Instead, lifespan itself is a trait that can evolve. We suggest that heuristic algorithms are good tools for solving complex optimality problems in life history theory, in particular questions concerning the evolution of lifespan and senescence.  相似文献   

7.
Olejniczak P  Lembicz M 《Oecologia》2007,152(3):485-494
Asexual fungal endophytes, which do not produce reproductive structures, spread in host populations only vertically via the propagules of their hosts. With such a close relationship between the fitness of the asexual endophyte and that of the host, the relationship is traditionally thought to be mutualistic. Here we present data showing that the positive effect of asexual endophytes may concern only a short period of the host’s life and that its lifetime reproductive success may be reduced. We followed 180 individuals of a perennial grass, Puccinellia distans, for the first 3 years of their growth both in the field and in a common garden experiment. In the first 2 years, infected individuals produced more generative shoots with longer inflorescences. Three-year-old individuals produced significantly fewer generative shoots with shorter inflorescences when infected with the fungus Epichloë typhina. Moreover, the dry mass of above- and belowground parts after three seasons was significantly lower in infected individuals. We suggest that if the endophyte retains control over plant reproduction and if shorter generation time is more crucial for the fungus than for the perennial host, then the fungus should stimulate plant reproduction early in life even though infection incurs a future cost. This reasoning suggests that discovering an endophyte’s beneficial effect on its perennial host in one season provides insufficient grounds for concluding that a mutualistic relationship exists.  相似文献   

8.
应用个体培养方法,研究了温度(20、2和30 ℃)和藻类食物浓度(1.5×106、3.0×106、6.0×106和9.0×106 cells·ml-1)对青岛、芜湖、广州三品系萼花臂尾轮虫种群动态的影响.结果表明,温度仅对轮虫的世代时间和种群内禀增长率有显著影响,而品系对所有生命表参数均无显著影响.轮虫种群的内禀增长率随培养温度的升高而增大,世代时间则随培养温度的升高而缩短.食物浓度仅对轮虫的生命期望值和平均寿命有显著影响,品系对轮虫的净生殖率、世代时间、生命期望值和平均寿命也有显著影响.三品系间,以广州品系轮虫的净生殖率、世代时间、生命期望值和平均寿命最大,芜湖品系最短.当食物浓度为3.0×106 cells·ml-1时,轮虫的生命期望值和平均寿命最长,9.0×106 cells·ml-1时最短.各品系轮虫的净生殖率、世代时间、总生殖率、生命期望值和平均寿命均随培养温度的升高而减小,广州品系的净生殖率除外.轮虫种群的内禀增长率和广州品系轮虫的总生殖率则随培养温度的升高而增大.青岛和广州品系轮虫的各生命表参数,均与食物浓度呈曲线相关,但芜湖品系仅世代时间、平均寿命和生命期望值随食物浓度的增大而缩短.  相似文献   

9.
温度和食物浓度对三品系萼花臂尾轮虫实验种群动态的影响   总被引:10,自引:5,他引:10  
应用个体培养方法,研究了温度(20、25和30℃)和藻类食物浓度(1.5×10^6、3.0×10^6、6.0×10^6和9.0×10^6cells·ml^-1)对青岛、芜湖、广州三品系萼花臂尾轮虫种群动态的影响.结果表明,温度仅对轮虫的世代时间和种群内禀增长率有显著影响,而品系对所有生命表参数均无显著影响.轮虫种群的内禀增长率随培养温度的升高而增大,世代时间则随培养温度的升高而缩短.食物浓度仅对轮虫的生命期望值和平均寿命有显著影响,品系对轮虫的净生殖率、世代时间、生命期望值和平均寿命也有显著影响.三品系间,以广州品系轮虫的净生殖率、世代时间、生命期望值和平均寿命最大,芜湖品系最短.当食物浓度为3.0×10^6cells·ml^-1时,轮虫的生命期望值和平均寿命最长,9.0×10^6cells·ml^-1时最短.各品系轮虫的净生殖率、世代时间、总生殖率、生命期望值和平均寿命均随培养温度的升高而减小,广州品系的净生殖率除外.轮虫种群的内禀增长率和广州品系轮虫的总生殖率则随培养温度的升高而增大.青岛和广州品系轮虫的各生命表参数,均与食物浓度呈曲线相关,但芜湖品系仅世代时间、平均寿命和生命期望值随食物浓度的增大而缩短.  相似文献   

10.
Covid-19 has demonstrated again that epidemics can affect minorities more than the population in general. We consider one of the last major epidemics in the United States: HIV/AIDS from ca. 1980–2000. We calculate life expectancy and lifespan disparity (a measure of variance in age at death) for thirty US states, finding noticeable differences both between states and between the black and white communities. Lifespan disparity allows us to examine distributional effects, and, using decomposition methods, we find that for six states lifespan disparity for blacks increased between 1980 and 1990, while life expectancy increased less than for whites. We find that we can attribute most of this to the impact of HIV/AIDS.  相似文献   

11.
In populations subject to positive density dependence, individuals can increase their fitness by synchronizing the timing of key life history events. However, phenological synchrony represents a perturbation from a population's stable stage structure and the ensuing transient dynamics create troughs of low abundance that can promote extinction. Using an ecophysiological model of a mass-attacking pest insect, we show that the effect of synchrony on local population persistence depends on population size and adult lifespan. Results are consistent with a strong empirical pattern of increased extinction risk with decreasing initial population size. Mortality factors such as predation on adults can also affect transient dynamics. Throughout the species range, the seasonal niche for persistence increases with the asynchrony of oviposition. Exposure to the Allee effect after establishment may be most likely at northern range limits, where cold winters tend to synchronize spring colonization, suggesting a role for transient dynamics in the determination of species distributions.  相似文献   

12.

Background

The molecular mechanisms of variations in individual longevity are not well understood, even though longevity can be increased substantially by means of diverse experimental manipulations. One of the factors supposed to be involved in the increase of longevity is a higher stress resistance. To test this hypothesis in a natural system, eusocial insects such as bees or ants are ideally suited. In contrast to most other eusocial insects, ponerine ants show a peculiar life history that comprises the possibility to switch during adult life from a normal worker to a reproductive gamergate, therewith increasing their life expectancy significantly.

Results

We show that increased resistance against major stressors, such as reactive oxygen species and infection accompanies the switch from a life-history trait with normal lifespan to one with a longer life expectancy. A short period of social isolation was sufficient to enhance stress resistance of workers from the ponerine ant species Harpegnathos saltator significantly. All ant groups with increased stress resistances (reproducing gamergates and socially isolated workers) have lower catalase activities and glutathione levels than normal workers. Therewith, these ants resemble the characteristics of the youngest ants in the colony.

Conclusions

Social insects with their specific life history including a switch from normal workers to reproducing gamergates during adult life are well suited for ageing research. The regulation of stress resistance in gamergates seemed to be modified compared to foraging workers in an economic way. Interestingly, a switch towards more stress resistant animals can also be induced by a brief period of social isolation, which may already be associated with a shift to a reproductive trajectory. In Harpegnathos saltator, stress resistances are differently and potentially more economically regulated in reproductive individuals, highlighting the significance of reproduction for an increase in longevity in social insects. As already shown for other organisms with a long lifespan, this trait is not directly coupled to higher levels of enzymatic and non-enzymatic antioxidants.  相似文献   

13.

Background

The intense interactions among closely related individuals in animal societies provide perfect conditions for the spread of pathogens. Social insects have therefore evolved counter-measures on the cellular, individual, and social level to reduce the infection risk. One striking example is altruistic self-removal, i.e., lethally infected workers leave the nest and die in isolation to prevent the spread of a contagious disease to their nestmates. Because reproductive queens and egg-laying workers behave less altruistically than non-laying workers, e.g., when it comes to colony defense, we wondered whether moribund egg-layers would show the same self-removal as non-reproductive workers. Furthermore, we investigated how a lethal infection affects reproduction and studied if queens and egg-laying workers intensify their reproductive efforts when their residual reproductive value decreases (“terminal investment”).

Results

We treated queens, egg-laying workers from queenless colonies, and non-laying workers from queenright colonies of the monogynous (single-queened) ant Temnothorax crassispinus either with a control solution or a solution containing spores of the entomopathogenic fungus Metarhizium brunneum. Lethally infected workers left the nest and died away from it, regardless of their reproductive status. In contrast, infected queens never left the nest and were removed by workers only after they had died. The reproductive investment of queens strongly decreased after the treatment with both, the control solution and the Metarhizium brunneum suspension. The egg laying rate in queenless colonies was initially reduced in infected colonies but not in control colonies. Egg number increased again with decreasing number of infected workers.

Conclusions

Queens and workers of the ant Temnothorax crassispinus differ in their reaction to an infection risk and a reduced life expectancy. Workers isolate themselves to prevent contagion inside the colony, whereas queens stay in the nest. We did not find terminal investment; instead it appeared that egg-layers completely shut down egg production in response to the lethal infection. Workers in queenless colonies resumed reproduction only after all infected individuals had died, probably again to minimize the risk of infecting the offspring.
  相似文献   

14.
The central trade‐off between reproduction and longevity dominates most species' life history. However, no mortality cost of reproduction is apparent in eusocial species, particularly social insects in the order Hymenoptera: one or a few individuals (typically referred to as queens) in a group specialize on reproduction and are generally longer lived than all other group members (typically referred to as workers), despite having the same genome. However, it is unclear whether this survival advantage is due to social facilitation by the group or an intrinsic, individual property. Furthermore, it is unknown whether the correlation between reproduction and longevity is due to a direct mechanistic link or an indirect consequence of the social role of the reproductives. To begin addressing these questions, we performed a comparison of queen and worker longevity in the ant Cardiocondyla obscurior under social isolation conditions. Survival of single queens and workers was compared under laboratory conditions, monitoring and controlling for brood production. Our results indicate that there is no intrinsic survival advantage of queens relative to workers unless individuals are becoming reproductively active. This interactive effect of caste and reproduction on life expectancy outside of the normal social context suggests that the positive correlation between reproduction and longevity in social insect queens is due to a direct link that can activate intrinsic survival mechanisms to ensure queen longevity.  相似文献   

15.
Life-history theory suggests that individuals should live until their reproductive potential declines, and the lifespan of human men is consistent with this idea. However, because women can live long after menopause and this prolonged post-reproductive life can be explained, in part, by the fitness enhancing effects of grandmothering, an alternative hypothesis is that male lifespan is influenced by the potential to gain fitness through grandfathering. Here we investigate whether men, who could not gain fitness through reproduction after their wife's menopause (i.e. married only once), enhanced their fitness through grandfathering in historical Finns. Father presence was associated with reductions in offspring age at first reproduction and birth intervals, but generally not increases in reproductive tenure lengths. Father presence had little influence on offspring lifetime fecundity and no influence on offspring lifetime reproductive success. Overall, in contrast to our results for women in the same population, men do not gain extra fitness (i.e. more grandchildren) through grandfathering. Our results suggest that if evidence for a 'grandfather' hypothesis is lacking in a monogamous society, then its general importance in shaping male lifespan during our more promiscuous evolutionary past is likely to be negligible.  相似文献   

16.
Reproduction is a risky affair; a lifespan cost of maintaining reproductive capability, and of reproduction itself, has been demonstrated in a wide range of animal species. However, little is understood about the mechanisms underlying this relationship. Most cost-of-reproduction studies simply ask how reproduction influences age at death, but are blind to the subjects'' actual causes of death. Lifespan is a composite variable of myriad causes of death and it has not been clear whether the consequences of reproduction or of reproductive capability influence all causes of death equally. To address this gap in understanding, we compared causes of death among over 40,000 sterilized and reproductively intact domestic dogs, Canis lupus familiaris. We found that sterilization was strongly associated with an increase in lifespan, and while it decreased risk of death from some causes, such as infectious disease, it actually increased risk of death from others, such as cancer. These findings suggest that to understand how reproduction affects lifespan, a shift in research focus is needed. Beyond the impact of reproduction on when individuals die, we must investigate its impact on why individuals die, and subsequently must identify the mechanisms by which these causes of death are influenced by the physiology associated with reproductive capability. Such an approach may also clarify the effects of reproduction on lifespan in people.  相似文献   

17.
Impaired growth is often associated with an extension of lifespan. However, the negative correlation between somatic growth and life expectancy is only true within, but not between, species. This can be observed because smaller species have, as a rule, a shorter lifespan than larger species. In insects and worms, reduced reproductive development and increased fat storage are associated with prolonged lifespan. However, in mammals the relationship between the dynamics of reproductive development, fat metabolism, growth rate, and lifespan are less clear. To address this point, female transgenic mice that were overexpressing similar levels of either intact (D‐mice) or mutant insulin‐like growth factor‐binding protein‐2 (IGFBP‐2) lacking the Arg‐Gly‐Asp (RGD) motif (E‐ mice) were investigated. Both lines of transgenic mice exhibited a similar degree of growth impairment (?9% and ?10%) in comparison with wild‐type controls (C‐mice). While in D‐mice, sexual maturation was found to be delayed and life expectancy was significantly increased in comparison with C‐mice, these parameters were unaltered in E‐mice in spite of their reduced growth rate. These observations indicate that the RGD‐domain has a major influence on the pleiotropic effects of IGFBP‐2 and suggest that somatic growth and time of sexual maturity or somatic growth and life expectancy are less closely related than thought previously.  相似文献   

18.
Movement uses resources that may otherwise be allocated to somatic maintenance or reproduction. How does increased energy expenditure affect resource allocation? Using the butterfly Speyeria mormonia, we tested whether experimentally increased flight affects fecundity, lifespan or flight capacity. We measured body mass (storage), resting metabolic rate and lifespan (repair and maintenance), flight metabolic rate (flight capacity), egg number and composition (reproduction), and food intake across the adult lifespan. The flight treatment did not affect body mass or lifespan. Food intake increased sufficiently to offset the increased energy expenditure. Total egg number did not change, but flown females had higher early-life fecundity and higher egg dry mass than control females. Egg dry mass decreased with age in both treatments. Egg protein, triglyceride or glycogen content did not change with flight or age, but some components tracked egg dry mass. Flight elevated resting metabolic rate, indicating increased maintenance costs. Flight metabolism decreased with age, with a steeper slope for flown females. This may reflect accelerated metabolic senescence from detrimental effects of flight. These effects of a drawdown of nutrients via flight contrast with studies restricting adult nutrient input. There, fecundity was reduced, but flight capacity and lifespan were unchanged. The current study showed that when food resources were abundant, wing-monomorphic butterflies living in a continuous meadow landscape resisted flight-induced stress, exhibiting no evidence of a flight-fecundity or flight-longevity trade-off. Instead, flight changed the dynamics of energy use and reproduction as butterflies adopted a faster lifestyle in early life. High investment in early reproduction may have positive fitness effects in the wild, as long as food is available. Our results help to predict the effect of stressful conditions on the life history of insects living in a changing world.  相似文献   

19.
Evans EA  Chen WC  Tan MW 《Aging cell》2008,7(6):879-893
The Caenorhabditis elegans DAF-2 insulin-like signaling pathway, which regulates lifespan and stress resistance, has also been implicated in resistance to bacterial pathogens. Loss-of-function daf-2 and age-1 mutants have increased lifespans and are resistant to a variety of bacterial pathogens. This raises the possibility that the increased longevity and the pathogen resistance of insulin-like signaling pathway mutants are reflections of the same underlying mechanism. Here we report that regulation of lifespan and resistance to the bacterial pathogen Pseudomonas aeruginosa is mediated by both shared and genetically distinguishable mechanisms. We find that loss of germline proliferation enhances pathogen resistance and this effect requires daf-16, similar to the regulation of lifespan. In contrast, the regulation of pathogen resistance and lifespan is decoupled within the DAF-2 pathway. Long-lived mutants of genes downstream of daf-2, such as pdk-1 and sgk-1, show wildtype resistance to pathogens. However, mutants of akt-1 and akt-2, which we find to individually have modest effects on lifespan, show enhanced resistance to pathogens. We also demonstrate that pathogen resistance of daf-2, akt-1, and akt-2 mutants is associated with restricted bacterial colonization, and that daf-2 mutants are better able to clear an infection after challenge with P. aeruginosa. Moreover, we find that pathogen resistance among insulin-like signaling mutants is associated with increased expression of immunity genes during infection. Other processes that affect organismal longevity, including Jun kinase signaling and caloric restriction, do not affect resistance to bacterial pathogens, further establishing that aging and innate immunity are regulated by genetically distinct mechanisms.  相似文献   

20.
Harmful parasite infestation can cause energetically costly behavioural and immunological responses, with the potential to reduce host fitness and survival. It has been hypothesized that the energetic costs of infection cause resting metabolic rate (RMR) to increase. Furthermore, under terminal investment theory, individuals exposed to pathogens should allocate resources to current reproduction when life expectancy is reduced, instead of concentrating resources on an immune defence. In this study, we activated the immune system of Tenebrio molitor males via insertion of nylon monofilament, conducted female preference tests to estimate attractiveness of male odours and assessed RMR and mortality. We found that attractiveness of males coincided with significant down‐regulation of their encapsulation response against a parasite‐like intruder. Activation of the immune system increased RMR only in males with heightened odour attractiveness and that later suffered higher mortality rates. The results suggest a link between high RMR and mortality and support terminal investment theory in T. molitor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号