首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Semicontinuous fermentation using pellets of Rhizopus oryzae has been recognized as a promising technology for l-lactic acid production. In this work, semicontinuous fermentation of R. oryzae AS 3.819 for l-lactic acid production has been developed with high l-lactic acid yield and volumetric productivity. The effects of factors such as inoculations, CaCO3 addition time, and temperature on l-lactic acid yield and R. oryzae morphology were researched in detail. The results showed that optimal fermentation conditions for the first cycle were: inoculation with 4% spore suspension, CaCO3 added to the culture medium at the beginning of culture, and culture temperature of 32–34°C. In orthogonal experiments, high l-lactic acid yield was achieved when the feeding medium was (g/l): glucose, 100; (NH4)2SO4, 2; KH2PO4, 0.1; ZnSO4·7H2O, 0.33; MgSO4·7H2O, 0.15; CaCO3, 50. Twenty cycles of semicontinuous fermentation were carried out in flask culture. l-lactic acid yield was 78.75% for the first cycle and 80–90% for the repeated cycles; the activities of lactate dehydrogenases (LDH) were 7.2–9.2 U/mg; fermentation was completed in 24 h for each repeated cycle. In a 7-l magnetically stirred fermentor, semicontinuous fermentation lasted for 25 cycles using pellets of R. oryzae AS 3.819 under the optimal conditions determined from flask cultures. The final l-lactic acid concentration (LLAC) reached 103.7 g/l, and the volumetric productivity was 2.16 g/(l·h) for the first cycle; in the following 19 repeated cycles, the final LLAC reached 81–95 g/l, and the volumetric productivities were 3.40–3.85 g/(l·h).  相似文献   

2.
A putative N-acyl-d-glucosamine 2-epimerase from Caldicellulosiruptor saccharolyticus was cloned and expressed in Escherichia coli. The recombinant enzyme was identified as a cellobiose 2-epimerase by the analysis of the activity for substrates, acid-hydrolyzed products, and amino acid sequence. The cellobiose 2-epimerase was purified with a specific activity of 35 nmol min–1 mg–1 for d-glucose with a 47-kDa monomer. The epimerization activity for d-glucose was maximal at pH 7.5 and 75°C. The half-lives of the enzyme at 60°C, 65°C, 70°C, 75°C, and 80°C were 142, 71, 35, 18, and 4.6 h, respectively. The enzyme catalyzed the epimerization reactions of the aldoses harboring hydroxyl groups oriented in the right-hand configuration at the C2 position and the left-hand configuration at the C3 position, such as d-glucose, d-xylose, l-altrose, l-idose, and l-arabinose, to their C2 epimers, such as d-mannose, d-lyxose, l-allose, l-gulose, and l-ribose, respectively. The enzyme catalyzed also the isomerization reactions. The enzyme exhibited the highest activity for mannose among monosaccharides. Thus, mannose at 75 g l–1 and fructose at 47.5 g l–1 were produced from 500 g l–1 glucose at pH 7.5 and 75°C over 3 h by the enzyme.  相似文献   

3.
Alanine racemase catalyzes the interconversion of d- and l-alanine and plays an important role in supplying d-alanine, a component of peptidoglycan biosynthesis, to most bacteria. Alanine racemase exists mostly in prokaryotes and is generally absent in higher eukaryotes; this makes it an attractive target for the design of new antibacterial drugs. Here, we present the cloning and characterization of a new gene-encoding alanine racemase from Pseudomonas putida YZ-26. An open reading frame (ORF) of 1,230 bp, encoding a protein of 410 amino acids with a calculated molecular weight of 44,217.3 Da, was cloned into modified vector pET32M to form the recombinant plasmid pET–alr. After introduction into E.coli BL21, the strain pET-alr/E.coli BL21 expressed His6-tagged alanine racemase. The recombinant alanine racemase was efficiently purified to homogeneity using Ni2+–NTA and a gel filtration column, with 82.5% activity recovery. The amino acid sequence deduced from the alanine racemase gene revealed identity similarities of 97.0, 93, 23, and 22.0% with from P. putida F1, P. putida200, P. aeruginosa, and Salmonella typhimurium, respectively. The recombinant alanine racemase is a monomeric protein with a molecular mass of 43 kDa. The enzyme exhibited activity with l-alanine and l-isoleucine, and showed higher specificity for the former compared with the latter. The enzyme was stable from pH 7.0–11.0; its optimum pH was at 9.0. The optimum temperature for the enzyme was 37°C, and its activity was rapidly lost at temperatures above 40°C. Divalent metals, including Sr2+, Mn2+, Co2+, and Ni2+ obviously enhanced enzymatic activity, while the Cu2+ ion showed inhibitory effects.  相似文献   

4.
l-aspartate dehydrogenase (EC 1.4.1.21; l-AspDH) is a rare member of amino acid dehydrogenase superfamily and so far, two thermophilic enzymes have been reported. In our study, an ORF PA3505 encoding for a putative l-AspDH in the mesophilic bacterium Pseudomonas aeruginosa PAO1 was identified, cloned, and overexpressed in Escherichia coli. The homogeneously purified enzyme (PaeAspDH) was a dimeric protein with a molecular mass of about 28 kDa exhibiting a very high specific activity for l-aspartate (l-Asp) and oxaloacetate (OAA) of 127 and 147 U mg−1, respectively. The enzyme was capable of utilizing both nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP) as coenzyme. PaeAspDH showed a T m value of 48°C for 20 min that was improved to approximately 60°C by the addition of 0.4 M NaCl or 30% glycerol. The apparent K m values for OAA, NADH, and ammonia were 2.12, 0.045, and 10.1 mM, respectively; comparable results were observed with NADPH. The l-Asp production system B consisting of PaeAspDH, Bacillus subtilis malate dehydrogenase and E. coli fumarase, achieved a high level of l-Asp production (625 mM) from fumarate in fed-batch process with a molar conversion yield of 89.4%. Furthermore, the fermentative production system C released 33 mM of l-Asp after 50 h by using succinate as carbon source. This study represented an extensive characterization of the mesophilic AspDH and its potential applicability for efficient and attractive production of l-Asp. Our novel production systems are also hopeful for developing the new processes for other compounds production.  相似文献   

5.
We purified recombinant glucose-6-phosphate isomerase from Pyrococcus furiosus using heat treatment and Hi-Trap anion-exchange chromatography with a final specific activity of 0.39 U mg−1. The activity of the glucose-6-phosphate isomerase for l-talose isomerization was optimal at pH 7.0, 95°C, and 1.5 mM Co2+. The half-lives of the enzyme at 65°C, 75°C, 85°C, and 95°C were 170, 41, 19, and 7.9 h, respectively. Glucose-6-phosphate isomerase catalyzed the interconversion between two different aldoses and ketose for all pentoses and hexoses via two isomerization reactions. This enzyme has a unique activity order as follows: aldose substrates with hydroxyl groups oriented in the same direction at C2, C3, and C4 > C2 and C4 > C2 and C3 > C3 and C4. l-Talose and d-ribulose exhibited the most preferred substrates among the aldoses and ketoses, respectively. l-Talose was converted to l-tagatose and l-galactose by glucose-6-phosphate isomerase with 80% and 5% conversion yields after about 420 min, respectively, whereas d-ribulose was converted to d-ribose and d-arabinose with 53% and 8% conversion yields after about 240 min, respectively.  相似文献   

6.
Of six strains of lactic acid-producing alkaliphilic microorganisms, Halolactibacillus halophilus was most efficient. It produced the highest concentration and yield of lactic acid, with minimal amounts of acetic and formic acid when sucrose and glucose were used as substrate. Mannose and xylose were poorly utilized. In batch fermentation at 30°C, pH 9 with 4 and 8% (w/v) sucrose, lactic acid was produced at 37.7 and 65.8 g l−1, with yields of 95 and 83%, respectively. Likewise, when 4 and 8% (w/v) glucose were used, 33.4 and 59.6 g lactic acid l−1 were produced with 85 and 76% yields, respectively. l-(+)-lactic acid had an optical purity of 98.8% (from sucrose) and 98.3% (from glucose).  相似文献   

7.
Genome shuffling was used to improve the thermotolerance of l-glutamic acid-producing strain Corynebacteria glutamicum. Five strains with subtle improvements in high temperature tolerance and productivity were selected by ultraviolet irradiation and diethyl sulfate mutagenesis. An improved strain (F343) was obtained by three rounds of genome shuffling of the five strains as mentioned above. The cell density of F343 was four times higher than that of ancestor strains after 24 h of cultivation at 44°C, and importantly, the yield of l-glutamic acid was increased by 1.8-times comparing with that of the ancestor strain at 38°C in a 5-L fermentor. With glucose supplement and two-stage pH control, the l-glutamate acid concentration of F343 reached 119 g/L after fermentation for 30 h. The genetic diversity between F343 and its ancestors was also evaluated by amplified fragment length polymorphism analysis. Results suggest that the phenotypes for both thermotolerance and l-glutamic acid production in F343 were evolved.  相似文献   

8.
When Pseudomonas mendocina NK-01 was cultivated in a 200-L fermentor using glucose as carbon source, 0.316 g L−1 medium-chain-length polyhydroxyalkanoate (PHAMCL) and 0.57 g L−1 alginate oligosaccharides (AO) were obtained at the end of the process. GC/MS was used to characterize the PHAMCL, which was found to be a polymer mainly consisting of 3HO (3-hydroxyoctanoate) and 3HD (3-hydroxydecanoate). T m and T g values for the PHAMCL were 51.03°C and −41.21°C, respectively, by DSC. Its decomposition temperature was about 300°C. The elongation at break was 700% under 12 MPa stress. MS and GPC were also carried out to characterize the AO which had weight-average molecular weights of 1,546 and 1,029 Da, respectively, for the two main components at the end of the fermentation process. MS analysis revealed that the AO were consisted of β-d-mannuronic acid and/or α-l-guluronic acid, and the β-d-mannuronic acid and/or α-l-guluronic acid residues were partially acetylated at position C2 or C3.  相似文献   

9.
Bacillus coagulans has been of great commercial interest over the past decade owing to its strong ability of producing optical pure l-lactic acid from both hexose and pentose sugars including l-arabinose with high yield, titer and productivity under thermophilic conditions. The l-arabinose isomerase (L-AI) from Bacillus coagulans was heterologously over-expressed in Escherichia coli. The open reading frame of the L-AI has 1,422 nucleotides encoding a protein with 474 amino acid residues. The recombinant L-AI was purified to homogeneity by one-step His-tag affinity chromatography. The molecular mass of the enzyme was estimated to be 56 kDa by SDS-PAGE. The enzyme was most active at 70°C and pH 7.0. The metal ion Mn2+ was shown to be the best activator for enzymatic activity and thermostability. The enzyme showed higher activity at acidic pH than at alkaline pH. The kinetic studies showed that the K m, V max and k cat/K m for the conversion of l-arabinose were 106 mM, 84 U/mg and 34.5 mM−1min−1, respectively. The equilibrium ratio of l-arabinose to l-ribulose was 78:22 under optimal conditions. l-ribulose (97 g/L) was obtained from 500 g/l of l-arabinose catalyzed by the enzyme (8.3 U/mL) under the optimal conditions within 1.5 h, giving at a substrate conversion of 19.4% and a production rate of 65 g L−1 h−1.  相似文献   

10.
The sunflower seed (Helianthus annuus L.) major peptidase was purified to molecular homogeneity. It is an 80 kDa enzyme with pI of 4.6 and optimal activity at pH 7.5–8.0 and 45–50°C. It is a thiol-dependent aminopeptidase hydrolyzing peptides in a step-by-step manner as cleaving after the N-terminal amino acid residue of the substrate. It requires substrate acyl parts with a free amino group in either α- or β-position and l-configuration of the adjacent carbon atom. The enzyme prefers amino acid residues with bulky hydrophobic side chains at P1-position and its catalytic efficacy is affected by the structure of both P1 and P1′ parts of the substrate.  相似文献   

11.
Whole-genome sequence analysis of Bacillus halodurans ATCC BAA-125 revealed an isomerase gene (rhaA) encoding an l-rhamnose isomerase (l-RhI). The identified l -RhI gene was cloned from B. halodurans and over-expressed in Escherichia coli. DNA sequence analysis revealed an open reading frame of 1,257 bp capable of encoding a polypeptide of 418 amino acid residues with a molecular mass of 48,178 Da. The molecular mass of the purified enzyme was estimated to be ∼48 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 121 kDa by gel filtration chromatography, suggesting that the enzyme is a homodimer. The enzyme had an optimal pH and temperature of 7 and 70°C, respectively, with a k cat of 8,971 min−1 and a k cat/K m of 17 min−1 mM−1 for l-rhamnose. Although l-RhIs have been characterized from several other sources, B. halodurans l-RhI is distinguished from other l-RhIs by its high temperature optimum (70°C) with high thermal stability of showing 100% activity for 10 h at 60°C. The half-life of the enzyme was more than 900 min and ∼25 min at 60°C and 70°C, respectively, making B. halodurans l-RhI a good choice for industrial applications. This work describes one of the most thermostable l-RhI characterized thus far.  相似文献   

12.
The α-l-arabinosidase, AraB, was induced when Bacillus pumilus ARA was grown at 50°C in a minimal medium containing xylan. A 56-kDa protein with α-l-arabinosidase activity was purified from culture supernatant to gel electrophoretic homogeneity. The optimal activity was at pH 6.4 and 60°C over a 10-min assay. The purified enzyme was stable over a pH range of 5.2–7.6 and had a 1-h half life at 70°C. The enzyme released arabinose from oat spelt xylan. Kinetic experiments at 60°C with p-nitrophenyl α-l-arabinofuranoside as substrate gave a K m, and V max of 1.05 mM and 240 U per mg of protein. The NH2-terminal amino acid sequence of the enzyme was determined, and its gene araB was subsequently cloned, sequenced, and over-expressed in Escherichia coli. The open reading frame of araB consists of a 1,479-bp fragment encoding a protein of 472 amino acids, which belonged to family 51 of the glycoside hydrolases with an identity of 67% to the protein encoded by abfB of Bacillus subtilis 168.  相似文献   

13.
Erythrocytes l-arginine uptake is conveyed by y+ and y+L membrane transport systems. Pre-incubation with N-ethylmaleimide for 10 min at 37°C inhibits the y+ system. The aim of this study was to determine the ideal pre-incubation temperature in evaluating y+ and y+L systems. Cells were pre-incubated with or without N-ethylmaleimide for 10 min at 4°C and 37°C. l-Arginine uptake was quantified by radioisotope and standard erythrocytes membrane flux methodology. Results demonstrate that erythrocytes l-arginine content is depleted by pre-incubation at 37°C for 10 min, thus changing the V max measurement. The inhibitory effect of N-ethylmaleimide pre-incubation was temperature independent and already complete after 1 min of incubation. No significant difference in kinetic parameters was detected between cells pre-incubated at 37°C or 4°C, under zero-trans conditions. In conclusion, we suggest that measurement of erythrocytes l-arginine uptake by y+ and y+L systems could be carried out without N-ethylmaleimide pre-incubation at 37°C.  相似文献   

14.
The aim of this study is to investigate production of l-lactic acid from sucrose and corncob hydrolysate by the newly isolated R. oryzae GY18. R. oryzae GY18 was capable of utilizing sucrose as a sole source, producing 97.5 g l−1 l-lactic acid from 120 g l−1 sucrose. In addition, the strain was also efficiently able to utilize glucose and/or xylose to produce high yields of l-lactic acid. It was capable of producing up to 115 and 54.2 g l−1 lactic acid with yields of up to 0.81 g g−1 glucose and 0.90 g g−1 xylose, respectively. Corncob hydrolysates obtained by dilute acid hydrolysis and enzymatic hydrolysis of the cellulose-enriched residue were used for lactic acid production by R. oryzae GY18. A yield of 355 g lactic acid per kg corncobs was obtained after 72 h incubation. Therefore, sucrose and corncobs could serve as potential sources of raw materials for efficient production of lactic acid by R. oryzae GY18.  相似文献   

15.
Surwase SN  Jadhav JP 《Amino acids》2011,41(2):495-506
l-DOPA is an amino acid derivative and most potent drug used against Parkinson’s disease, generally obtained from Mucuna pruriens seeds. In present communication, we have studied the in vitro production of l-DOPA from l-tyrosine by novel bacterium Bacillus sp. JPJ. This bacterium produced 99.4% of l-DOPA from l-tyrosine in buffer (pH 8) containing 1 mg ml−1 cell mass incubated at 40°C for 60 min. The combination of CuSO4 and l-ascorbic acid showed the inducing effect at concentrations of 0.06 and 0.04 mg ml−1, respectively. The activated charcoal 2 mg ml−1 was essential for maximum bioconversion of l-tyrosine to l-DOPA and the crude tyrosinase activity was 2.7 U mg−1 of tyrosinase. Kinetic studies showed significant values of Y p/s (0.994), Q s (0.500) and q s (0.994) after optimization of the process. The production of l-DOPA was confirmed by analytical techniques such as HPTLC, HPLC and GC–MS. This is the first report on rapid and efficient production of l-DOPA from l-tyrosine by bacterial source which is more effective than the plant, fungal and yeast systems.  相似文献   

16.
The activity of a dye-linked l-proline dehydrogenase (dye-l-proDH) was found in the crude extract of an aerobic hyperthermophilic archaeon, Pyrobaculum calidifontis JCM 11548, and was purified 163-fold through four sequential chromatography steps. The enzyme has a molecular mass of about 108 kDa and is a homodimer with a subunit molecular mass of about 46 kDa. The enzyme retained more than 90% of its activity after incubation at 100 °C for 120 min (pH 7.5) or after incubation at pHs 4.5–9.0 for 30 min at 50 °C. The enzyme catalyzed l-proline dehydrogenation to Δ1-pyroline-5-carboxylate using 2,6-dichloroindophenol (DCIP) as the electron acceptor and the Michaelis constants for l-proline and DCIP were 1.67 and 0.026 mM, respectively. The prosthetic group on the enzyme was identified as flavin adenine dinucleotide by high-performance liquid chromatography. The subunit N-terminal amino acid sequence was MYDYVVVGAG. Using that sequence and previously reported genome information, the gene encoding the enzyme (Pcal_1655) was identified. The gene was then cloned and expressed in Escherichia coli and found to encode a polypeptide of 415 amino acids with a calculated molecular weight of 46,259. The dye-l-proDH gene cluster in P. calidifontis inherently differs from those in the other hyperthermophiles reported so far.  相似文献   

17.
We cloned the gene, CdPAL1, from Cistanche deserticola callus using RACE PCR with degenerate primers that were designed based on a multiple sequence alignment of known PAL genes from other plant species. The gene shows high homology to other known PAL genes registered in GenBank. The recombinant protein exhibited MichaelisMenten kinetics with a K m of 0.1013 mM, V max of 4.858 μmol min−1, K cat of 3.36 S−1, and K cat/K m is 33,168 M−1 S−1. The enzyme had an optimal pH of 8.5 and an activation energy of 38.92 kJ mol−1 when l-Phenylalanine was used as a substrate; l-tyrosine cannot be used as substrate for this protein. The optimal temperature was 55°C, and the thermal stability results showed that, after a treatment at 70°C for 20 min, the protein retained 87% activity, while a treatment at 75°C for 20 min resulted in a loss of over 85% of the enzyme activity. Treatment with heavy metal ions (Hg2+, Pb2+, and Zn2+) showed remarkable inhibitory effects. Among the intermediates from the lignin (cinnamyl alcohol, cinnamyl aldehyde, coniferyl aldehyde, coniferyl alcohol), phenylpropanoid (cinnamic acid, coumaric acid, caffeic acid, and chlorogenic acid) and phenylethanoid (tyrosol and salidroside) biosynthetic pathways, only cinnamic acid showed strong inhibitory effects against CdPAL1 activity with a K i of 8 μM. Competitive inhibitor AIP exhibited potent inhibition with K i = 0.056 μM.  相似文献   

18.
Based on analysis of the genome sequence of Bacillus licheniformis ATCC 14580, an isomerase-encoding gene (araA) was proposed as an l-arabinose isomerase (L-AI). The identified araA gene was cloned from B. licheniformis and overexpressed in Escherichia coli. DNA sequence analysis revealed an open reading frame of 1,422 bp, capable of encoding a polypeptide of 474 amino acid residues with a calculated isoelectric point of pH 4.8 and a molecular mass of 53,500 Da. The gene was overexpressed in E. coli, and the protein was purified as an active soluble form using Ni–NTA chromatography. The molecular mass of the purified enzyme was estimated to be ~53 kDa by sodium dodecyl sulfate–polyacrylamide gel electrophoresis and 113 kDa by gel filtration chromatography, suggesting that the enzyme is a homodimer. The enzyme required a divalent metal ion, either Mn2+or Co2+, for enzymatic activity. The enzyme had an optimal pH and temperature of 7.5 and 50°C, respectively, with a k cat of 12,455 min−1 and a k cat/K m of 34 min−1 mM−1 for l-arabinose, respectively. Although L-AIs have been characterized from several other sources, B. licheniformis L-AI is distinguished from other L-AIs by its wide pH range, high substrate specificity, and catalytic efficiency for l-arabinose, making B. licheniformis L-AI the ideal choice for industrial applications, including enzymatic synthesis of l-ribulose. This work describes one of the most catalytically efficient L-AIs characterized thus far.  相似文献   

19.
In this paper, in order to obtain some industrial strains with high yield of l-(+)-lactic acid, the wild type strain Lactobacillus casei CICC6028 was mutated by nitrogen ions implantation. By study, it was found that the high positive mutation rate was obtained when the output power was 10 keV and the dose of N+ implantation was 50 × 2.6 × 1013 ions/cm2. In addition, the initial screening methods were also studied, and it was found that the transparent halos method was unavailable, for some high yield strains of l-(+)-lactic acid were missed. Then a mutant strain which was named as N-2 was isolated, its optimum fermentation temperature was 40°C and the l-(+)-lactic acid yield was 136 g/l compared to the original strain whose optimum fermentation temperature was 34°C and l-(+)-lactic acid production was 98 g/l. Finally, High Performance Liquid Chromatography method was used to analyze the purity of l-(+)-lactic acid that was produced by the mutant N-2, and the result showed the main production of N-2 was l-(+)-lactic acid.  相似文献   

20.
Summary Corynebacterium glutamicum ATCC 13 032 produces 13 g/l l-isoleucine from 200 mM -ketobutyrate as a synthetic precursor. In fed batch cultures up to 19 g/l l-isoleucine is formed. For optimal conversion the addition of 0.3 mM l-valine plus 0.3 mM l-leucine to the fermentation medium is required. The affinity constants for the acetohydroxy acid synthase (AHAS) were determined. (This enzyme directs the flow of -ketobutyrate plus pyruvate towards l-isoleucine and that of two moles of pyruvate to l-valine and l-leucine, respectively.) For -ketobutyrate the K m is 4.8×10-3 M, and V max 0.58 U/mg, for pyruvate the K m is 8.4×10-3 M, and V max 0.37 U/mg. Due to these characteristics the presence of high -ketobutyrate concentrations apparently results in a l-valine, l-leucine deficiency. This in turn leads to a derepression of the AHAS synthesis from 0.03 U/mg to 0.29 U/mg and high l-isoleucine production is favoured. The derepression of the AHAS synthesis induced by the l-valine, l-leucine shortage was directly proven with a l-valine, l-leucine, l-isoleucine auxotrophic mutant where the starvation of each amino acid resulted in an increased AHAS level. This is in accordance with the fact that only one AHAS enzyme could be verified by chromatographic and electrophoretic separations as being responsible for the synthesis of all three branched-chain amino-acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号