首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A Gram-staining-negative, motile, non-spore-forming and rod-shaped bacterial strain, 20-23RT, was isolated from intestine of bensasi goatfish, Upeneus bensasi, and its taxonomic position was investigated by using a polyphasic study. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain 20-23RT belonged to the genus Shewanella. Strain 20-23RT exhibited 16S rRNA gene sequence similarity values of 99.5, 99.2, and 97.5% to Shewanella algae ATCC 51192T, Shewanella haliotis DW01T, and Shewanella chilikensis JC5T, respectively. Strain 20-23RT exhibited 93.1–96.0% 16S rRNA gene sequence similarity to the other Shewanella species. It also exhibited 98.3–98.4% gyrB sequence similarity to the type strains of S. algae and S. haliotis. Strain 20-23RT contained simultaneously both menaquinones and ubiquinones; the predominant menaquinone was MK-7 and the predominant ubiquinones were Q-8 and Q-7. The fatty acid profiles of strain 20–23RT, S. algae KCTC 22552T and S. haliotis KCTC 12896T were similar; major components were iso-C15:0, C16:0, C16:1 ω7c and/or iso-C15:0 2-OH and C17:1 ω8c. The DNA G+C content of strain 20-23RT was 53.9 mol%. Differential phenotypic properties and genetic distinctiveness of strain 20–23RT, together with the phylogenetic distinctiveness, revealed that this strain is distinguishable from recognized Shewanella species. On the basis of the data presented, strain 20-23RT represents a novel species of the genus Shewanella, for which the name Shewanella upenei sp. nov. is proposed. The type strain is 20–23RT (=KCTC 22806T =CCUG 58400T).  相似文献   

2.
The taxonomic position of strain DFH11T, which was isolated from coastal seawater off Qingdao, People’s Republic of China in 2007, was determined. Strain DFH11T comprised Gram-negative, motile, strictly aerobic spirilli that did not produce catalase. Comparative 16S rRNA gene sequence analysis revealed that strain DFH11T shared ~97.2, 93.3, 91.8, 91.7 and 91.5% sequence similarities with Oleispira antarctica, Spongiispira norvegica, Bermanella marisrubri, Oceaniserpentilla haliotis and Reinekea aestuarii, respectively. DNA–DNA hybridization experiments indicated that the strain was distinct from its closest phylogenetic neighbour, O. antarctica. The strain grew optimally in 2–3% (w/v) NaCl, at pH 5.0–10.0 (optimally at pH 7.0) and between 0 and 30°C (optimum growth temperature 28°C). The strain exhibited a restricted substrate profile, with a preference for aliphatic hydrocarbons, that is consistent with its closest phylogenetic neighbour O. antarctica. Growth of the isolate at different temperatures affected the cellular fatty acid profile. 28°C cultured cells contained C16:1ω7c and/or iso-C15:0 2-OH (50.4%) and C16:0 (19.2%) as the major fatty acids. However, the major fatty acids of the cells cultured at 4°C were C16:1ω7c and/or C16:1ω6c (40.2%), C16:0 (17.2%) and C17:1ω8c (10.1%). The G+C content of the genomic DNA was 42.7 mol%. Phylogeny based on 16S rRNA gene sequences together with data from DNA–DNA hybridization, phenotypic and chemotaxonomic characterization revealed that DFH11T should be classified as a novel species of the genus Oleispira, for which the name Oleispira lenta sp. nov. is proposed, with the type strain DFH11T (=NCIMB 14529T = LMG 24829T).  相似文献   

3.
The gram-reaction-negative, motile, facultatively anaerobic, catalase-positive, oxidase-positive bacterial strain M3-4T was isolated from black sea sand and subjected to a taxonomic study. Cells of strain M3-4T have monotrichous flagella, grow optimally at 37°C and at pH 7–8 in the presence of 1–4% (w/v) NaCl and hydrolyze casein, starch and l-tyrosine. According to phylogenetic analyses using 16S rRNA gene sequences, strain M3-4T belongs to the genus Photobacterium and is most closely related to Photobacterium rosenbergii LMG 22223T (97.4%) and P. gaetbulicola KCTC 22804T (96.6%). The DNA–DNA relatedness value between M3-4T and P. rosenbergii LMG 22223T was 21.5%. The DNA G+C mol% of strain M3-4T was 53.6. The major cellular fatty acid of strain M3-4T was a summed feature 3 consisting of C16:1 ω7c and/or iso-C15:0 2-OH (35.0%), followed by C16:0 (25.4%) and C18:1ω7c (16.8%). These data suggest that strain M3-4T represents a novel species in genus Photobacterium, for which the name P. atrarenae sp. nov. is proposed. The type strain is M3-4T (= KCTC 23265T = NCAIM B 02414T).  相似文献   

4.
A bacterial strain, designated Iso4T, was isolated from the East Sea of Korea and was subjected to a poly-phasic taxonomy study including phenotypic and chemotaxonomic characteristics as well as 16S rRNA gene sequence analysis. Cells of the strain were Gram-negative, motile, non-budding, non-stalked, and strictly aerobic. Strain Iso4T grew optimally at 20°C in the presence of 1∼2% (w/v) NaCl and at pH 6.9∼7.6. The major respiratory quinone was Q-10 and the major cellular fatty acids were C18:1 ω7c (53.5%), C17:1 ω5c (11.7%), C17:1 ω6c (8.1%), C16:0 (7.8%), C17:0 (4.8%), C15:0 (2.9%), and C16:1 ω5c (2.2%). The DNA G+C content of strain Iso4T was 56.2 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain Iso4T formed a monophyletic clade in the family Hyphomonadaceae, supported by high bootstrap value and was most closely related to the genus Hyphomonas (92∼94%), a member of marine bacteria in the family. The phenotypic, genotypic, and chemotaxonomic evidences also suggest strain Iso4T represents a novel genus and species in the family Hyphomonadaceae, for which the name Henriciella gen. nov., sp. nov. is proposed. The type strain is Iso4T (=KCTC 12513T =DSM 19595T =JCM 15116T).  相似文献   

5.
A novel Gram-negative, slightly halophilic, catalase- and oxidase-positive, obligately aerobic bacterium, strain YIM-C248T, was isolated from a sediment sample collected from a salt-lake in the Qaidam Basin in Qinghai, north-west China. Cells were non-sporulating short rods, occurring singly or as doublets, motile with peritrichous flagella. Growth occurred with 1–15% (w/v) NaCl [optimum 2–4% (w/v) NaCl], at pH 6.0–10.0 (optimum pH 7.5) and at 4–35°C (optimum 25–30°C). The major cellular fatty acids were C18:1 ω7c, C12:0 3-OH, cyclo C19:0 ω8c, C16:0 and C16:1. The predominant respiratory quinone was Q-9 and the genomic DNA G + C content was 58.6 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain YIM-C248T should be assigned to the genus Halomonas. The sequence similarities between the isolate and the type strains of members of the genus Halomonas were in the range of 92.5–97.5%. The combination of phylogenetic analysis, DNA–DNA hybridization data, phenotypic characteristics and chemotaxonomic differences supported the view that strain YIM-C248T represents a new species of the genus Halomonas, for which the name Halomonas sediminis sp. nov. is proposed, with YIM-C248T (=CCTCC AA 207031 = KCTC 22167) as the type strain. The GenBank/EMBL/DBBJ accession number for the 16S rRNA gene sequence of strain YIM-C248T is EU135707.  相似文献   

6.
A gram-negative, non-flagellated and ovoid- to rod-shaped bacterial strain, designated GSW-M15T, was isolated from seawater on the southern coast of South Korea. Strain GSW-M15T grew optimally at 30 °C, at pH 7.0–7.5 and in the presence of 2 % (w/v) NaCl. The phylogenetic trees based on 16S rRNA gene sequences revealed that strain GSW-M15T belonged to the genus Roseovarius. Strain GSW-M15T exhibited highest 16S rRNA gene sequence similarity values (98.3 and 97.5 %) to Roseovarius halotolerans HJ50T and Roseovarius pacificus 81-2T and 92.8-96.2 % sequence similarity values to the type strains of the other Roseovarius species. Strain GSW-M15T contained Q-10 as the predominant ubiquinone and C18:1 ω7c and 11-methyl-C18:1 ω7c as the major fatty acids. The major polar lipids detected in strain GSW-M15T were phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine, one unidentified aminolipid and two unidentified lipids. The DNA G+C content of strain GSW-M15T was 62.9 mol% and its mean DNA–DNA relatedness values with R. halotolerans KCTC 22224T and R. pacificus LMG 24575T were 33 and 18 %, respectively. Differential phenotypic properties of strain GSW-M15T, together with the phylogenetic and genetic distinctiveness, demonstrated that this strain is distinguishable from other Roseovarius species. On the basis of the data presented here, strain GSW-M15T (=KCTC 23897T = CCUG 62218T) represents a novel species of the genus Roseovarius, for which the name Roseovarius litoreus sp. nov. is proposed.  相似文献   

7.
A moderate halophilic, Gram-negative, non-motile, rod-shape, and aerobe designated as strain HwaT was isolated from traditional fermented Korean seafood, which presented as a single cell or paired cells. Optimal growth occurred at 25°C in 10% (w/v) salts at pH 7.0–8.0; however, growth occurred in a temperature range of 10–32°C, a salts concentration of 5–25% (w/v) and pH 5.0–10.0. Tests for oxidase and catalase were positive. The cells produced poly-β-hydroxybutyric acid, but not exopolysaccharide. Based on the 16S rRNA gene sequence, not only was there low similarity between strain HwaT and all other species (94.1% similarity with H. subglaciescola DSM 4683T, 94.0% similarity with H. sulfidaeris Esulfide1T, 93.6% similarity with H. cerina SP4T and 93.0% similarity with H. halodurans DSM 5160T), but the phylogenetic analysis revealed that the isolate may be classified as a novel species belonging to the genus Halomonas in the class Gammaproteobacteria. The predominant fatty acids of strain HwaT were C18:1 ω7c, C16:0, C12:0 3-OH and C16:1 ω7c/C15:0 iso 2-OH. The DNA G+C content was calculated as 61.7 mol%. Based on phenotypic, genotypic, and phylogenetic characteristics, it is proposed that the strain designated as HwaT be assigned to the genus Halomonas as Halomonas jeotgali sp. nov. (=KCTC 22487T =JCM 15645T).  相似文献   

8.
A novel marine bacterium, designated strain CNURIC014T was isolated from coastal seawater of Jeju Island in Korea. Strain CNURIC014T formed yellow colonies on marine agar 2216 and the cells were Gram-negative, non-motile, strictly aerobic, rod-shaped. The temperature, pH and NaCl ranges for growth were 15–37°C, pH 6.0–9.0 and 1.0–7.0% NaCl. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain CNURIC014T was most closely related to Gaetbulibacter marinus and Gaetbulibacter saemankumensis, with a sequence similarity of 95.1% and 94.6%, respectively. The DNA G+C content of the strain was 33.1 mol% and the major respiratory quinone was menaquinone-6. The major cellular fatty acids were iso-C15:1 (22.8%), iso-C15:0 (18.8%), summed feature 3 (iso-C15:0 2-OH/C16:1 ω7c, 12.9%) and iso-C17:0 3-OH (11.5%). On the basis of phenotypic, phylogenetic, and genotypic data, strain CNURIC014T represents a novel species within the genus Geatbulibacter, for which the name Gaetbulibacter jejuensis sp. nov. is proposed. The type strain is CNURIC014T(=KCTC 22615T =JCM 15976T).  相似文献   

9.
Strain BS12T, a Gram-negative motile bacterium, was isolated from soil in South Korea and characterized to determine its taxonomic position. Phylogenetic analyses based on the 16S rRNA gene sequence revealed that the strain belonged to the family Alcaligenaceae in the class Betaproteobacteria. The highest degree of sequence similarities of strain BS12T were found with Pigmentiphaga litoralis JSM 061001T (98.3%), Pigmentiphaga daeguensis K110T (98.2%), and Pigmentiphaga kullae K24T (98.1%). Chemotaxonomic data revealed that strain BS12T possessed ubiquinone-8, which is common in the family Alcaligenaceae, and the predominant fatty acids were C16:0, C17:0 cyclo, summed feature 3 (C16:1 ω6c/ω7c), and summed feature 8 (C18:1 ω6c/ω7c). The major polar lipids of strain BS12T were phosphatidylethanolamine and phosphatidylglycerol. Based on these data, BS12T (=KCTC 23577T =JCM 17666T =KEMB 9004-082T) should be classified as a type strain of a novel species, for which the name Pigmentiphaga soli sp. nov. is proposed.  相似文献   

10.
An aerobic, Gram-negative bacterial strain, designated KU27E1T, which degrades phthalate and dimethylphthalate, was isolated from seawater obtained from the coastal region of Ishigaki Island, Japan. Cells are motile rods with polar flagella. Strain KU27E1T grew at 15–30°C, pH 6.0–8.0, in the presence of 1.0–2.0% (w/v) NaCl. The 16S rRNA gene sequence analysis revealed that this strain was affiliated with the family Rhodobacteraceae in the class Alphaproteobacteria, and was most closely related to Tropicibacter naphthalenivorans (96.8%). The predominant respiratory lipoquinone was ubiquinone-10, and the major cellular fatty acid was C18:1ω7c (88.5%). The G+C content of genomic DNA was 58.7 mol%. Based on the physiological, chemotaxonomic, and phylogenetic data, strain KU27E1T is suggested to represent a novel species of the genus Tropicibacter, for which the name Tropicibacter phthalicus sp. nov. is proposed. The type strain of Tropicibacter phthalicus is designated as KU27E1T (=JCM 17793T = KCTC 23703T).  相似文献   

11.
A Gram-negative, motile and rod-shaped bacterial strain, designated S7-3T, was isolated from a tidal flat sediment at Saemankum on the western coast of Korea. Phylogenetic analyses based on 16S rRNA gene and gyrB sequences showed that strain S7-3T belonged to the genus Shewanella, clustering with Shewanella decolorationis S12T. Strain S7-3T exhibited 98.8 % 16S rRNA gene sequence similarity and 96.8 % gyrB sequence similarity to S. decolorationis S12T, respectively. The 16S rRNA gene sequence similarity values between strain S7-3T and other members of the genus Shewanella were in the range of 93.0–98.0 %. Strain S7-3T contained simultaneously both menaquinones (MK) and ubiquinones (Q); the predominant menaquinone was MK-7 and the predominant ubiquinones were Q-7 and Q-8. The fatty acid profiles of strain S7-3T and S. decolorationis JCM 21555T were similar; major components were C17:1 ω8c, iso-C15:0 and iso-C15:0 2-OH and/or C16:1 ω7c. The DNA G+C content of strain S7-3T was 51.8 mol% and its mean DNA–DNA relatedness value with S. decolorationis JCM 21555T was 43 %. Differential phenotypic properties of strain S7-3T, together with the phylogenetic and genetic distinctiveness, revealed that this strain is distinguishable from recognized Shewanella species. On the basis of the data presented, strain S7-3T is considered to represent a novel Shewanella species, for which the name Shewanella seohaensis sp. nov. is proposed. The type strain is S7-3T (=KCTC 23556T = CCUG 60900T).  相似文献   

12.
A gram-negative, motile, coccoid- and amorphous-shaped, non-pigmented chemoheterotrophic bacterium, designated strain PZ-5T, was isolated from sea water of Sagami Bay in Japan and subjected to a polyphasic taxonomic study. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the novel isolate could be affiliated with the class Gammaproteobacteria. Strain PZ-5T showed below 93.9% similarity with validly published bacteria and demonstrated the highest sequence similarity to Dasania marina KOPRI 20902T (93.9%). Strain PZ-5T formed a monophyletic group with D. marina KOPRI 20902T. The DNA G+C content of strain PZ-5T was 49.8 mol%. The major isoprenoid quinone was Q-8 and predominant cellular fatty acids were C15:0 ISO 20H (19%), C16:1 ω7c (17.4%), C17;1 ω8c (16.2%), C11:0 3OH (7.5%), and C15:1 ω8c (6.5%). Based on evidence from a polyphasic taxonomical study, it was concluded that the strain should be classified as representing a new genus and species of the class Gammaproteobacteria, for which the name Oceanicoccus sagamiensis gen. nov., sp. nov., (type strain PZ-5T =NBRC 107125T =KCTC 23278T) is proposed.  相似文献   

13.
A Gram-negative, non-motile, rod shaped, and orange-pigmented chemoheterotrophic bacterium, strain MS-31T was isolated from the marine sponge Hymeniacidon flavia, collected from near Jeju Island, Korea. The Strain MS-31T was subjected to a polyphasic taxonomic study. The phylogenetic analysis based on the 16S rRNA gene sequences revealed that the novel isolate could be affiliated within the genus Sphingomonas. The strain MS-31T showed 95.6% of 16S rRNA gene sequence similarity with the most closely related species Sphingomonas koreensis JSS26T. The DNA G+C content of the strain MS-31T was 69.4 mol%. The major isoprenoid quinone was ubiqunone 10 and predominant cellular fatty acids were summed feature 7 (comprising C18:1 ω7c, C18:1 Ω9t and/or C18:1 ωl2t, 39.7%), C16:0 (16.3%), C14:0 2OH (15.9%) and summed feature 3 (comprising C16:1 ω7c and/or C15:0 iso 2OH, 11.7%). The polar lipids were sphingoglycolipid, phosphatidyletha-nolamine, phosphatidylglycerol, diphosphatidylglycerol and unidentified glycolipid. Based on the evidence from the polyphasic taxonomic study, the strain should be classified as a new species of the genus Sphingomonas. As a result, the name Sphingomonas jejuensis sp. nov. (type strain MS-31T =KCTC 23321T =NBRC 107775T) is proposed.  相似文献   

14.
A polyphasic taxonomic approach was used to characterize a Gram-negative, non-motile bacterium, designated MJ15T, that was isolated from soil of a GS-Caltex Oil reservoir in Korea. As shown by comparative 16S rRNA gene sequence analysis, strain MJ15T belongs to genus Brevundimonas. The 16S rRNA gene sequence similarities ranged from 95.6–99.2% between strain MJ15T and validated representatives of the genus Brevundimonas. With respect to Brevundimonas species, strain MJ15T exhibited DNA-DNA relatedness values below 40.7%. The G+C content of the genomic DNA was 61.7 mol%. Strain MJ15T contained ubiquinone Q-10. The major fatty acids were C16:0 (27.7%), C19:0 cyclo ω8c (23.2%), summed feature 8 (containing C18:1 ω7c/C18:1 6c) (28.5%), and major hydroxyl fatty acid was C12:0 3OH (3.7%). Based upon its phenotypic and genotypic properties, as well as its phylogenetic distinctiveness, strain MJ15T (KCTC 22461T; JCM 16237T) should be classified in the genus Brevundimonas as the type strain of a novel species. The name Brevundimonas olei sp. nov. is proposed for this new species.  相似文献   

15.
A novel Gram-negative and rod-shaped bacterium, designated N8T, was isolated from tidal flat sediment. Phylogenetic analysis based on 16S rRNA gene sequences showed that N8T strain is associated with the family Phyllobacteriaceae: two uncultured clones (98.4 and 99.8% 16S rRNA gene sequence similarity) and the genus Mesorhizobium (≤97.0%). The novel strain formed a separate clade with uncultured clones in the phylogenetic tree based on 16S rRNA gene sequences. Cellular fatty acid profiles predominately comprised C18:1 ω7c and C19:0 cyclo ω8c. The major isoprenoid quinone is ubiquinone-10 and genomic DNA G+C content is 53.4 mol%. The polyphasic taxonomic study indicates that the novel strain N8T represents a novel species of the new genus in the family Phyllobacteriaceae, named Aliihoeflea aestuarii. The type strain is N8T (= KCTC 22052T= JCM 15118T= DSM 19536T).  相似文献   

16.
A pale yellow-colored, moderately halophilic, Gram-negative, catalase- and oxidase-positive, non-sporulating, rod-shaped, motile, aerobic bacterium, designated strain JSM 073008T, was isolated from a sea anemone (Anthopleura xanthogrammica) collected from Naozhou Island, Leizhou Bay, South China Sea. The organism was able to grow with 1–20% (w/v) total salts (optimum, 5–10%), at pH 6.0–10.0 (optimum, pH 7.5) and 10–40°C (optimum, 25–30°C). The major cellular fatty acids were C16:0, C16:1 ω7c/iso-C15:0 2-OH and C18:1 ω7c. The polar lipids consisted of phosphatidylethanolamine, phosphatidylglycerol and an unidentified phospholipid. The predominant respiratory quinone was Q-8 and the genomic DNA G + C content was 47.5 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain JSM 073008T should be assigned to the genus Alteromonas, being most closely related to Alteromonas hispanica F-32T (sequence similarity 96.9%), followed by Alteromonas genovensis LMG 24078T (96.6%) and Alteromonas litorea TF-22T (96.4%). The sequence similarities between the novel isolate and the type strains of other recognized Alteromonas species ranged from 95.9% (with Alteromonas stellipolaris ANT 69aT) to 94.5% (with Alteromonas simiduii BCRC 17572T). The combination of phylogenetic analysis, phenotypic characteristics and chemotaxonomic data supported the view that strain JSM 073008T represents a new species of the genus Alteromonas, for which the name Alteromonas halophila sp. nov. is proposed. The type strain is JSM 073008T (=CCTCC AA 207035T = KCTC 22164T). The authors Yi-Guang Chen and Huai-Dong Xiao have contributed equally to this work.  相似文献   

17.
A novel Gram-positive, aerobic, rod-shaped and mycelia-producing bacterial strain, designated KLBMP 1050T, was isolated from the stem of the oil-seed plant Jatropha curcas L. collected from Sichuan Province, south-west China. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that the isolate KLBMP 1050T belonged to the genus Nocardioides, with the highest sequence similarity to Nocardioides albus KCTC 9186T (99.38 %) and Nocardioides luteus KCTC 9575T (99.03 %). However, the DNA–DNA relatedness of isolate KLBMP 1050T to these two type strains were 37.5 ± 3.5 and 33 ± 2.3 %, respectively. Strain KLBMP 1050T grew at the pH range 6–11, temperature range 10–32 °C and with 0–12 % NaCl. The physiological properties of strain KLBMP 1050T differ from those of N. albus KCTC 9186T and N. luteus KCTC 9575T. The cell-wall peptidoglycan contained ll-diaminopimelic acid and MK-8(H4) was the major respiratory quinone. The predominant cellular fatty acid of strain KLBMP 1050T was iso-C16:0 (23.3 %). The total DNA G+C content was 70.1 mol%. On the basis of the phenotypic, chemotaxonomic and phylogenetic data, strain KLBMP 1050T represents a novel species of the genus Nocardioides, for which the name Nocardioides panzhihuaensis sp. nov. is proposed. The type strain is KLBMP 1050T (= KCTC 19888T = NBRC 108680T).  相似文献   

18.
A novel bacterial strain, designated T-Y1T, capable of degrading a variety of polysaccharides was isolated from seawater of an oyster farm in the South Sea, Korea. It was found to be aerobic, Gram-negative, non-flagellated, non-gliding and rod-shaped. Strain T-Y1T grew optimally at 25 °C, at pH 7.0–7.5 and in the presence of 2 % (w/v) NaCl. A neighbour-joining phylogenetic tree based on 16S rRNA gene sequences showed that strain T-Y1T belonged to the genus Winogradskyella. Strain T-Y1T exhibited 16S rRNA gene sequence similarity values of 95.0–96.8 % to the type strains of recognized Winogradskyella species and less than 94.5 % to other validly named species. The chemotaxonomic data concurred with the phylogenetic inference. Strain T-Y1T contained MK-6 as the predominant menaquinone and anteiso-C15:0, iso-C15:0, iso-C15:1 G and iso-C16:0 3-OH as the major fatty acids. The major polar lipids of strain T-Y1T were phosphatidylethanolamine and two unidentified lipids. The DNA G+C content was 36.2 mol%. Differential phenotypic properties, together with its phylogenetic distinctiveness, enabled strain T-Y1T to be differentiated from the recognized Winogradskyella species. On the basis of the data presented here, strain T-Y1T is considered to represent a novel species of the genus Winogradskyella, for which the name Winogradskyella multivorans sp. nov. is proposed. The type strain is T-Y1T (=KCTC 23891T = CCUG 62216T).  相似文献   

19.
A bacterial strain, designated KMM 6244T, was isolated from the sea urchin Strongylocentrotus intermedius and subjected to a polyphasic taxonomic investigation. The bacterium was found to be heterotrophic, aerobic, non-motile and spore-forming. Comparative phylogenetic analysis based on 16S rRNA gene sequencing placed the marine isolate in the genus Bacillus. The nearest neighbor of strain KMM 6244T was Bacillus decolorationis LMG 19507T with a 16S rRNA gene sequence similarity of 98.0%. Sequence similarities with the other recognized Bacillus species were less than 96.0%. The results of the DNA–DNA hybridization experiments revealed a low relatedness (37%) of the novel isolate with the type strain of B. decolorationis LMG 19507T. Strain KMM 6244T grew at 4–45°C and with 0–12% NaCl. It produced catalase and oxidase and hydrolyzed aesculin, casein, gelatin and DNA. The predominant fatty acids were anteiso-C15:0, iso-C15:0, anteiso-C17:0, C15:0, iso-C16:0 and iso-C14:0. The DNA G + C content was 39.4 mol%. A combination of phylogenetic, genotypic and phenotypic data clearly indicated that strain KMM 6244T represents a novel species in the genus Bacillus, for which the name Bacillus berkeleyi sp. nov. is proposed. The type strain is KMM 6244T (KCTC 12718T = LMG 26357T).  相似文献   

20.
A novel Gram-positive, halotolerant, non-sporulating, non-motile, catalase-positive, oxidase-negative and aerobic bacterium, designated strain JSM 078085T, was isolated from sea water collected from the South China Sea. Strain JSM 078085T exhibited a rod-coccus growth cycle and produced a yellow pigment. The strain was able to grow in the presence of 0–12% (w/v) NaCl and at pH 6.0–9.5 and 4–35°C; optimum growth was observed at pH 7.0 and 25–30°C in the absence of NaCl. The peptidoglycan type was A4α (l-Lys–l-Ala–l-Glu). Cell-wall sugars contained galactose and glucose. Strain JSM 078085T contained menaquinone MK-9(H2) as the major respiratory quinone and diphosphatidylglycerol, phosphatidylglycerol and phosphatidylinositol as the major polar lipids. The major cellular fatty acids were anteiso-C15:0, iso-C15:0 and anteiso-C17:0 and the DNA G + C content was 63.3 mol%. Phylogenetic analysis based on 16S rRNA gene sequence comparisons revealed that strain JSM 078085T should be assigned to the genus Arthrobacter, being most closely related to the type strain of Arthrobacter rhombi (sequence similarity 97.1%), and the two strains formed a distinct lineage in the phylogenetic tree. The level of DNA–DNA relatedness between strain JSM 078085T and the type strain of Arthrobacter rhombi was 10.6%. The combination of phylogenetic analysis, DNA–DNA relatedness, phenotypic characteristics and chemotaxonomic data supported the view that strain JSM 078085T represents a novel species of the genus Arthrobacter, for which the name Arthrobacter halodurans sp. nov. is proposed. The type strain is JSM 078085T (=DSM 21081T=KCTC 19430T). The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of strain JSM 078085T is EU583729.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号