首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A Gram-negative, motile and rod-shaped bacterial strain, designated S7-3T, was isolated from a tidal flat sediment at Saemankum on the western coast of Korea. Phylogenetic analyses based on 16S rRNA gene and gyrB sequences showed that strain S7-3T belonged to the genus Shewanella, clustering with Shewanella decolorationis S12T. Strain S7-3T exhibited 98.8 % 16S rRNA gene sequence similarity and 96.8 % gyrB sequence similarity to S. decolorationis S12T, respectively. The 16S rRNA gene sequence similarity values between strain S7-3T and other members of the genus Shewanella were in the range of 93.0–98.0 %. Strain S7-3T contained simultaneously both menaquinones (MK) and ubiquinones (Q); the predominant menaquinone was MK-7 and the predominant ubiquinones were Q-7 and Q-8. The fatty acid profiles of strain S7-3T and S. decolorationis JCM 21555T were similar; major components were C17:1 ω8c, iso-C15:0 and iso-C15:0 2-OH and/or C16:1 ω7c. The DNA G+C content of strain S7-3T was 51.8 mol% and its mean DNA–DNA relatedness value with S. decolorationis JCM 21555T was 43 %. Differential phenotypic properties of strain S7-3T, together with the phylogenetic and genetic distinctiveness, revealed that this strain is distinguishable from recognized Shewanella species. On the basis of the data presented, strain S7-3T is considered to represent a novel Shewanella species, for which the name Shewanella seohaensis sp. nov. is proposed. The type strain is S7-3T (=KCTC 23556T = CCUG 60900T).  相似文献   

2.
An amber-pigmented, Gram-negative, rod-shaped and aerobic bacterial strain devoid of flagella, designated strain JC2131(T) , was isolated from tidal flat sediment of Dongmak in Ganghwa island, South Korea. Identification was carried out on the basis of polyphasic taxonomy. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that the isolate belonged to the family Flavobacteriaceae and showed the highest sequence similarity of 94.5% with Lutibacter litoralis KCCM 42118(T). The predominant cellular fatty acids were iso-C(15:0) (25.9%), iso-C(15:0) 3-OH (20.0%) and iso-C(13:0) (12.7%). Flexirubin-type pigments were absent. The major isoprenoid quinone was MK-6. The DNA G+C content was 43.7 mol%. Several phenotypic and chemotaxonomic properties including growth at pH 6, sea salts requirement, aesculin hydrolysis, carbon utilization, DNA G+C content and fatty acid profiles also differentiated the strain from the related members of the family. Therefore, results from the polyphasic taxonomy study suggested that strain JC2131(T) represents a novel genus and species in the family Flavobacteriaceae for which the name Marinitalea sucinacia gen. nov., sp. nov. is proposed (type strain JC2131(T)=KCTC 12705(T)=JCM 14003(T)).  相似文献   

3.
A strictly aerobic, non-motile, ovoid-shaped Alphaproteobacteria, designated strain JC2049(T), was isolated from a tidal flat sediment sample. The results of 16S rRNA gene sequence analysis indicated that this isolate belonged to the genus Thalassobius, with a sequence similarity of 96.9-97.3% to other valid Thalassobius spp. The cells required 1-7% NaCl for growth (optimum 2%) and accumulated poly-beta-hydroxybutyrate. Nitrite was reduced to nitrogen, but nitrate was not reduced to nitrite. No genetic potential for aerobic anoxygenic photosynthesis was detected. The primary isoprenoid quinone (Ubiquinone-10), predominant cellular fatty acids (C(18:1)omega7c, 11 methyl C(18:1)omega7c and C(16:0)) and DNA G+C content (61 mol%) were all consistent with the assignment of this isolate to the genus Thalassobius. Several phenotypic characteristics clearly distinguished our isolate from other Thalassobius species. The degree of genomic relatedness between strain JC2049(T) and other Thalassobius species was in a range of 20-43%. The polyphasic data presented in this study indicates that our isolate should be classified as a novel species within the genus Thalassobius. The name Thalassobius aestuarii sp. nov. is therefore proposed for this isolate; the type strain is JC2049(T) (= IMSNU 14011(T) = KCTC 12049(T) = DSM 15283(T)).  相似文献   

4.
A Gram-stain negative, aerobic, non-motile and coccoid, ovoid or rod-shaped bacterial strain, J-TF4T, which was isolated from a tidal flat in the South Sea of South Korea, was characterized taxonomically. Strain J-TF4T was found to grow optimally at 30 °C, at pH 7.0–8.0 and in presence of 2.0–3.0 % (w/v) NaCl. In the neighbour-joining phylogenetic tree based on 16S rRNA gene sequences, strain J-TF4T fell within the clade comprising the type strains of Loktanella species, clustering with the type strains of Loktanella cinnabarina, Loktanella hongkongensis, Loktanella soesokkakensis, Loktanella pyoseonensis and ‘Loktanella variabilis’ showing sequence similarity values of 97.2–98.4 %. The strain exhibited 16S rRNA gene sequence similarity values of 94.1–95.4 % to the type strains of the other Loktanella species. Strain J-TF4T was found to have Q-10 as the predominant ubiquinone and C18:1 ω7c as the major fatty acid. The major polar lipids of strain J-TF4T were identified as phosphatidylcholine, phosphatidylglycerol, diphosphatidylglycerol, an unidentified glycolipid and an unidentified aminolipid. The DNA G+C content of strain J-TF4T was determined to be 67.9 mol% and its mean DNA–DNA relatedness values with the type strains of five phylogenetically related Loktanella species were 17.7–23.3 %. Differential phenotypic properties, together with the phylogenetic and genetic data, demonstrate that strain J-TF4T is separated from other Loktanella species. On the basis of the data presented, strain J-TF4T is considered to represent a novel species of the genus Loktanella, for which the name Loktanella aestuariicola sp. nov. is proposed. The type strain is J-TF4T (=KCTC 42135T=NBRC 110408T).  相似文献   

5.
A novel bacterial strain, designated T-Y1T, capable of degrading a variety of polysaccharides was isolated from seawater of an oyster farm in the South Sea, Korea. It was found to be aerobic, Gram-negative, non-flagellated, non-gliding and rod-shaped. Strain T-Y1T grew optimally at 25 °C, at pH 7.0–7.5 and in the presence of 2 % (w/v) NaCl. A neighbour-joining phylogenetic tree based on 16S rRNA gene sequences showed that strain T-Y1T belonged to the genus Winogradskyella. Strain T-Y1T exhibited 16S rRNA gene sequence similarity values of 95.0–96.8 % to the type strains of recognized Winogradskyella species and less than 94.5 % to other validly named species. The chemotaxonomic data concurred with the phylogenetic inference. Strain T-Y1T contained MK-6 as the predominant menaquinone and anteiso-C15:0, iso-C15:0, iso-C15:1 G and iso-C16:0 3-OH as the major fatty acids. The major polar lipids of strain T-Y1T were phosphatidylethanolamine and two unidentified lipids. The DNA G+C content was 36.2 mol%. Differential phenotypic properties, together with its phylogenetic distinctiveness, enabled strain T-Y1T to be differentiated from the recognized Winogradskyella species. On the basis of the data presented here, strain T-Y1T is considered to represent a novel species of the genus Winogradskyella, for which the name Winogradskyella multivorans sp. nov. is proposed. The type strain is T-Y1T (=KCTC 23891T = CCUG 62216T).  相似文献   

6.
A Gram-negative, aerobic, non-flagellated, non-gliding and rod-shaped bacterial strain, designated M-M16T, was isolated from seashore sand around a seaweed farm on the South Sea, South Korea, and its taxonomic position was investigated by using a polyphasic study. Strain M-M16T grew optimally at 30 °C, at pH 7.0–8.0 and in the presence of 2 % (w/v) NaCl. Strain M-M16T exhibited the highest 16S rRNA gene sequence similarity values to the type strains of Gaetbulibacter lutimaris (96.5 %) and Flaviramulus basaltis (95.8 %). Neighbour-joining and maximum-parsimony phylogenetic trees based on 16S rRNA gene sequences revealed that strain M-M16T clustered with the type strains of Gaetbulibacter species and F. basaltis. Strain M-M16T contained MK-6 as the predominant menaquinone and iso-C15:1 G, iso-C15:0 and iso-C17:0 3-OH as the major fatty acids. The major polar lipids detected in strain M-M16T were phosphatidylethanolamine and one unidentified lipid. The DNA G+C content of strain M-M16T was 37.4 mol%. The phylogenetic and chemotaxonomic data and other phenotypic properties revealed that strain M-M16T represents a novel genus and species within the family Flavobacteriaceae, for which the name Sabulilitoribacter multivorans gen. nov., sp. nov. is proposed. The type strain of S. multivorans is M-M16T (= KCTC 32326T = CCUG 63831T).  相似文献   

7.
A Gram-stain negative, aerobic, motile and rod-shaped bacterial strain, designated J-MY2T, was isolated from a tidal flat sediment of the South Sea, South Korea. Strain J-MY2T was found to grow optimally at 30 °C, at pH 7.0–8.0 and in the presence of 2.0 % (w/v) NaCl. Phylogenetic trees based on 16S rRNA gene sequences revealed that strain J-MY2T forms a cluster with the type strains of Simiduia species. Strain J-MY2T exhibited 16S rRNA gene sequence similarity values of 97.62–98.77 % to the type strains of four Simiduia species and of <92.95 % sequence similarity to the type strains of the other recognized species. Strain J-MY2T was found to contain Q-8 as the predominant ubiquinone and summed feature 3 (C16:1 ω7c and/or C16:1 ω6c), C16:0, C18:1 ω7c and C17:1 ω8c as the major fatty acids. The major polar lipids of strain J-MY2T were identified as phosphatidylethanolamine, phosphatidylglycerol, three unidentified glycolipids and one unidentified lipid. The DNA G+C content of strain J-MY2T was determined to be 54.8 mol% and its mean DNA–DNA relatedness values with the type strains of the four Simiduia species were in the range 21–34 %. The differential phenotypic properties, together with the phylogenetic and genetic distinctiveness, revealed that strain J-MY2T is separated from other Simiduia species. On the basis of the data presented, strain J-MY2T is considered to represent a novel species of the genus Simiduia, for which the name Simiduia aestuariiviva sp. nov. is proposed. The type strain is J-MY2T ( = KCTC 42073T = CECT 8571T).  相似文献   

8.
A Gram-negative, aerobic, rod-shaped, motile by gliding and yellow-pigmented bacterium, designated strain 10Alg 130T, that displayed the ability to destroy polysaccharides of red and brown algae, was isolated from the red alga Ahnfeltia tobuchiensis. The phylogenetic analysis based on 16S rRNA gene sequence placed the novel strain within the genus Flavobacterium, the type genus of the family Flavobacteriaceae, the phylum Bacteroidetes, with sequence similarities of 96.2 and 95.7 % to Flavobacterium jumunjiense KCTC 23618T and Flavobacterium ponti CCUG 58402T, and 95.3–92.5 % to other recognized Flavobacterium species. The prevalent fatty acids of strain 10Alg 130T were iso-C15:0, iso-C15:0 3-OH, iso-C17:0 3-OH, C15:0 and iso-C17:1ω9c. The polar lipid profile consisted of phosphatidylethanolamine, two unknown aminolipids and three unknown lipids. The DNA G+C content of the type strain was 34.3 mol%. The new isolate and the type strains of recognized species of the genus Flavobacterium could strongly be distinguished by a number of phenotypic characteristics. A combination of the genotypic and phenotypic data showed that the algal isolate represents a novel species of the genus Flavobacterium, for which the name Flavobacterium ahnfeltiae sp. nov. is proposed. The type strain is 10Alg 130T (=KCTC 32467T = KMM 6686T).  相似文献   

9.
A Gram-negative, non-motile and rod-shaped bacterial strain, designated BB-MW15T, was isolated from a tidal flat of the southern coast of the Korean peninsula, and its taxonomic position was investigated by using a polyphasic taxonomic approach. Strain BB-MW15T grew optimally at 30 °C, at pH 7.0–8.0 and in the presence of 2–3 % (w/v) NaCl. Strain BB-MW15T exhibited the highest 16S rRNA gene sequence similarity values to the type strains of Marivita byunsanensis (96.8 %), Thalassobius maritimus (96.6 %), Sulfitobacter marinus (96.4 %) and Marinovum algicola (96.3 %). Neighbour-joining, maximum-likelihood and maximum-parsimony phylogenetic trees based on 16S rRNA gene sequences revealed that strain BB-MW15T forms an independent lineage within the evolutionary radiation encompassed by the Roseobacter clade of the class Alphaproteobacteria. Strain BB-MW15T contained Q-10 as the predominant ubiquinone and C18:1 ω7c as the predominant fatty acid. The major polar lipids detected in strain BB-MW15T were phosphatidylcholine, phosphatidylglycerol, one unidentified aminolipid and one unidentified lipid. The DNA G+C content of strain BB-MW15T is 62.7 mol%. Based on phylogenetic, chemotaxonomic and other phenotypic characteristics, strain BB-MW15T represents a new genus and a new species within Alphaproteobacteria, for which the name Aestuariihabitans beolgyonensis gen. nov., sp. nov. is proposed. The type strain of A. beolgyonensis is BB-MW15T (= KCTC 32324T = CCUG 63829T).  相似文献   

10.
A Gram-negative, facultatively anaerobic, non-motile and rod-shaped bacterial strain, designated SMK1-12T, was isolated from a tidal flat sediment on the western coast of Korea. Phylogenetic analyses based on 16S rRNA and gyrB gene sequences showed that strain SMK1-12T belonged to the genus Shewanella, clustering with the type strain of Shewanella amazonensis. Strain SMK1-12T exhibited the highest 16S rRNA gene sequence similarity value (97.0 %) and the highest gyrB sequence similarity value (87.8 %) to S. amazonensis SB2BT, respectively. Strain SMK1-12T contained simultaneously both menaquinones and ubiquinones; the predominant menaquinone was MK-7 and the predominant ubiquinones were Q-7 and Q-8. The major fatty acids (>10 % of the total fatty acids) detected in strain SMK1-12T were the MIDI system summed feature 3 (iso-C15:0 2-OH and/or C16:1 ω7c), iso-C15:0, C17:1 ω8c and C16:0. The DNA G+C content of strain SMK1-12T was 58.0 mol% and its mean DNA–DNA relatedness value with S. amazonensis ATCC 700329T was 15 ± 4.6 %. Differential phenotypic properties, together with the phylogenetic and genetic distinctiveness, revealed that strain SMK1-12T is distinguishable from recognized Shewanella species. On the basis of the data presented, strain SMK1-12T is considered to represent a novel Shewanella species, for which the name Shewanella litorisediminis sp. nov. is proposed. The type strain is SMK1-12T (=KCTC 23961T = CCUG 62411T).  相似文献   

11.
A Gram-negative, aerobic, non-motile, dark brown-coloured and rod-shaped bacterial strain, designated G-MB1T, was isolated from a tidal flat sediment of the South Sea, South Korea. Strain G-MB1T was found to grow optimally at 25 °C, at pH 7.0–8.0 and in the presence of 2.0 % (w/v) NaCl. A neighbour-joining phylogenetic tree based on 16S rRNA gene sequences revealed that strain G-MB1T fell within the clade comprising Thalassomonas species, clustering with the type strains of Thalassomonas agarivorans, Thalassomonas loyana, Thalassomonas ganghwensis and Thalassomonas agariperforans, with which it exhibited 16S rRNA gene sequence similarity values of 96.0–96.9 %. The 16S rRNA gene sequence similarity values between strain G-MB1T and the type strains of the other Thalassomonas species were 94.6–95.1 %. Strain G-MB1T was found to contain Q-8 as the predominant ubiquinone and C16:0, C17:1 ω8c, C16:1 ω9c, C12:0 3-OH and summed feature 3 (C16:1 ω7c and/or C16:1 ω6c) as the major fatty acids. The major polar lipids of strain G-MB1T were phosphatidylglycerol, phosphatidylethanolamine and one unidentified aminolipid. The DNA G+C content of strain G-MB1T was determined to be 42.4 mol%. Differential phenotypic properties, together with the phylogenetic distinctiveness, revealed that strain G-MB1T is separated from other Thalassomonas species. On the basis of the data presented, strain G-MB1T is considered to represent a novel species of the genus Thalassomonas, for which the name Thalassomonas fusca sp. nov. is proposed. The type strain is G-MB1T (=KCTC 32499T = NBRC 109830T).  相似文献   

12.
A Gram-negative, aerobic, non-motile and rod-shaped or ovoid bacterial strain, designated D1-W8T, was isolated from a tidal flat on the South Sea in South Korea. Strain D1-W8T was found to grow optimally at 25 °C, at pH 7.0–8.0 and in the presence of 2.0–3.0 % (w/v) NaCl. Neighbour-joining, maximum-likelihood and maximum-parsimony phylogenetic trees based on 16S rRNA gene sequences revealed that strain D1-W8T clustered with the type strain of Pelagicola litoralis showing 97.1 % sequence identity. 16S rRNA gene sequences of the type strains of other species exhibited lower similarity values. Strain D1-W8T was determined to contain Q-10 as the predominant ubiquinone and C18:1 ω7c as the predominant fatty acid. The major polar lipids of strain D1-W8T were identified as phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine, one unidentified aminolipid and one unidentified lipid. The DNA G+C content of strain D1-W8T was determined to be 57.9 mol% and its DNA–DNA relatedness value with the type strain of P. litoralis was 17 %. The differential phenotypic properties, together with the phylogenetic and genetic distinctiveness, revealed that strain D1-W8T is separate from P. litoralis. On the basis of the data presented, strain D1-W8T is considered to represent a novel species of the genus Pelagicola, for which the name Pelagicola litorisediminis sp. nov. is proposed. The type strain is D1-W8T (= KCTC 32327T = CECT 8287T).  相似文献   

13.
A Gram-negative, aerobic, non-motile and ovoid or rod-shaped bacterial strain, designated YM-20T, was isolated from a tidal flat of the Yellow Sea in South Korea. Strain YM-20T was found to grow optimally at 30 °C, at pH 7.0–8.0 and in the presence of 2.0–3.0 % (w/v) NaCl. Phylogenetic trees based on 16S rRNA gene sequences revealed that strain YM-20T clustered consistently with the type strains of ‘Roseovarius marisflavi’ and Roseovarius lutimaris, with which it exhibited 16S rRNA gene sequence similarities of 99.86 and 98.71 %, respectively. Strain YM-20T was found to contain Q-10 as the predominant ubiquinone and C18:1 ω7c as the predominant fatty acid. The major polar lipids of strain YM-20T were identified as phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine, one unidentified aminolipid and one unidentified lipid. The DNA G+C content of strain YM-20T was determined to be 60.9 mol% and its DNA–DNA relatedness values with the type strains of ‘R. marisflavi’, R. lutimaris and Pelagicola litorisediminis were 53 ± 7.1, 22 ± 5.5 and 13 ± 4.7  %, respectively. The differential phenotypic properties, together with the phylogenetic and genetic distinctiveness, revealed that strain YM-20T is separated from ‘R. marisflavi’, R. lutimaris, the other Roseovarius species and P. litorisediminis. On the basis of the data presented, strain YM-20T is considered to represent a novel species of the genus Roseovarius, for which the name Roseovarius gaetbuli sp. nov. is proposed. The type strain is YM-20T (= KCTC 32428T = CECT 8370T).  相似文献   

14.
A Gram-stain negative, aerobic, non-motile, non-spore-forming and rod-shaped bacterial strain, BS-R1T, was isolated from a tidal flat at Boseong, South Korea. Strain BS-R1T was found to grow optimally at 30 °C, at pH 7.0–8.0 and in the presence of 2.0 % (w/v) NaCl. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain BS-R1T belongs to the genus Algoriphagus, clustering consistently with the type strain of Algoriphagus mannitolivorans, with which it exhibited 98.4 % sequence similarity. Sequence similarities between strain BS-R1T and the type strains of the other Algoriphagus species were between 92.7 and 97.0 %. Strain BS-R1T was found to contain MK-7 as the predominant menaquinone and iso-C15:0, iso-C17:0 3-OH and summed feature 3 (C16:1 ω7c and/or C16:1 ω6c) as the major fatty acids. The major polar lipids of strain BS-R1T were identified as phosphatidylcholine, phosphatidylethanolamine and one unidentified lipid. The DNA G+C content was determined to be 42.3 mol% and its mean DNA–DNA relatedness values with A. mannitolivorans KACC 11349T was 17 ± 5 %. The phylogenetic and genetic distinctiveness and differential phenotypic properties demonstrated that strain BS-R1T is distinguishable from the other Algoriphagus species as well as A. mannitolivorans. On the basis of the data presented, strain BS-R1T is considered to represent a novel species of the genus Algoriphagus, for which the name Algoriphagus boseongensis sp. nov. is proposed. The type strain is BS-R1T (=KCTC 32580T = CECT 8446T).  相似文献   

15.
16.
A Gram-positive, rod-shaped, endospore-forming organism, strain BL3-6T, was isolated from tidal flat sediments of the Yellow Sea in the region of Tae-An. A 16S rRNA gene sequence analysis demonstrated that this isolate belongs to the Bacillus cereus group, and is closely related to Bacillus mycoides (99.0% similarity), Bacillus thuringiensis (99.0%), Bacillus weihenstephanensis (99.0%), Bacillus cereus (98.9%), Bacillus anthracis (98.8%), and Bacillus pseudomycoides (98.1%). The phylogenetic distance from any validly described Bacillus species outside the Bacillus cereus group was less than 95.6%. The DNA G+C content of the strain was 39.4 mol% and the major respiratory quinone was menaquinone-7. The major cellular fatty acids were iso-C14:0 (17.8%), iso-C16:0 (15.8%), and iso-C12:0 (11.3%). The diagnostic amino acid of the cell wall was meso-diaminopimelic acid and the major cell wall sugar was galactose. The results of DNA-DNA hybridization (<55.6%) and physiological and biochemical tests allowed genotypic and phenotypic differentiation of strain BL3-6T from the published Bacillus species. BL3-6T therefore represents a new species, for which the name Bacillus gaemokensis sp. nov. is proposed, with the type strain BL3-6T (=KCTC 13318T =JCM 15801T).  相似文献   

17.
18.
19.
Strain DY6T, a Gram-positive endospore-forming motile rod-shaped bacterium, was isolated from soil in South Korea and characterized to determine its taxonomic position. Phylogenetic analyses based on the 16S rRNA gene sequence of strain DY6T revealed that strain DY6T belongs to the genus Paenibacillus in the family Paenibacillaceae in the class Bacilli. The highest degree of sequence similarities of strain DY6T were found with Paenibacillus gansuensis B518T (97.9%), P. chitinolyticus IFO 15660T (95.3%), P. chinjuensis WN9T (94.7%), and P. rigui WPCB173T (94.7%). Chemotaxonomic data revealed that the predominant fatty acids were anteiso-C15:0 (38.7%) and C16:0 (18.0%). A complex polar lipid profile consisted of major amounts of diphosphatidylglycerol, phosphatidylethanolamine, and phosphatidylglycerol. The predominant respiratory quinone was MK-7. Based on these phylogenetic, chemotaxonomic, and phenotypic data, strain DY6T (=KCTC 33026T =JCM 18491T) should be classified as a type strain of a novel species, for which the name Paenibacillus swuensis sp. nov. is proposed.  相似文献   

20.
Strain BS6(T), a Gram-positive non-motile bacterium, was isolated from soil in South Korea and characterized to determine its taxonomic position. Phylogenetic analyses based on the 16S rRNA gene sequence revealed that strain BS6T belonged to the family Propionibacteriaceae in the class Actinobacteria. Strain BS6(T) showed the highest 16S rRNA gene sequence similarity with Microlunatus soli CC-012602(T) (98.6%) and high sequence similarities with Microlunatus species (94.5-98.6%). Chemotaxonomic data revealed that the predominant fatty acids were anteiso-C(17:0), anteiso-C(15:0), summed feature 8 (C(18:1) ω7c/ω6c), and iso-C(16:0). The cell wall peptidoglycan contained (LL)-diaminopimelic acid, and the major polar lipids were diphosphatidylglycerol, and phosphatidylglycerol. Based on these data, BS6(T) (=KCTC 19858(T) =JCM 17661(T) =CCARM 9244(T) =KEMC 9004-079(T)) should be classified as a type strain of a novel species, for which the name Microlunatus terrae sp. nov. is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号