首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study, we identified the interscapular brown adipose tissue (BAT) genes showing differential expression using DNA microarray analysis in order to better understand a gender-difference in gene regulation, as well as molecular abnormalities in dietinduced obesity. To understand the detailed changes in the gene expression profiles in BAT caused by HFD feeding, we extracted and summarized the genes that were up- or down-regulated by more than 1.5-fold between the genders. In this analysis, significant global changes were observed at the mRNA levels between the genders, as well as lean and obese rat BAT rendered by a HFD. Herein, we report for the first time that a series of genes, which might be involved in fatty acid oxidation and thermogenic regulation, were more highly expressed in females than in males. These results allowed us to conclude that compared to males, females have greater fat clearing capacity through the activation of genes encoding enzymes of fat oxidation. In addition, we found that females have higher thermogenic capacity due to increased expressions of genes involved in energy expenditure. In conclusion, the microarray data of gender dimorphism in BAT will prove valuable in improving gender awareness in the health care system and for the development of evidence-based gender specific clinical recommendations.  相似文献   

2.
Objective: The aim of this work was to determine the sex‐associated differences in the expression of genes related to lipid metabolism and fuel partitioning in response to a high‐fat (HF) diet in rats, and whether this is linked to the higher tendency of males to suffer from metabolic disorders. Methods and Procedures: Male and female Wistar rats were fed for 6 months on a normal‐fat (NF) or an HF diet. Body weight, fat depot weight, lipid concentration in liver, blood metabolites, and the expression of genes involved in fuel metabolism and partitioning in the liver, white adipose tissue (WAT), and skeletal muscle were measured. Results: Female rats fed on an HF diet gained more weight and had a greater increase in the adiposity index than male rats, while the circulating insulin levels remained unaltered; these animals also showed an increased expression of genes related to the energy influx in WAT and with fat utilization in skeletal muscle. Male but not female rats showed increased hepatic peroxisome proliferator–activated receptor‐ α (PPAR‐ α ) and CPT1L mRNA expression, suggesting enhanced lipid handling and oxidation by this organ, and have a higher triacylglycerol content in liver. Male rats under the HF diet also displayed higher blood insulin levels. Discussion: These results show sex‐dependent differences in lipid handling and partitioning between tissues in response to an HF diet, with females showing a higher capacity for storing fat in adipose tissue and for oxidizing fatty acids in muscle. These adaptations can help to explain the lower tendency of females to suffer from obesity‐linked disorders under the conditions of an HF diet.  相似文献   

3.
Gender differences in substrate selection have been reported during endurance exercise. To date, no studies have looked at muscle enzyme adaptations following endurance exercise training in both genders. We investigated the effect of a 7-week endurance exercise training program on the activity of beta-oxidation, tricarboxylic acid cycle and electron transport chain enzymes, and fiber type distribution in males and females. Training resulted in an increase in VO2peak, for both males and females of 17% and 22%, respectively (P < 0.001). The following muscle enzyme activities increased similarly in both genders: 3-beta-hydroxyacyl CoA dehydrogenase (38%), citrate synthase (41%), succinate-cytochrome c oxidoreductase (41%), and cytochrome c oxidase (COX; 26%). The increase in COX activity was correlated (R2 = 0.52, P < 0.05) with the increase in VO2peak/fat free mass. Fiber area, size, and % area were not affected by training for either gender, however, males had larger Type II fibers (P < 0.05) and females had a greater Type I fiber % area (P < 0.05). Endurance training resulted in similar increases in skeletal muscle oxidative potential for both males and females. Training did not affect fiber type distribution or size in either gender.  相似文献   

4.
本文利用生物电阻抗法对广西京族的体成分进行了测定,初步分析了其体成分形成的原因。研究组于2020年12月在广西壮族自治区东兴市“京族三岛”测定了430例京族成人(男182例,女248例)的16项指标。结果表明,京族男、女性的体质量、总肌肉量、躯干肌肉量、推定骨量、总能量代谢与年龄呈显著负相关。体成分随年龄增长而发生的变化,主要是自然的生理变化和劳动强度下降所致。随着年龄增长,男性的体脂率升高,这主要是躯干脂肪增多造成的。京族男性的体质量、总肌肉量、推定骨量、总能量代谢、水分率、四肢和躯干肌肉量均大于女性,而体脂率、四肢和躯干脂肪率均小于女性。京族男性比女性拥有更大的体质量和更高比例的骨骼肌,这两方面因素再加上劳动强度的差异,可能导致男性肌肉量、骨量、脂肪率等体成分与女性存在差异。总体来看,京族成人身体偏胖,脂肪含量较高,身体含水量基本正常,体成分特征与同为南亚语系或同在沿海地区的其他中国族群并不相似,而相对更接近于中国蒙古族,并且表现在体质量、体脂率、水分率等方面接近。生活环境、社会经济、日常饮食和劳动强度等因素是导致京族成人体质量及体脂率较高的原因。  相似文献   

5.
Elevated oxidative capacity, such as occurs via endurance exercise training, is believed to protect against the development of obesity and diabetes. Rats bred both for low (LCR)- and high (HCR)-capacity endurance running provide a genetic model with inherent differences in aerobic capacity that allows for the testing of this supposition without the confounding effects of a training stimulus. The purpose of this investigation was to determine the effects of a high-fat diet (HFD) on weight gain patterns, insulin sensitivity, and fatty acid oxidative capacity in LCR and HCR male rats in the untrained state. Results indicate chow-fed LCR rats were heavier, hypertriglyceridemic, less insulin sensitive, and had lower skeletal muscle oxidative capacity compared with HCR rats. Upon exposure to an HFD, LCR rats gained more weight and fat mass, and their insulin resistant condition was exacerbated, despite consuming similar amounts of metabolizable energy as chow-fed controls. These metabolic variables remained unaltered in HCR rats. The HFD increased skeletal muscle oxidative capacity similarly in both strains, whereas hepatic oxidative capacity was diminished only in LCR rats. These results suggest that LCR rats are predisposed to obesity and that expansion of skeletal muscle oxidative capacity does not prevent excess weight gain or the exacerbation of insulin resistance on an HFD. Elevated basal skeletal muscle oxidative capacity and the ability to preserve liver oxidative capacity may protect HCR rats from HFD-induced obesity and insulin resistance.  相似文献   

6.
In heart failure, high‐fat diet (HFD) may exert beneficial effects on cardiac mitochondria and contractility. Skeletal muscle mitochondrial dysfunction in heart failure is associated with myopathy. However, it is not clear if HFD affects skeletal muscle mitochondria in heart failure as well. To induce heart failure, we used pressure overload (PO) in rats fed normal chow or HFD. Interfibrillar mitochondria (IFM) and subsarcolemmal mitochondria (SSM) from gastrocnemius were isolated and functionally characterized. With PO heart failure, maximal respiratory capacity was impaired in IFM but increased in SSM of gastrocnemius. Unexpectedly, HFD affected mitochondria comparably to PO. In combination, PO and HFD showed additive effects on mitochondrial subpopulations which were reflected by isolated complex activities. While PO impaired diastolic as well as systolic cardiac function and increased glucose tolerance, HFD did not affect cardiac function but decreased glucose tolerance. We conclude that HFD and PO heart failure have comparable effects leading to more severe impairment of IFM. Glucose tolerance seems not causally related to skeletal muscle mitochondrial dysfunction. The additive effects of HFD and PO may suggest accelerated skeletal muscle mitochondrial dysfunction when heart failure is accompanied with a diet containing high fat.  相似文献   

7.
The positive regulation of insulin pathway in skeletal muscle results in increased activity of the mammalian target of rapamycin (mTOR), a positive effector of mRNA translation rate and protein synthesis. Studies that assess the activity of this protein in response to chronic high-fat diet (HFD) are scarce and controversial, and to date, there are no studies evaluating the mTOR pathway in infants exposed to gestational and postgestational HFD. This study investigated the effect of maternal HFD on skeletal muscle morphology and on phosphorylation of proteins that comprise the intracellular mTOR signaling pathway in soleus muscle of offspring at weaning. For this purpose, 10 days prior to conception, 39 female Wistar rats were randomly assigned to either control diet (CTL) or HFD. Later, rats were distributed into four groups according to gestational and postpregnancy diet: CTL/CTL (n=10), CTL/HF (n=11), HF/HF (n=10) and HF/CTL (n=8). After 21 days of lactation, pups were killed, and blood samples and soleus and gastrocnemius skeletal muscle were collected for analysis. We observed an influence of maternal postgestational diet, rather than gestational diet, in promoting an obese phenotype, characterized by body fat accumulation, insulin resistance and high serum leptin, glucose, triglycerides and cholesterol levels (P<.05). We have also detected alterations on skeletal muscle morphology — with reduced myofiber density — and impairment on S6 kinase 1 and 4E binding protein-1 phosphorylation (P<.05). These results emphasize the importance of maternal diet during lactation on muscle morphology and on physiological adaptations of infant rats.  相似文献   

8.
Dietary fat plays a major role in obesity, lipid metabolism, and cardiovascular diseases. To determine whether the intake of different types of dietary fats affect the muscle fiber types that govern the metabolic and contractile properties of the skeletal muscle, we fed male Wistar rats with a 15% fat diet derived from different fat sources. Diets composed of soybean oil (n-6 polyunsaturated fatty acids (PUFA)-rich), fish oil (n-3 PUFA-rich), or lard (low in PUFAs) were administered to the rats for 4 weeks. Myosin heavy chain (MyHC) isoforms were used as biomarkers to delineate the skeletal muscle fiber types. Compared with soybean oil intake, fish oil intake showed significantly lower levels of the fast-type MyHC2B and higher levels of the intermediate-type MyHC2X composition in the extensor digitorum longus (EDL) muscle, which is a fast-type dominant muscle. Concomitantly, MyHC2X mRNA levels in fish oil-fed rats were significantly higher than those observed in the soybean oil-fed rats. The MyHC isoform composition in the lard-fed rats was an intermediate between that of the fish oil and soybean oil-fed rats. Mitochondrial uncoupling protein 3, pyruvate dehydrogenase kinase 4, and porin mRNA showed significantly upregulated levels in the EDL of fish oil-fed rats compared to those observed in soybean oil-fed and lard-fed rats, implying an activation of oxidative metabolism. In contrast, no changes in the composition of MyHC isoforms was observed in the soleus muscle, which is a slow-type dominant muscle. Fatty acid composition in the serum and the muscle was significantly influenced by the type of dietary fat consumed. In conclusion, dietary fat affects the expression of genes related to the contractile and metabolic properties in the fast-type dominant skeletal muscle, where the activation of oxidative metabolism is more pronounced after fish oil intake than that after soybean oil intake.  相似文献   

9.
A high-fat diet (HFD) has been recognized as a risk factor for diseases such as dyslipidemia, atherosclerosis, obesity, and osteoporosis. However, studies analyzing gene expression after HFD in bone are rare. That prompted us to analyze the expression of selected genes in bone of 4-week-old diabetes-prone B(io)B(reeding) rats. Two breeding pairs were fed a HFD (+10 % tallow) or were fed a normal diet (ND; Ssniff R-Z) before mating and afterward during pregnancy. After the birth of progeny, parents continued to be given HFD or ND until the progeny was weaned (3 weeks). Thereafter, offspring were weaned and were fed the same food as their parents up to an age of 4 weeks. Body weight was measured at an age of 4 weeks, and subsequently 13 HFD rats and 13 ND rats were killed and the tibial bone was harvested to analyze the expression of 53 genes in bone. All rats fed HFD were significantly heavier than rats fed ND after 3 and 4 weeks. The diet also influenced the expression of genes in bone. There were significant differences in 20 out of 53 genes studied between rats fed HFD compared with rats fed ND. Four out of 20 had a lower and 17 out of 20 genes a higher expression in HFD rats, but differences in gene expression showed obvious differences between males and females. There were only two genes that were similarly different between males and females: Bmp4 and Atf4. Two genes, Foxg1 and Npy, were inversely expressed in males and females. It seems that the gene expression is differently regulated by diet during pregnancy and later in life between males and females. Nevertheless, it cannot be excluded that HFD also acts as an epigenetic factor in the development of offspring in utero.  相似文献   

10.
Although singly ablating Fabp1 or Scp2/Scpx genes may exacerbate the impact of high fat diet (HFD) on whole body phenotype and non-alcoholic fatty liver disease (NAFLD), concomitant upregulation of the non-ablated gene, preference for ad libitum fed HFD, and sex differences complicate interpretation. Therefore, these issues were addressed in male and female mice ablated in both genes (Fabp1/Scp2/Scpx null or TKO) and pair-fed HFD. Wild-type (WT) males gained more body weight as fat tissue mass (FTM) and exhibited higher hepatic lipid accumulation than WT females. The greater hepatic lipid accumulation in WT males was associated with higher hepatic expression of enzymes in glyceride synthesis, higher hepatic bile acids, and upregulation of transporters involved in hepatic reuptake of serum bile acids. While TKO had little effect on whole body phenotype and hepatic bile acid accumulation in either sex, TKO increased hepatic accumulation of lipids in both, specifically phospholipid and cholesteryl esters in males and females and free cholesterol in females. TKO-induced increases in glycerides were attributed not only to complete loss of FABP1, SCP2 and SCPx, but also in part to sex-dependent upregulation of hepatic lipogenic enzymes. These data with WT and TKO mice pair-fed HFD indicate that: i) Sex significantly impacted the ability of HFD to increase body weight, induce hepatic lipid accumulation and increase hepatic bile acids; and ii) TKO exacerbated the HFD ability to induce hepatic lipid accumulation, regardless of sex, but did not significantly alter whole body phenotype in either sex.  相似文献   

11.
Several aspects of lipid metabolism in the soleus and diaphragm muscles of streptozotocin-diabetic and control rats were investigated. The triglyceride content of both muscles was elevated in the diabetic state and the presence of increased intracellular lipid was confirmed by electron microscopy. In vitro glucose and palmitate oxidation studies showed that both types of muscle from the diabetic animals metabolized more fat than did the soleus and diaphragm from control rats. While isoproterenol alone produced a significant lipolytic response in both the soleus and diaphragm from control and diabetic animals, there was no difference in the percent increase in fatty acids released from muscles of diabetic rats compared to controls. However, the absolute difference was greater when the diaphragms were compared. Muscles from experimental and control animals showed a marked reduction in the amount of free fatty acids released in response to insulin. In addition, in the presence of the hormone, both the absolute and percent isoproterenol-stimulated increases in fatty acids were significantly greater for both diaphragm and soleus muscles from diabetic rats. The effects of insulin, isoproterenol, and the combination of these two hormones on the amount of glycerol released into the incubation medium were similar to those found on free fatty acid release. The results of these experiments show that there is an apparent increase in fat utilization in skeletal muscle of diabetic rats. Furthermore, measurements of triglyceride concentration and the enhanced response to isoproterenol stimulation in the muscles from these animals suggests that they may have an increased capacity for mobilization of intracellular lipids. Finally, in the diabetic state, both the soleus and diaphragm appear to demonstrate an increased response to the antilipolytic effect of insulin as measured by the decreased amount of fatty acid released into the incubation medium, the percent change also being significant for the soleus muscle.-Stearns, S. B., H. M. Tepperman, and J. Tepperman. Studies on the utilization and mobilization of lipid in skeletal muscles from streptozotocin-diabetic and control rats.  相似文献   

12.
13.
Rats with type 2 diabetes exhibit decreased oxidative capacity, such as reduced oxidative enzyme activity, low-intensity staining for oxidative enzymes in fibers, and no high-oxidative type IIA fibers, in the skeletal muscle, especially in the soleus muscle. In contrast, there are no data available concerning the oxidative capacity of spinal motoneurons innervating skeletal muscle of rats with type 2 diabetes. This study examined the oxidative capacity of motoneurons innervating the soleus muscle of non-obese rats with type 2 diabetes. In addition, this study examined the effects of mild hyperbaric oxygen at 1.25 atmospheres absolute with 36 % oxygen for 10 weeks on the oxidative capacity of motoneurons innervating the soleus muscle because mild hyperbaric oxygen improves the decreased oxidative capacity of the soleus muscle in non-obese rats with type 2 diabetes. Spinal motoneurons innervating the soleus muscle were identified using nuclear yellow, a retrograde fluorescent neuronal tracer. Thereafter, the cell body sizes and succinate dehydrogenase activity of identified motoneurons were analyzed. Decreased succinate dehydrogenase activity of small-sized alpha motoneurons innervating the soleus muscle was observed in rats with type 2 diabetes. The decreased succinate dehydrogenase activity of these motoneurons was improved by mild hyperbaric oxygen. Therefore, we concluded that rats with type 2 diabetes have decreased oxidative capacity in motoneurons innervating the soleus muscle and this decreased oxidative capacity is improved by mild hyperbaric oxygen.  相似文献   

14.
The purpose of this investigation was to determine whether long-term, heavy resistance training would cause adaptations in rat skeletal muscle structure and function. Ten male Wistar rats (3 weeks old) were trained to climb a 40-cm vertical ladder (4 days/week) while carrying progressively heavier loads secured to their tails. After 26 weeks of training the rats were capable of lifting up to 800 g or 140% of their individual body mass for four sets of 12–15 repetitions per session. No difference in body mass was observed between the trained rats and age-matched sedentary control rats. Absolute and relative heart mass were greater in trained rats than control rats. When expressed relative to body mass, the mass of the extensor digitorum longus (EDL) and soleus muscles was greater in trained rats than control rats. No difference in absolute muscle mass or maximum force-producing capacity was evident in either the EDL or soleus muscles after training, although both muscles exhibited an increased resistance to fatigue. Individual fibre hypertrophy was evident in all four skeletal muscles investigated, i.e. EDL, soleus, plantaris and rectus femoris muscles of trained rats, but muscle fibre type proportions within each of the muscles tested remained unchanged. Despite an increased ability of the rats to lift progressively heavier loads, this heavy resistance training model did not induce gross muscle hypertrophy nor did it increase the force-producing capacity of the EDL or soleus muscles. Accepted: 17 September 1997  相似文献   

15.
Obesity and cigarette smoking independently constitute major preventable causes of morbidity and mortality and obesity is known to worsen lung inflammation in asthma. Paradoxically, higher body mass index (BMI) is associated with reduced mortality in smoking induced COPD whereas low BMI increases mortality risk. To date, no study has investigated the effect of a dietary-induced obesity and cigarette smoke exposure on the lung inflammation and loss of skeletal muscle mass in mice. Male BALB/c mice were exposed to 4 cigarettes/day, 6 days/week for 7 weeks, or sham handled. Mice consumed either standard laboratory chow (3.5 kcal/g, 12% fat) or a high fat diet (HFD, 4.3 kcal/g, 32% fat). Mice exposed to cigarette smoke for 7 weeks had significantly more inflammatory cells in the BALF (P<0.05) and the mRNA expression of pro-inflammatory cytokines and chemokines was significantly increased (P<0.05); HFD had no effect on these parameters. Sham- and smoke-exposed mice consuming the HFD were significantly heavier than chow fed animals (12 and 13%, respectively; P<0.05). Conversely, chow and HFD fed mice exposed to cigarette smoke weighed 16 and 15% less, respectively, compared to sham animals (P<0.05). The skeletal muscles (soleus, tibialis anterior and gastrocnemius) of cigarette smoke-exposed mice weighed significantly less than sham-exposed mice (P<0.05) and the HFD had no protective effect. For the first time we report that cigarette smoke exposure significantly decreased insulin-like growth factor-1 (IGF-1) mRNA expression in the gastrocnemius and tibialis anterior and IGF-1 protein in the gastrocnemius (P<0.05). We have also shown that cigarette smoke exposure reduced circulating IGF-1 levels. IL-6 mRNA expression was significantly elevated in all three skeletal muscles of chow fed smoke-exposed mice (P<0.05). In conclusion, these findings suggest that a down-regulation in local IGF-1 may be responsible for the loss of skeletal muscle mass following cigarette smoke exposure in mice.  相似文献   

16.
17.
Maternal deprivation (MD) during neonatal life has diverse long-term effects, including affectation of metabolism. Indeed, MD for 24 hours during the neonatal period reduces body weight throughout life when the animals are maintained on a normal diet. However, little information is available regarding how this early stress affects the response to increased metabolic challenges during postnatal life. We hypothesized that MD modifies the response to a high fat diet (HFD) and that this response differs between males and females. To address this question, both male and female Wistar rats were maternally deprived for 24 hours starting on the morning of postnatal day (PND) 9. Upon weaning on PND22 half of each group received a control diet (CD) and the other half HFD. MD rats of both sexes had significantly reduced accumulated food intake and weight gain compared to controls when raised on the CD. In contrast, when maintained on a HFD energy intake and weight gain did not differ between control and MD rats of either sex. However, high fat intake induced hyperleptinemia in MD rats as early as PND35, but not until PND85 in control males and control females did not become hyperleptinemic on the HFD even at PND102. High fat intake stimulated hypothalamic inflammatory markers in both male and female rats that had been exposed to MD, but not in controls. Reduced insulin sensitivity was observed only in MD males on the HFD. These results indicate that MD modifies the metabolic response to HFD intake, with this response being different between males and females. Thus, the development of obesity and secondary complications in response to high fat intake depends on numerous factors.  相似文献   

18.
Genome-wide association studies (GWAS) are a powerful tool for revealing genes associated with common human obesity. New loci associated with obesity have recently been reported, but their function and metabolic implications remain to be elucidated. In order to begin identifying the role of some of these obesity-related loci, the closest genes to the polymorphism of each locus were selected and their expression was compared in the hypothalamus, adipose tissue, liver, soleus muscle, and extensor digitorum longus muscle (EDL) of Long-Evans rats maintained on chow or a high-fat diet (HFD) for 6 weeks. From a total of 19 genes analyzed, seven genes (ETV5, FTO, GNPDA2, KCTD15, TMEM18, MC4R, and SH2B1) were down-regulated in the hypothalamus of HFD compared to chow-fed rats. In adipose tissue of rats fed on HFD, the mRNA levels of BCDIN3, KCTD15, and SULT1A1 were down-regulated, whereas those of MTCH2, PTER, and TUFM were up-regulated. In the liver, three genes were up-regulated (PTER, SULT1A1, and TUFM) in HFD relative to chow-fed rats, and TMEM18 was down-regulated. Finally, in soleus muscle of HFD-fed rats, BCDIN3, BDNF, and TMEM18 were down-regulated, and in the EDL muscle SH2B1 and TUFM were up-regulated. mRNA levels in the hypothalamus were compared between fed and fasted states, and only KCTD15 was down-regulated during fasting when fed a chow diet. In conclusion, novel genes found to be associated with obesity are regulated by a HFD and the mRNA levels of KCTD15 is dependent on the nutritional status. These results suggest a potential role of these genes in the regulation of energy balance.  相似文献   

19.
目的:研究长期运动和低脂膳食等生活方式的干预对胰岛素抵抗大鼠肿瘤坏死因子α(TNF-α)表达的影响。方法:130只大鼠随机分为:CON组,10只,低脂膳食喂养;HFD组,120只,高脂膳食喂养。喂养8周后,选取HFD组体重上游1/3的大鼠作为肥胖大鼠。进行一次口服葡萄糖耐量试验(OGTr)和胰岛素释放试验。整体胰岛素敏感性以葡萄糖一胰岛素指数评价。将肥胖的HFD大鼠再分为以下4组,每组10只,喂养8周:HFD-SED:高脂膳食;IHFD-EX:高脂膳食,跑台运动;LFD-sED:低脂膳食;LFD-EX:低脂膳食,跑台运动。CON组继续低脂膳食喂养。再进行一次OGTr和胰岛素释放试验。以ELISA技术分析脂肪组织和比目鱼肌中TNF-α。结果:I-IFD组葡萄糖.胰岛索指数显著大于CON组。8周干预后,HFD-SED组葡萄糖一胰岛素指数显著大于CON组。3个干预组葡萄糖.胰岛素指数均显著小于HFD-SED组。HFD-SED组脂肪组织和比目鱼肌中TNF-α含量显著大于CON组,3个干预组均显著小于HFD-SED组。结论:运动和低脂膳食干预均能降低胰岛素抵抗大鼠组织中TNF-α的表达,从而缓解炎症应激,改善胰岛素抵抗。  相似文献   

20.
It is generally assumed that men display greater strength and muscle capacity than women. However, previous biochemical and histological studies have shown that men have greater capacity for anaerobic metabolism and women have higher or similar oxidative metabolism. Therefore, in the present study, we estimated oxidative capacity of gastrocnemius muscle and compared in Indian men and women using non-invasive in vivo 31P magnetic resonance spectroscopy (MRS). Healthy subjects (8 young males and 9 females, age-matched) performed plantar flexion exercise within a magnet and MRS measurements of inorganic phosphate (Pi), phosphocreatine (PCr), ADP, and pH of the calf muscles were carried out using a 1.5 T whole-body MRI system. PCr values during recovery were fitted to an exponential curve, and oxidative capacity was calculated using rate constant (k(PCr)), as an index of oxidative phosphorylation. When men and women were compared for different metabolic ratios, ADP, pH, k(PCr) and oxidative capacity, all parameters turned out to be statistically insignificant. The results showed no gender effect on skeletal muscle oxidative metabolism. The study demonstrated the usefulness of such non-invasive method to indirectly measure the oxidative capacity of the muscle based on PCr recovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号