首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Calcium (Ca) uptake into fruit and leaves is dependent on xylemic water movement, and hence presumably driven by transpiration and growth. High leaf transpiration is thought to restrict Ca movement to low-transpiring tomato fruit, which may increase fruit susceptibility to the Ca-deficiency disorder, blossom end rot (BER). The objective of this study was to analyse the effect of reduced leaf transpiration in abscisic acid (ABA)-treated plants on fruit and leaf Ca uptake and BER development. Tomato cultivars Ace 55 (Vf) and AB2 were grown in a greenhouse environment under Ca-deficit conditions and plants were treated weekly after pollination with water (control) or 500 mg l(-1) ABA. BER incidence was completely prevented in the ABA-treated plants and reached values of 30-45% in the water-treated controls. ABA-treated plants had higher stem water potential, lower leaf stomatal conductance, and lower whole-plant water loss than water-treated plants. ABA treatment increased total tissue and apoplastic water-soluble Ca concentrations in the fruit, and decreased Ca concentrations in leaves. In ABA-treated plants, fruit had a higher number of Safranin-O-stained xylem vessels at early stages of growth and development. ABA treatment reduced the phloem/xylem ratio of fruit sap uptake. The results indicate that ABA prevents BER development by increasing fruit Ca uptake, possibly by a combination of whole-plant and fruit-specific mechanisms.  相似文献   

2.
Maki SL  Brenner ML 《Plant physiology》1991,97(4):1359-1366
Gibberellins (GAs) are either required for, or at least promote, the growth of the pea (Pisum sativum L.) fruit. Whether the pericarp of the pea fruit produces GAs in situ and/or whether GAs are transported into the pericarp from the developing seeds or maternal plant is currently unknown. The objective of this research was to investigate whether the pericarp tissue contains enzymes capable of metabolizing GAs from [14C]GA12-7-aldehyde ([14C]GA12ald) to biologically active GAs. The metabolism of GAs early in the biosynthetic pathway, [14C]GA12 and [14C]GA12ald, was investigated in pericarp tissue isolated from 4-day-old pea fruits. [14C]GA12ald was metabolized primarily to [14C]GA12ald-conjugate, [14C]GA12, [14C]GA53, and polar conjugate-like products by isolated pericarp. In contrast, [14C]GA12 was converted primarily to [14C]GA53 and polar conjugate-like products. Upon further investigations with intact 4-day-old fruits on the plant, [14C]GA12 was found to be converted to a product which copurified with endogenous GA20. Lastly, [2H]GA20 and [2H]GA1 were recovered 48 hours after application of [2H]- and [14C]GA53 to pericarp tissue of intact 3-day-old pea fruits. These results demonstrate that pericarp tissue metabolizes GAs and suggests a function for pericarp GA metabolism during fruit growth.  相似文献   

3.
Seed effects on gibberellin metabolism in pea pericarp   总被引:4,自引:3,他引:1       下载免费PDF全文
Pea fruit (Pisum sativum L.) is a model system for studying the effect of seeds on fruit growth in order to understand coordination of organ development. The metabolism of 14C-labeled gibberellin A12 (GA12) by pea pericarp was followed using a method that allows access to the seeds while maintaining pericarp growth in situ. Identification and quantitation of GAs in pea pericarp was accomplished by combined gas chromatography-mass spectrometry following extensive purification of the putative GAs. Here we report for the first time that the metabolism of [14C]GA12 to [14C]GA19 and [14C]GA20 occurs in pericarp of seeded pea fruit. Removal of seeds from the pericarp inhibited the conversion of radiolabeled GA19 to GA20 and caused the accumulation of radiolabeled and endogenous GA19. Deseeded pericarp contained no detectable GA20, GA1, or GA8, whereas pericarp with seeds contained endogenous and radiolabeled GA20 and endogenous GA1. These data strongly suggest that seeds are required for normal GA biosynthesis in the pericarp, specifically the conversion of GA19 to GA20.  相似文献   

4.
During two consecutive years (2010 and 2011) we evaluated the impact of Progerbalin LG® (mixture of gibberellins (GA4+7) and N 6-benzyladenine) on fruit weight, fruit dimensions, elongation, geometric mean diameter or fruit size, aspect ratio, surface area and fruit volume of five apple cultivars belonging to ‘Red Delicious’ group (‘Hapke’ grafted on M.9 and M.26, ‘Hi Red’, ‘Starking’ and ‘Top Red’ on M.9, and ‘Red Chief Camspur’ on MM.106 rootstock). Trees were sprayed twice with 30, 50 or 100 ml L?1 i.e. between 80 % of open flowers and the following petal fall (first treatment), and 10 days after first application (second treatment); control trees were not sprayed. Results showed that the lowest dose increased fruit weight in all cultivars, except ‘Top Red’ and ‘Red Chief Camspur’; this dose promoted fruit dimensions, fruit size and elongation in ‘Hapke’ on both rootstocks, and also fruit dimensions, surface area and fruit volume in ‘Hi Red’. Regarding ‘Starking’, different doses of Progerbalin LG® did not affect other properties evaluated, but season played an important role in these cases. In contrast, the highest dose of this hormone improved all physical attributes in ‘Top Red’ and ‘Red Chief Camspur’, except elongation and/or aspect ratio. In some cases, good values were found in control treatment.  相似文献   

5.
Two cultivars of tomato with contrasting response to elevated temperature were compared: sensitive-Roma and tolerant-Robin. Experiments were done on fruit explants and on rooted cuttings with small fruits. In both cases45Ca was poorly transported to the fruits. Nevertheless in fruit explants elevated temperature (40°C) increased45Ca import into the fruits in both cultivars. In the compared cuttings, treated or not treated with growth regulators and at various temperatures, the greatest differences were observed in the amount of45Ca transported to the fruits. Sensitive Roma cuttings scantily supplied their fruits with45Ca both under optimal temperature and heat stress. In plants previously treated with NOA+GA3 high temperature increased45Ca transport to the fruits. Robin cuttings inversely responded to heat stress by transporting a much higher portion of45Ca to the fruits, both in control and NOA+GA3 cuttings.The diversity of45Ca distribution during elevated temperature in cuttings, but not in fruit explants of both cultivars seems to be connected with an ability to control calcium supply to fruit or at least to prevent its decrease; this mechanism is perhaps located outside the cluster.  相似文献   

6.
Fruit sugar content is one of the most important flavor quality traits in the fresh market. Minerals, such as boron (B) and calcium (Ca), are associated with fruit sugar and starch accumulation in many plant species. To better understand the roles of B and Ca in affecting sugar and starch accumulation in apples, 2 g L?1 Na2B4O7·10H2O or 10 g L?1 CaCl2 was supplied by foliar spray to 20-year-old ‘Fuji’ (Malus domestica Borkh. cv. Fuji) trees at four developmental stages (fruit set, onset of rapid fruit growth, rapid fruit growth and the end of rapid fruit growth), in 2010–2011. The most effective treatment significantly increasing soluble sugar and starch levels in ripening fruit was the foliar application of 2 g L?1 Na2B4O7·10H2O during rapid fruit growth, and the robustness of the effects was confirmed for two cultivars, ‘Fuji’ and ‘Orin’, at three orchards in 2011. Foliar applications of B during the onset of rapid fruit growth and rapid fruit growth, as well as the foliar application of Ca at fruit set, significantly increased the soluble sugar content in ripening fruit. In addition, the B application was effective in increasing the fruit starch content, but Ca was not. Both B and Ca treatments significantly increased the leaf concentrations of the other element at least transiently. However, B and Ca effects on fruit sugar/starch did not seem to depend on higher leaf B or Ca levels. In conclusion, B and Ca interact in enhancing fruit sugar and starch contents at the fruit ripening stage.  相似文献   

7.
The improvement of fruit quality is an important objective in citrus breeding. Using an F1 segregating population from a cross between citrus cultivars ‘Harehime’ (‘E647’—‘Kiyomi’ [Citrus unshiu Marcow. ‘Miyagawa Wase’ × Citrus sinensis (L.) Osbeck ‘Trovita’] × ‘Osceola’—a cultivar of clementine [Citrus clementina hort. ex Tanaka] × ‘Orland’ [Citrus paradisi Macfad. ‘Duncan’ × Citrus tangerina hort. ex Tanaka] × ‘Miyagawa Wase’) and ‘Yoshida’ ponkan (Citrus reticulata Blanco ‘Yoshida’), a SNP-based genetic linkage map was constructed and quantitative trait locus (QTL) mapping of four fruit-quality traits (fruit weight, sugar content, peel puffing, and water rot) was performed. The constructed genetic linkage map of ‘Harehime’ consisted of 442 single nucleotide polymorphisms (SNPs) on 9 linkage groups (LGs) and covered 635.8 cM of the genome, while that of ‘Yoshida’ ponkan consisted of 332 SNPs on 9 LGs and covered 892.9 cM of its genome. We identified four QTLs associated with fruit weight, one QTL associated with sugar content, three QTLs associated with peel puffing, and one QTL associated with water rot. For these QTL regions, we estimated the haplotypes of the crossed parents and verified the founding cultivars that these QTLs were originated from and their inheritance in descendant cultivars using pedigree information. QTLs identified in this study provide useful information for marker-assisted breeding of citrus in Japan.  相似文献   

8.
Gibberellins (GAs) were identified and quantified during flower and fruit development in the Christmas rose (Helleborus niger L.), a native of southeastern Europe with a long international horticultural tradition. Physiologically, the plant differs from popular model species in two major respects: (1) following anthesis, the initially white or rose perianth (formed in this species by the sepals) turns green and persists until fruit ripening, and (2) the seed is shed with an immature embryo, a miniature endosperm, and a prominent perisperm as the main storage tissue. GA1 and GA4 were identified by full-scan mass spectra as the major bioactive GAs in sepals and fruit. LC-MS/MS system in accord with previously verified protocols also afforded analytical data on 12 precursors and metabolites of GAs. In the fruit, GA4 peaked during rapid pericarp growth and embryo development and GA1 peaked during the subsequent period of rapid nutrient accumulation in the seeds and continued pericarp enlargement. In the sepals, the flux through the GA biosynthetic pathway was highest prior to the light green stage when the photosynthetic system was induced. Unfertilized, depistillated, and deseeded flowers became less green than the seed-bearing controls; chlorophyll accumulation could be restored by applying GA1, GA4, and, less efficiently, GA3 to the deseeded fruit. The sepals of unfertilized and depistillated flowers indeed contained very low levels of GA4 and gradually decreasing levels of GA1. However, the concentrations of their precursors and metabolites were less affected. These data suggest that a signal(s) from the fruit stimulates GA biosynthesis in the sepals resulting in greening. The fruit-derived GAs appear to be mainly involved in pericarp growth and seed development.  相似文献   

9.
10.
An efficient, one step and genotype independent protocol of shoot organogenesis was developed from leaf and internodal explants taken from microshoots of different cultivars of potato (Solanum tuberosum L.). Initially, microshoots were cultured on basal Murashige and Skoog medium additionally supplemented with 10 µM AgNO3 (MS1 medium) to achieve healthy shoot growth required to get the quality explants. Shoot organogenesis was induced from both types of explants (leaf and internodal) on MS1 medium variously supplemented with 6-benzyladenine (BA) and gibberellic acid (GA3). Maximum explants were induced shoot organogenesis on MS1 medium supplemented with 10 µM BA and 15.0 µM GA3 from both the cultivars namely ‘Kufri Chipsona 1’ and ‘Kufri Pukhraj’. Among the types of explants used, better response was observed from internodal segments as compared to leafs. This optimized medium combination was found to be equally effective for all the eight cultivars tested namely ‘Kufri Pukhraj’, ‘Kufri Chipsona 1’, ‘Kufri Chipsona 2’, ‘Kufri Jyoti’, ‘Kufri Surya’, ‘Kufri Chandramukhi’, ‘Kufri Khyati’ and ‘Desiree’. The clonal uniformity of the regenerated shoots was confirmed using random amplified polymorphic DNA and inter-simple sequence repeats markers.  相似文献   

11.
12.
The relative importance of growth rate and calcium concentration in sweet pepper fruits (Capsicum annuum L.) for the induction of blossom-end rot (BER) was investigated in (1) four pollination treatments in one cultivar, (2) four cultivars with the same fruit load and (3) three fruit load treatments in four cultivars. For fruits with the same pollination treatment those eventually developing BER had a higher initial fruit growth rate than those not developing BER. Within the same experiment both the growth rate of the young fruit and BER increased with the number of seeds. The Ca concentration of the pericarp in mature fruits was negatively related to both fruit size and BER incidence. Differences in levels of BER between different pollination experiments could not be explained solely by differences in growth rate of the young fruit, but related to different Ca concentrations in the mature fruits. In the spring, but not in the summer, cultivars more susceptible to BER had a larger final size but lower Ca concentration in the young fruit than the resistant ones. By lowering the fruit load in the summer both the final fruit size and the BER incidence increased, but the Ca concentrations of both proximal and distal pericarp in the young fruit of all cultivars were not consistently affected. Despite a correlation between growth rate and low Ca concentration in the fruit, the incidence of BER may only be predicted from separate effects of fruit growth and of Ca concentration of fruit. The data indicated that at a higher growth rate a higher Ca concentration is required to prevent the induction of BER. The usefulness of the total Ca concentration of the fruit for determining the critical Ca concentration in the induction of BER is discussed.Key words: Capiscum annuum L., sweet pepper, blossom-end rot, calcium, growth rate, pollination, fruit load.   相似文献   

13.
Blossom-end rot (BER) in tomato fruit (Solanum lycopersicum) is believed to be a calcium (Ca(2+) ) deficiency disorder, but the mechanisms involved in its development are poorly understood. Our hypothesis is that high expression of pectin methylesterases (PMEs) increases Ca(2+) bound to the cell wall, subsequently decreasing Ca(2+) available for other cellular functions and thereby increasing fruit susceptibility to BER. The objectives of this study were to evaluate the effect of PME expression, and amount of esterified pectins and Ca(2+) bound to the cell wall on BER development in tomato fruit. Wild-type and PME-silenced tomato plants were grown in a greenhouse. At full bloom, flowers were pollinated and Ca(2+) was no longer provided to the plants to induce BER. Our results show that suppressing expression of PMEs in tomato fruit reduced the amount of Ca(2+) bound to the cell wall, and also reduced fruit susceptibility to BER. Both the wild-type and PME-silenced fruit had similar total tissue, cytosolic and vacuolar Ca(2+) concentrations, but wild-type fruit had lower water-soluble apoplastic Ca(2+) content and higher membrane leakage, one of the first symptoms of BER. Our results suggest that apoplastic water-soluble Ca(2+) concentration influences fruit susceptibility to Ca(2+) deficiency disorders.  相似文献   

14.
Carotenoids, gibberellins (GAs), sterols, abscisic acid and -amyrins were analysed in tomato (Lycopersicon esculentum Mill.) pericarp during fruit development and ripening. The contents of these isoprenoids in wild-type (cv. Ailsa Craig) fruit were compared with those in fruit of the carotenoid-deficient R-mutant and a transgenic plant containing antisense RNA to a phytoene synthase gene. In both carotenoid-deficient genotypes, a 14-fold reduction in carotene and twofold decrease in xanthophyll content, compared to the wild type, was found in ripe fruit. Immature green fruit from wild type and R-mutant plants contained similar amounts of the C19-GAs, GA1, and GA20, and their C20 precursor, GA19. Immature fruit from the transgenic plants contained three- to fivefold higher contents of these GAs. In wild-type fruit at the mature green stage the contents of these GAs had decreased to < 10% of the levels in immature fruit. A similar decrease in GA19 content occurred in the other genotypes. However, the contents of GA1 and GA20 in fruit from phytoene synthase antisense plants decreased only to 30% between the immature and mature green stages and did not decrease at all in R-mutant fruit. At the breaker and ripe stages, the contents of each GA were much reduced for all genotypes. The amount of abscisic acid was the same in immature fruit from all three genotypes, but, on ripening, the levels of this hormone in antisense and R-mutant fruit were ca. 50% of those in the wild type. Quantitative differences in the amounts of the triterpenoid -amyrins, total sterols, as well as individual sterols, such as campesterol, stigmasterol and sitosterol, were apparent between all three genotypes during development. Amounts of free sterols of wild type and antisense fruit were greatest during development and decreased during ripening, whereas the opposite was found in the R-mutant. This genotype also possessed less free sterol and more bound sterol in comparison to the other varieties. These data provide experimental evidence to support the concept of an integrated metabolic relationship amongst the isoprenoids.Abbreviations ABA abscisic acid - dpb days post breaker - FDP farnesyl diphosphate - GA gibberellin - GGDP geranyl-geranyl diphosphate We thank Mr. Paul Gaskin (Long Ashton Research Station) for the qualitative GC-MS of triterpenoids and Dr. R. Horgan (University of Wales, Aberystwyth) for a gift of [6-3H2]ABA. The work was supported by a research grant (No. PG111/617) to P.M.B. from the Agricultural and Food Research Council to whom we express our thanks.  相似文献   

15.
The effect of applied gibberellin (GA) and auxin on fruit-set and growth has been investigated in tomato (Solanum lycopersicum L.) cv Micro-Tom. It was found that to prevent competition between developing fruits only one fruit per truss should be left on the plant. Unpollinated ovaries responded to GA3 and to different auxins [indol-3-acetic acid, naphthaleneacetic acid, and 2,4-dichlorophenoxyacetic acid (2,4-D)], 2,4-D being the most efficient. GA3- and 2,4-D-induced fruits had different internal morphology, with poor locular tissue development in the case of GA, and pseudoembryos development in the case of 2,4-D. Also, GA3 produced larger cells in the internal region of the mesocarp (IM) associated with higher mean C values, whereas 2,4-D produced more cell layers in the pericarp than pollinated fruits. The smaller size of GA3- compared with 2,4-D-induced fruits was due to them having fewer cells, only partially compensated by the larger size of IM cells. Simultaneous application of GA3 and 2,4-D produced parthenocarpic fruits similar to pollinated fruits, but for the absence of seeds, suggesting that both kinds of hormones are involved in the induction of fruit development upon pollination. It is concluded that Micro-Tom constitutes a convenient model system, compared to tall cultivars, to investigate the hormonal regulation of fruit development in tomato.  相似文献   

16.
Post-phloem sugar transport in developing tomato (Lycopersicon esculentum Mill. cv. Flora-Dade) fruit follows an apoplastic route during the rapid phase of sugar accumulation. The pathway is characterized by sugar retrieval by the storage parenchyma cells from the fruit apoplast. Two tomato genotypes differing in fruit hexose content were compared in terms of the transport and transfer processes controlling fruit sugar levels. The genotypic difference in fruit sugar content was independent of photoassimilate export from source leaves. Discs of pericarp tissue were cultured in a medium based on analyses of the fruit apoplastic sap. The cultured discs maintained a composition, a relative growth rate and a respiration rate similar to those of the pericarp tissue of intact fruit. Estimates of hexose fluxes into metabolic and storage pools suggested that membrane transport regulated the genotypic difference in hexose accumulation. Short-term [14C]hexose uptake experiments demonstrated a genotypic difference in Vmax for glucose, fructose and 3-O-methyl-glucose, and this difference was abolished in the presence of the inhibitor p-chloromercuribenzenesulphonic acid (PCMBS). The results support the hypothesis that the activity of energized hexose carriers on the plasma membranes of storage parenchyma cells is a significant determinate of the genotypic difference in hexose accumulation.  相似文献   

17.
Sjut  V.  Bangerth  F. 《Plant Growth Regulation》1982,1(4):243-251
Ethylene, indol-3-acetic acid (IAA), gibberellin-like substances (GAs) and abscisic acid (ABA) were analysed in extracts from normal, seed-containing and parthenocarpic tomato fruits throughout fruit development. Parthenocarpic fruit growth was induced with an auxin (4-CPA), morphactin (CME) or gibberellic acid (GA3) and compared with that of pollinated control fruits. Fruit growth was only affected by the treatment with GA3, decreasing size and fresh weight by 60%. The peak sequence of hormones during fruit development was ethylene-GAs-IAA-ABA. Seeded fruits contained the highest levels of IAA and ABA but the lowest levels of GAs. Also, in seeded fruits, a high proportion of IAA and ABA was found in the seeds whereas this was not the case for GAs.Hormone levels of tomato fruits may be successfully, easily and reproducibly altered by inducing parthenocarpic fruit growth and thus eliminating development of seeds which are a major source of hormone synthesis. In spite of markedly changed hormone levels, there was no obvious relationship between fruit growth and extractable hormones per se. However, the results indicate that a high ratio of GAs: auxins is unfavourable for growth of tomato fruits.  相似文献   

18.
Jerusalem artichoke (Helianthus tuberosus L.) cultivars are conserved in genebanks for use in breeding and horticultural research programs. Jerusalem artichoke collections are particularly vulnerable to environmental and biological threats because they are often maintained in the field. These field collections could be securely conserved in genebanks if improved cryopreservation methods were available. This work used four Jersualem artichoke cultivars (‘Shudi’, ‘M6’, ‘Stampede’, and ‘Relikt’) to improve upon an existing procedure. Four steps were optimized and the resulting procedure is as follows: preculture excised shoot tips (2–3 mm) in liquid MS medium supplemented with 0.4 M sucrose for 3 days, osmoprotect shoot tips in loading solution for 30 min, dehydrate with plant vitrification solution 2 for 15 min before rapid cooling in liquid nitrogen, store in liquid nitrogen, rapidly rewarm in MS liquid medium containing 1.2 M sucrose, and recover on MS medium supplemented with 0.1 mg L?1 GA3 for 3–5 days in the dark and then on the same medium for 4–6 weeks in the light (14 h light/10 h dark). After cryopreservation, Jerusalem artichoke cultivar ‘Shudi’ had the highest survival (93%) and regrowth (83%) percentages. Cultivars ‘M6’, ‘Stampede’, and ‘Relikt’ achieved survival and regrowth percentages ranging from 44 to 72%, and 37–53%, respectively. No genetic changes, as assessed by using simple sequence repeat markers, were detected in plants regenerated after LN exposure in Jerusalem artichoke cultivar ‘Shudi’. Differential scanning calorimetry analyses were used to investigate the thermal activities of the tissues during the cryopreservation process and it was determined that loading with 2.0 M sucrose and 0.4 M sucrose dehydrated the shoot tips prior to treatment with PVS2. Histological observations revealed that the optimized droplet vitrification protocol caused minimal cellular damage within the meristem cells of the shoot tips.  相似文献   

19.
Various cultivars of red chilli were collected from a small town named Kunri, located in the province Sindh, Pakistan. This town is a hub of red chilli production in Asia. A total of 69 samples belonging to 6 cultivars were obtained and analysed for the occurrence of aflatoxins and Aspergillus flavus, to explore the potential of resistant and susceptible germplasm. Aflatoxins were detected by thin layer chromatography (TLC) and high performance liquid chromatography (HPLC), while A. flavus was isolated and identified using agar plate, blotter paper, deep freezing and dilution techniques. Molecular characterization using internal transcribed spacer (ITS) 1/4 and A. flavus specific FL1-F/R primers confirmed the identity of A. flavus. The data revealed that 67 and 75% samples contaminated with aflatoxin B1 (AFB1) and with A. flavus, respectively. A highly susceptible chilli cultivar was ‘Nagina’, showing 78.8% frequency of total aflatoxins (1.2–600 μg/kg) and a mean of 87.7 μg/kg for AFB1 and 121.9 μg/kg for total aflatoxins. A. flavus was detected with 93% frequency and 2.14 × 104 colony forming units. In contrast, cultivars ‘Kunri’ and ‘Drooping Type’ were found to be resistant, with low levels of aflatoxins and fungal counts. The study was conducted for the first time to explore two potential cultivars that were less susceptible towards A. flavus and aflatoxin contamination. These cultivars could be preferably cultivated and thereby boost Pakistan’s chilli production.  相似文献   

20.
In pea (Pisum sativum), normal fruit growth requires the presence of the seeds. The coordination of growth between the seed and ovary tissues involves phytohormones; however, the specific mechanisms remain speculative. This study further explores the roles of the gibberellin (GA) biosynthesis and catabolism genes during pollination and fruit development and in seed and auxin regulation of pericarp growth. Pollination and fertilization events not only increase pericarp PsGA3ox1 message levels (codes for GA 3-oxidase that converts GA20 to bioactive GA1) but also reduce pericarp PsGA2ox1 mRNA levels (codes for GA 2-oxidase that mainly catabolizes GA20 to GA29), suggesting a concerted regulation to increase levels of bioactive GA1 following these events. 4-Chloroindole-3-acetic acid (4-Cl-IAA) was found to mimic the seeds in the stimulation of PsGA3ox1 and the repression of PsGA2ox1 mRNA levels as well as the stimulation of PsGA2ox2 mRNA levels (codes for GA 2-oxidase that mainly catabolizes GA1 to GA8) in pericarp at 2 to 3 d after anthesis, while the other endogenous pea auxin, IAA, did not. This GA gene expression profile suggests that both seeds and 4-Cl-IAA can stimulate the production, as well as modulate the half-life, of bioactive GA1, leading to initial fruit set and subsequent growth and development of the ovary. Consistent with these gene expression profiles, deseeded pericarps converted [14C]GA12 to [14C]GA1 only if treated with 4-Cl-IAA. These data further support the hypothesis that 4-Cl-IAA produced in the seeds is transported to the pericarp, where it differentially regulates the expression of pericarp GA biosynthesis and catabolism genes to modulate the level of bioactive GA1 required for initial fruit set and growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号