首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is known that substantial boll weevil, Anthonomus grandis grandis Boheman, individuals can survive mild subtropical winters in some habitats, such as citrus orchards. Our study shows that endocarp of the fruit from prickly pear cactus, Opuntia engelmannii Salm-Dyck ex. Engel.; orange, Citrus sinensis L. Osbeck.; and grapefruit, Citrus paradisi Macfad., can sustain newly emerged adult boll weevils for >5 mo, which is the duration of the cotton-free season in the subtropical Lower Rio Grande Valley of Texas and other cotton-growing areas in the Western Hemisphere. Cotton, Gossypium hirsutum L., and the boll weevil occur in the same areas with one or all three plant species (or other citrus and Opuntia species that might also nourish boll weevils) from south Texas to Argentina. Although adult boll weevils did not produce eggs when fed exclusively on the endocarps of prickly pear, orange, or grapefruit, these plants make it possible for boll weevils to survive from one cotton growing season to the next, which could pose challenges to eradication efforts.  相似文献   

2.
Tarnished plant bugs, Lygus lineolaris (Palisot de Beauvois), from regions 1, 2, and 3 of the boll weevil, Anthonomous grandis Boheman, eradication program in Mississippi were collected from wild hosts and tested for malathion resistance during the spring and fall of 2000 and 2001. Plant bugs were also tested in region 1 in late-July and October of 1999, just before and after multiple applications of ultra-low-volume (ULV) malathion were used for reproduction-diapause control of boll weevils in August and September. Regions 1 (north Delta), 2 (south Delta), and 3 (hills) began boll weevil eradication in 1999, 1998, and 1997, respectively. A glass-vial bioassay was used to determine resistance in plant bugs to malathion by comparing LC50 values against an LC50 value obtained for susceptible plant bugs. Comparison of the LC50 value obtained for plant bugs at a location in the spring was also made with the LC50 value obtained in the fall at the same location. After multiple applications of malathion made for reproduction-diapause boll weevil control in region 1 in August and September, malathion resistance increased by 4.9-, 6.5-, and 20.8-fold in plant bug populations from the three test locations. Results from testing bugs from all three eradication regions were similar. Malathion resistance usually increased significantly from spring to fall and then declined significantly from fall to spring of the next year. Despite reduced use of malathion in all three eradication regions for boll weevils in 2001, resistance to malathion in plant bugs still increased significantly from spring to fall at all test locations in regions 1 and 2 (the Delta). Malathion resistance did not increase significantly in plant bug populations in region 3 (the hills) in 2001 from spring to fall at three of four test locations in this year. Possible causes for the higher malathion resistance found in plant bugs in the Delta are discussed. Overall test results showed that the use of malathion in boll weevil eradication in cotton probably contributed to increases in resistance to malathion in plant bug populations in the eradication areas. However, the expression of this resistance was usually rapidly lost by spring of the following year. Boll weevil eradication did not seem to produce a permanent increase in the expression of malathion resistance in tarnished plant bug populations found in the eradication regions.  相似文献   

3.
Boll weevil traps baited with a ComboLure (25 of mg grandlure + 30 mg of eugenol + 90 of mg dichlorvos [DDVP]), an extended-release lure (25 mg of grandlure + 30 mg of eugenol + 60 of mg DDVP kill-strip), and extended-release lure with no DDVP were evaluated for boll weevil, Anthonomus grandis grandis Boheman (Coleoptera: Curculionidae), captures in South Texas cotton, Gossypium hirsutum L., fields during February-March 2005 and March-April 2006. The traps were serviced once a week for five consecutive weeks by using the same methodology as active boll weevil eradication programs. Mean captured boll weevils from extended-release lures with no DDVP were significantly higher in five of 10 trapping weeks compared with captures of the ComboLure and extended lure. Weekly mortality of boll weevils captured was similar for the ComboLure (72.6 +/- 4.7%) and extended lure + DDVP (73.5 +/- 4.0%), and both were significantly higher than the extended lure (32.8 +/- 5.0%) with no DDVP. The presence or absence of DDVP did not significantly affect the sex ratio of field-captured boll weevils. We found no functional reasoning for using DDVP in large scale trapping of boll weevils regardless of the formulation or presentation in the trap. We conducted two additional trapping evaluations after the 2005 and 2006 studies, but the numbers of boll weevils captured were too low for statistical comparisons, indicating that boll weevil eradication is reducing populations in the Rio Grande Valley of Texas.  相似文献   

4.
The current standard practice of two to three preemptive insecticide applications at the start of pinhead (1-2-mm-diameter) squaring followed by threshold-triggered (whenever 10% of randomly selected squares have oviposition punctures) insecticide applications for boll weevil, Anthonomus grandis grandis Boheman, control does not provide a reliably positive impact on cotton, Gossypium hirsutum L., yields in subtropical conditions. This study showed that four fewer spray applications in a "proactive" approach, where spraying began at the start of large (5.5- 8-mm-diameter) square formation and continued at 7- to 8-d intervals while large squares were abundant, resulted in fewer infested squares and 46-56% more yield than the standard treatment at two locations during 2004. The combination of fewer sprays and increased yield made the proactive approach 115-130% more profitable than the standard. The proactive approach entails protection only at the crop's most vulnerable stage (large squares) that, as a source of food, accelerates boll weevil reproduction. In contrast, the standard approach protects early season small squares and later season bolls, both of which contribute less to boll weevil reproduction than large squares. Proaction is an in-season crop protection approach that can be used to increase yield in individual fields during the same season and that could be incorporated into boll weevil eradication strategy that involves later diapause sprays. Because proaction is based on an important relationship between the cotton plant and boll weevil reproduction, the tactic will probably be effective regardless of climate or region.  相似文献   

5.
Abstract  The reproductive potential of overwintering boll weevil, Anthonomus grandis grandis (Boheman), females collected from pheromone traps in September, November and January, fed for 1, 3, and 5 weeks on plant pollens, and then provided cotton squares, was determined in the laboratory at 27 ± 1°C, 65% RH, and a photoperiod 13 : 11 (L : D) h. Duration of pollen feeding by overwintering boll weevils did not significantly influence egg and feeding punctures, or puncture ratios (egg to total punctures) for any of the three months of parent weevil collections when provided cotton squares on a daily basis. However, punctures and puncture ratios are significantly different when comparing mean data between months of boll weevil collections. When boll weevils were provided with cotton squares daily, the pre-ovipositional periods of female parents captured in September, November and January were 5, 9 and 14 days, respectively. The rate of eggs by females was significantly lower during November and January than September. Female parents collected in September produced a significantly higher percentage of eggs yielding adult progeny than those collected in November and January. Life table parameters indicated that net reproductive rate ( R o) of boll weevil females collected in September was 1.2-fold higher than those collected in November and 10.7-fold higher than those collected in January. Except for testes size, no differences in male reproductive parameters were observed during the cotton-free period compared with males captured during mid-cotton (June). The number of oocytes in the ovarioles and the number of oocytes containing yolk were significantly lower during September, November and January compared with June. The reproductive potential of overwintering boll weevil females collected in different months is an important consideration in determining the success of any control strategy.  相似文献   

6.
The phenology and ecology of Hibiscus pernambucensis Arruda and its interaction and importance in maintaining populations of the boll weevil, Anthonomus grandis Boheman, were studied over a period of 3 yr in the Soconusco Region of the state of Chiapas, Mexico. H. pernambucensis is a small tree of Neotropical distribution, restricted to lowland areas, and generally associated with halophytic vegetation. This species is found exclusively along the shores of brackish estuaries, in or near mangrove swamps in southeastern Mexico. In this region, H. pernambucensis has a highly seasonal flowering pattern in which the greatest bud production occurs shortly after the start of the rainy season in May and the highest fruit production occurs in July and August. Boll weevil larvae were found in buds of H. pernambucensis during all months but February and densities of buds and weevils were highest from May through September. The percentage of buds infested with boll weevil larvae rarely exceeded 30%. Because plant densities and reproductive output of H. pernambucensis is relatively low and, consequently, the number of oviposition and larval development sites for boll weevils is limited, the importance of this plant as a source of boll weevils with potential of attacking commercial cotton is minimal in comparison with the quantity produced in cultivated cotton. However, the plant could be important as a reservoir of boll weevils in areas of boll weevil quarantine and eradication programs. The factors and circumstances that may have led to this apparent recent host shift of the boll weevil in this region are discussed.  相似文献   

7.
The survival of overwintering boll weevil, Anthonomus grandis grandis (Boheman), adults on non-cotton hosts in the Lower Rio Grande Valley (LRGV) of Texas was examined from 2001 to 2006. The success of the Boll Weevil Eradication Program, which was reintroduced into the LRGV in 2005, depends on controlling overwintering boll weevil populations. Laboratory studies were conducted using boll weevil adults that were captured in pheromone traps from September through March. The number of adults captured per trap declined significantly in the field from fall to the beginning of spring (3.5-7.0-fold). The proportion of trapped males and females did not differ significantly. The mean weight of boll weevil adults captured in September was 13.3 mg, while those of captured adults from November to February were significantly lower and ranged from 6.7 to 7.8 mg. Our results show that boll weevil adults can feed on different plant pollens. The highest longevity occurred when adults were fed almond pollen or mixed pollens (72.6 days and 69.2 days, respectively) and the lowest when they fed on citrus pollen or a non-food source (9.7 days or 7.4 days, respectively). The highest adult survival occurred on almond and mixed pollens [88.0%-97. 6% after 1st feeding period (10 days), 78.0%-90.8% after 3rd feeding period (10 days), 55. 0%-83.6% after 5th feeding period (10 days), and 15.2%-32.4% after lOth feeding period (10 days)]. The lowest adult survival occurred on citrus pollen [52.0%-56.0% after 1st feeding period (10 days), 13.3% after 3rd and 5th feeding periods (10 days), and 0 after 6th feeding period (10 days)]. Pollen feeding is not a behavior restricted to adult boll weevils of a specific sex or physiological state. Understanding how boll weevil adults survive in the absence of cotton is important to ensure ultimate success of eradicating this pest in the subtropics.  相似文献   

8.
Field experiments in the subtropical Lower Rio Grande Valley of Texas were conducted to determine the extent of adult boll weevil, Anthonomus grandis grandis Boheman (Coleoptera: Curculionidae), dispersal from cotton, Gossypium hirsutum L., fields during harvest operations and the noncotton-growing ("overwinter") period between 1 September and 1 February. Using unbaited large capacity boll weevil traps placed at intervals extending outward from commercial field edges, boll weevils did not move in substantial numbers during harvest much beyond 30 m, primarily in the direction of prevailing winds. From traps placed in fallow cotton; citrus; lake edge; pasture; treeline; sorghum, Sorghum bicolor (L.) Moench, and sugarcane, Saccharum spp., habitats during the overwinter period, the most boll weevils were collected in the fallow cotton fields and adjacent treelines during the fall. However, the greatest abundances of boll weevils were found in citrus orchards in the spring, before newly planted cotton fields began to square. One of the three lake edges also harbored substantial populations in the spring. Egg development in females was not detected between November and April, but in cotton fields most females were gravid between May and August when cotton fruiting bodies were available. Mated females, as determined by discoloration of the spermatheca, made up 80-100% of the female population during November and December but declined to approximately 50% in February. The lower incidence of mating indicates a reduction in physical activity, regardless of overwinter habitat, until percentages increased in March and April after cotton fields had been planted and squares were forming.  相似文献   

9.
The feeding and oviposition activity of overwintering boll weevils, Anthonomus grandis grandis (Boheman), and seasonal fluctuations in development, survival, and reproduction of progeny of overwintering and first- and second-generation boll weevil females were determined in the laboratory at 27 degrees C, 65% RH, and a photoperiod of 12:12 (L:D) h. During the cotton-free period in the Lower Rio Grande Valley, female boll weevils without access to cotton resorb their unlaid eggs and enter reproductive diapause. However, when they were provided daily with greenhouse-grown cotton squares, commencement of oviposition began after 7, 15, or 20 d, depending on when they were captured. Females captured later in the winter fed longer before laying eggs than those captured in the early fall, suggesting that it may take females longer to terminate diapause the longer they have been dormant. The rate of feeding by females was significantly less during the winter months, and this may have affected the rate of diet-mediated termination of dormancy. Females of the first and second generations after the overwintering generation produced a significantly higher percentage of progeny surviving to adulthood and a higher proportion of these progeny were females. Offspring development time from overwintering female parents was significantly longer than that from first and second generations under the same laboratory conditions. The total number of lifetime eggs produced by females of the second generation during the cotton-growing season were approximately 9.9-fold higher than for overwintering females and 1.5-fold higher than for first-generation females. Life table calculations indicated that the population of second-generation boll weevils increased an average of 1.5-fold higher each generation than for females of the first generation and 22.6-fold higher than for overwintering females. Our data showed variation in boll weevil survival, development, and reproductive potential among the overwintering and first- and second-generation females, suggesting inherent seasonal fluctuations in these parameters.  相似文献   

10.
We characterized the level of risk of boll weevil, Anthonomus grandis grandis Boheman, reintroduction to an eradication zone posed by dispersal from cotton modules during and after transport to the gin. Mark-release-recapture experiments in August and September in Texas indicated that most weevils disperse rapidly from the module surface, temperature permitting, unless confined under a module tarp, where most died. Nevertheless, 1-5% of released weevils were recovered alive after 24 h on the side and top surfaces of modules, representing potential dispersants. Mortality of boll weevils caged on the top surface of a module was 95-100% after 1-4 d when maximum air temperatures were > or = 33 degrees C and 72-100% when minimum temperatures were -7 degrees C or lower, but a few survived even after experiencing a minimum daily temperature of -12 degrees C. Under warm (daily maximum temperatures > or = 25 degrees C) and cold (daily minimum temperatures < or = 0 degrees C) weather conditions, survival was higher under the tarp than on the open surface of the module (20 versus 7% and 42 versus 26%, respectively), but mortality was 100% in both locations when temperatures reached 34 degrees C. Our results indicate that although the threat to an eradication zone posed by boll weevil dispersal from an infested module is very low under most environmental conditions, it is probably greatest when 1) a module is constructed and transported from an infested zone during weather too cool for flight, followed by warm weather favorable for flight at the gin yard; or 2) such a module is transported immediately after construction in moderate-to-warm weather.  相似文献   

11.
Abstract: An evaluation of augmentative releases carried out at the Agreste site of the state of Paraiba, Brazil, provided significant insight into the ecology and potential impact of Catolaccus grandis (Burks) against the boll weevil, Anthonomus grandis Boheman in that cotton agroecosystem. The rate of increase in density of C. grandis was higher than the boll weevil. Catolaccus grandis showed ability to effectively search and reproduce within the release environment and revealed pronounced host and habitat preferences. Parasitism by C. grandis was largely confined to third instar weevil larvae, the majority of which (86.9%) occurred in abcised cotton squares. Catolaccus grandis inflicted significant mortality on third instar weevil larvae in the plot resulting in a significant level of suppression. The net effect was a higher boll weevil mortality in the release plot in comparison with the control. The use of augmentative releases of C. grandis has a very high potential for supplementing and enhancing available technology for suppressing boll weevil populations in the Agreste Paraiba.  相似文献   

12.
Flat and cylindrical adhesive boll weevil, Anthonomus grandis grandis Boheman (Coleoptera: Curculionidae), pheromone traps captured significantly more (P < or = 0.05) boll weevils than the Hercon (Hercon Environmental, Emigsville, PA) trap during the late cotton-growing season, and larger adhesive areas were associated with higher captures; a flat plywood board collected the most boll weevils because it had the largest surface area. The flat board trap, chosen for measuring large late-season adult boll weevil populations common to the Lower Rio Grande Valley of Texas in 2000 and 2001, collected more (P < or = 0.05) weevils when deployed in proximity to natural and cultivated perennial vegetation, and mean numbers of captured boll weevils were higher (P < or = 0.0001) on the leeward sides of the board traps than on the windward sides. The board trap had an estimated potential capacity of approximately 27,800 boll weevils, and the large capacity of the board trap allowed for more accurate measurements of large adult boll weevil populations than the more limited Hercon trap. Measurement of adult boll weevil numbers after the routine field operations of defoliation, harvest, shredding, and stalk-pulling, demonstrated that large populations of boll weevils persist in cotton fields even after the cotton crop has been destroyed. Increases (P < or = 0.05) in the percentage variation of trapped boll weevils relative to the numbers collected just before each field operation were observed after defoliation, harvest, shredding, and stalk-pulling, but the percentage variations followed a quadratic pattern with significant correlation (P < 0.0001; 0.59 < adjusted r2 < 0.73). Numbers of adult boll weevils caught on board traps deployed at 15.24-m intervals on windward and leeward edges of cotton fields suggested that boll weevil populations in flight after field disturbances might be affected by large-capacity trapping.  相似文献   

13.
Augmentative releases ofCatolaccus grandis(Burks) were conducted in the Lower Rio Grande Valley of Texas in an attempt to suppress infestations of boll weevil,Anthonomus grandisBoheman, occurring in stands of “fallow-season” cotton (i.e., fields in violation of the 1 September stalk destruction deadline mandated by Texas law). In each of five release sites monitored during the study period (October, 1994–March 1995), augmentative releases ofC. grandiswere accompanied by an appreciable increase in the incidence of parasitized boll weevils (primarily third-stage larvae and pupae infesting abcised cotton squares) within a relatively brief time period. The relatively high incidence of host mortality caused byC. grandisin each release site was largely indispensible (i.e., would not have occurred in the absence of the parasite) and served to destroy significant numbers of immature boll weevils that appear to have been predisposed to successfully overwinter. The potential role of parasite augmentation in the management of the overwintering boll weevil population in southern Texas is discussed.  相似文献   

14.
Feeding and oviposition preferences of the boll weevil, Anthonomus grandis grandis Boheman, for four different cotton square size classes in field conditions of the Lower Rio Grande Valley of Texas were studied during 2002 and 2003. Percentages of large (5.5-8-mm-diameter) squares used for oviposition and feeding were greater than pinhead or match-head squares. The preference for large squares as food and associated accelerated fecundity explain the substantial boll weevil population buildups that occur after large squares form. Medium-sized (3-5.5-mm-diameter) squares also were used but less than large squares. Feeding and oviposition on pinhead (1-2-mm-diameter) and match-head (2-3-mm-diameter) squares were negligible. Although planting date did not affect oviposition or feeding preferences for squares larger than pinhead and match-head sizes, the least amount of either damage to large squares was found in the earliest plantings during both years. This study indicates that pinhead and match-head squares, regardless of planting date, do not require pesticide applications to protect against boll weevil feeding and oviposition.  相似文献   

15.
Programs to eradicate the boll weevil, Anthonomus grandis grandis Boheman, from cotton, Gossypium hirsutum L., in the United States rely heavily on pheromone traps for monitoring weevil populations in both active and posteradication maintenance programs. Modifications to trapping protocols that increase trap effectiveness should contribute to this eradication effort. Between October 1996 and May 1997 and between September 1997 and April 1998, we compared trap effectiveness, indicated by the numbers of captured weevils, in relation to selected habitat types. Each study period was divided into fall, winter, and spring seasons. Traps were closely associated with seven habitat types, including four types with prominent erect vegetation (brush-lined irrigation canal, brush, sugarcane, and resaca or ox-bow lake) and three types with only low-growing or sparse erect vegetation (irrigation drainage canal, unimproved pasture, and fallow fields). Captures of male and female weevils were statistically similar regardless of season or trapping habitat. Although captures differed significantly among habitats, these differences varied among seasons. Trapping habitats with prominent vegetational features generally produced higher weekly captures of weevils than habitats lacking these features. Also, captures in traps associated with prominent vegetation indicated seasonal differences in weevil activity, with highest captures occurring during the fall. Traps associated with habitats lacking prominent vegetation did not statistically demonstrate seasonal differences. Our results indicate that immediate trap surroundings strongly influence the effectiveness of the boll weevil pheromone trap. These results also suggest that effectiveness of current trapping programs may be improved through purposeful association of traps with selected vegetational features.  相似文献   

16.
Effects of soil condition and burial on boll weevil, Anthonomus grandis grandis Boheman, mortality in fallen cotton, Gossypium hirsutum L., fruit were assessed in this study. During hot weather immediately after summer harvest operations in the Lower Rio Grande Valley of Texas, burial of infested fruit in conventionally tilled field plots permitted significantly greater survival of weevils than in no-tillage plots. Burial of infested squares protected developing weevils from heat and desiccation that cause high mortality on the soil surface during and after harvest in midsummer and late summer. A laboratory assay showed that burial of infested squares resulted in significantly greater weevil mortality in wet than in dry sandy or clay soils. Significantly fewer weevils rose to the soil surface after burial of infested bolls during winter compared with bolls set on the soil surface, a likely result of wetting by winter rainfall. A combination of leaving infested fruit exposed to heat before the onset of cooler winter temperatures and burial by tillage when temperatures begin to cool might be an important tactic for reducing populations of boll weevils that overwinter in cotton fields.  相似文献   

17.
Abscised cotton, Gossypium hirsutum L., fruit in field plots planted at different times were examined to assess adult boll weevil, Anthonomus grandis grandis Boheman (Coleoptera: Curculionidae), use of squares and bolls during 2002 and 2003 in the Lower Rio Grande Valley of Texas. Although boll abscission is not necessarily related to infestation, generally more bolls abscised than squares and abundances of fallen bolls were not related to the planting date treatments. During 2003, fallen squares were most abundant in the late-planted treatment. Although large squares (5.5-8-mm-diameter) on the plant are preferred for boll weevil oviposition, diameter of abscised squares is not a reliable measurement because of shrinkage resulting from desiccation and larval feeding. Fallen feeding-punctured squares and bolls were most abundant in late plantings but differences between fallen feeding-punctured squares versus fallen feeding-punctured bolls were found in only one treatment in 2003. During the same year, fallen oviposition-punctured squares were more numerous in the late-planted treatment than in the earlier treatments. Treatment effects were not found on numbers of oviposition-punctured bolls, but fallen oviposition-punctured squares were more common than bolls in the late-planted treatment compared with earlier treatments each year. Dead weevil eggs, larvae, and pupae inside fallen fruit were few and planting date treatment effects were not detected. Living third instars and pupae were more abundant in fallen squares of the late-planted treatment than in the earlier treatments and bolls of all three treatments. This study shows that fallen squares in late-planted cotton contribute more to adult boll weevil populations than bolls, or squares of earlier plantings.  相似文献   

18.
It is commonly believed that colonization of early-season cotton, Gossypium hirsutum L., by overwintered boll weevils, Anthonomus grandis grandis Boheman, is concentrated on field margins. However, supporting experimental evidence is not available. In 1999 and 2000, we examined colonization patterns of overwintered boll weevils in Central Texas cotton on the bases of adult collections by a pneumatic sampler and hand collections of abscised infested squares. Samples were taken from sites arranged in a grid that extended inward >70 m from the field margin. Adults were collected from shortly after seedling emergence until the flowering stage, and infested squares were collected during the one-third grown square stage. Despite numerical trends, the numbers of adult weevils collected were not significantly different between years or sexes, or among plant phenological stages. Field-to-field variation among collections was considerable and likely prevented detection of differences among these factors. Spatial patterns represented by adult weevil and infested square collections were examined by logistic regressions fitted to the respective probabilities of weevil detection at each designated sample site. Although we observed trends for slightly decreased probability of weevil detection with increased distance from the field margin, these trends were too weak to be demonstrated statistically. Our results indicate the boll weevil does not consistently exhibit a strong edge-oriented colonization pattern, and that management tactics that are predicated on these patterns, such as border sprays, should be used with caution.  相似文献   

19.
There is concern that cotton gins located in boll weevil, Anthonomus grandis grandis Boheman, eradication zones serving customers in adjacent infested zones may serve as a site for boll weevil reintroductions if weevils are transported alive inside cotton modules. We surveyed fields in three distinct areas of Texas and found that weevils can be present in large numbers in cotton fields that have been defoliated and desiccated in preparation for harvest, both as free adults and as immatures inside unopened bolls. Harvested cotton taken from module builders indicated that approximately = 100-3700 adult boll weevils were packed inside modules constructed at the sampled fields. Marked weevils were forced through a laboratory field cleaner (bur extractor) commonly mounted on stripper-harvesters, and 14% were recovered alive in the seed cotton fraction and lived at least to 24 h. Survival of weevils placed inside modules declined over time up to 7 d, but the magnitude of the decline varied with experimental conditions. In one experiment, 91% of the weevils survived to 7 d, whereas under harsher environmental conditions, only 11% survived that long. Together, our results indicate that when cotton is harvested in an infested area, boll weevils likely will be packed alive into cotton modules, and many will still be alive by the time the module is fed into the gin, at least up to 7 d after the module's construction.  相似文献   

20.
Cotton (Gossypium hirsutum L.) is an important agricultural commodity, which is attacked by several pests such as the cotton boll weevil Anthonomus grandis. Adult A. grandis feed on fruits and leaf petioles, reducing drastically the crop production. The predominance of boll weevil digestive serine proteinases has motivated inhibitor screenings in order to discover new ones with the capability to reduce the digestion process. The present study describes a novel proteinase inhibitor from chickpea seeds (Cicer arietinum L.) and its effects against A. grandis. This inhibitor, named CaTI, was purified by using affinity Red-Sepharose Cl-6B chromatography, followed by reversed-phase HPLC (Vydac C18-TP). SDS-PAGE and MALDI-TOF analyses, showed a unique monomeric protein with a mass of 12,877 Da. Purified CaTI showed significant inhibitory activity against larval cotton boll weevil serine proteinases (78%) and against bovine pancreatic trypsin (73%), when analyzed by fluorimetric assays. Although the molecular mass of CaTI corresponded to alpha-amylase/trypsin bifunctional inhibitors masses, no inhibitory activity against insect and mammalian alpha-amylases was observed. In order to observe CaTI in vivo effects, an inhibitor rich fraction was added to an artificial diet at different concentrations. At 1.5% (w/w), CaTI caused severe development delay, several deformities and a mortality rate of approximately 45%. These results suggested that CaTI could be useful in the production of transgenic cotton plants with enhanced resistance toward cotton boll weevil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号