首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
tRNA''s associated with the 70S RNA of avian myeloblastosis virus.   总被引:1,自引:1,他引:0       下载免费PDF全文
The distribtuion of various amino acid tRNA's in the 4S RNA components of avian myeloblastosis virus (AMV) and in 4S RNA prepared from chicken cmbryo cells, chicken myeloblasts, and chicken livers was determined. This was done by aminoacylating the 4S RNA samples with a mixture of 17 radioactive amino acids and subsequently identifying the tRNA-accepted amino acids on an amino acid analyzer after deacylation. In embryo cells, myeloblasts, and liver, tRNA's accepting all 1m amino acids were demonstrated. "Free" AMV 4S RNA was characterized by very low quantities of glutamate, valine, and tyrosine tRNA's. RNAs accepting all 17 amino acids, with the exception of tyrosine, were shown to be present in the "70S-associated" 4S RNA which dissociates at 60 C. The bulk of the 70S-associated 4S RNA was dissociated at 60 C at low ionic strength with a concomitant conversion of 70S RNA to 35S RNA. The residual associated 4S RNA was dissociated by further heating of the 35S RNA to 80 C; tryptophan tRNA accounted for greater than 90% of the total amino acid accepting activity in this fraction. The results support other studies in suggesting that tryptophan tRNA may serve as a primer for DNA synthesis in AMV, as has been shown in Rous sarcoma virus.  相似文献   

3.
The extent of binding of various RNA species to the three forms of avian sarcoma virus B77 RNA-dependent DNA polymerase was determined using a sensitive nitrocellulose filter binding technique which was capable of detecting binding reactions with association constants as low as 3 X 10(6) liters X mole-1. All three enzyme forms, alphabeta, beta2, and alpha, bound to all single-stranded RNA species that were tested, including nonviral RNAs. 70 S viral RNA exhibited the highest association constant (about 10(11) liters X mole-1), and a population of virus-derived tRNA molecules from which tRNATrp had been removed, the lowest (about 3000 times lower). The affinity for other RNAs was roughly proportional to their size. The affinity of RNAs for the alphabeta enzyme form always exceeded that for the two others by a factor that depended on the particular RNA, never exceeded 6 and was sometimes as low as 1.2. The association constant of the alphabeta enzyme form with viral 70 S RNA was about 15-fold higher than that with viral 35 S RNA. 35 S RNA annealed to tRNATrp had an association constant that was only 2.5 times higher than that of 35 S RNA alone. This finding suggests that the tertiary structure of 70 S RNA plays a significant role in its affinity for B77 DNA polymerase.  相似文献   

4.
5.
The 70S RNA of Rous sarcoma virus contains 4S RNAs which serve as primers for the initiation of DNA synthesis in vitro by the RNA-directed DNA polymerase of the virus. We purified these primers in three different ways-by isolation of the covalent complex between primer and nascent DNA, by differential melting of the 70S RNA, and by two-dimensional electrophoresis in polyacrylamide gels. The 4S RNAs purified by these procedures were homogeneous and possessed very similar if not identical nucleotide compositions and sequences. The RNAs were approximately 75 nucleotides long, had pG at the 5' terminus and CpCpA(OH) at the 3' terminus, and contained a number of minor nucleotides characteristic of tRNA. In contrast to most tRNA's, the primer lacked rTp and contained Gp (Psip, Psip, Cp) Gp (possibly in place of the characteristic sequence GprTpPsipCpGp). At least 50% of the 4S primers available on 70S RNA were utilized in a standard polymerase reaction in vitro.  相似文献   

6.
7.
8.
9.
10.
11.
The synthesis of viral ribonucleic acid (RNA) was detected within 2 hr after infection with LSc poliovirus at 35 C. This RNA eluted as a single peak with 0.9 m NaCl on methylated albumin celite columns, was sensitive to ribonuclease, precipitated in the presence of 2 m LiCl, and had an S(20) value at 34 +/- 2 in linear sucrose gradients. When cells were infected at 39 to 40 C, there was also early synthesis of RNA. However, 2 hr after infection this synthesis was drastically inhibited. The absence of net RNA synthesis at 39 to 40 C during the late stages of infection was not caused by rapid degradation of newly formed RNA, since the RNA produced between 1 and 2 hr at 39 to 40 C was still present 3.5 hr after infection. There was a 3 log(10) inhibition in the production of infectious virus when p-fluorophenylalanine was present in the medium at a concentration of 25 mug/ml. This concentration of analogue had little effect upon the production of viral polymerase and viral RNA. Virus grown in the presence of analogue at a concentration of 10 mug/ml exhibited increased heat sensitivity compared to control virus. However, viral polymerase exhibited no change in sensitivity to heat or manganese when cells were exposed to 25 mug of p-fluorophenylalanine per ml during infection. p-Fluorophenylalanine had a relatively selective effect on viral capsid protein but did not reverse the inhibition of synthesis of viral RNA at 39 to 40 C.  相似文献   

12.
DNA synthesis by the RNA-directed DNA polymerase of Rous sarcoma virus with 70 S viral RNA as template initiates by the covalent attachment of dAMP to the 3′ terminal adenosine of an RNA molecule. Initiation continues throughout the course of a 90-minute enzymatic reaction, and chain propagation occurs on most if not all of the dAMP residues attached to primer RNA. The nature of the primer molecules was established in two ways. First, the RNA was tagged by attachment of radioactive mono- and oligodeoxynucleotides. Second, primers were isolated directly from their covalent complexes with nascent DNA. The results of both procedures indicate that DNA synthesis initiates on the 3′ termini of 4 S RNA molecules hydrogen-bonded to 70 S RNA. Purified primer RNA has a nucleotide composition (G + C = 64%) different from that (G + C = 60%) of other 4 S RNAs found hydrogen-bonded to the 70 S RNA of Rous sarcoma virus.  相似文献   

13.
The copper complex of the antituberculous drug, insonicotinic acid hydrazide (INH), inhibits the RNA-dependent DNA polymerase of Rous sarcoma virus and inactivates its ability to malignantly transform chick embryo cells. The INH-copper complex binds to the 70S genome RNA of Rous sarcoma virus (RSV), which may account for its ability to inhibit the RNA-dependent DNA polymerase. The complex binds RNA more effectively than DNA in contrast to M-IBT-copper complexes, which bind both types of nucleic acids equally. The homopolymers, poly rA and poly rU, are bound by the INH-copper complex to a greater extent than poly rC. Isonicotinic acid hydrazide alone and CuSO4 alone bind neither DNA, RNA, poly (rA), poly (rU), nor poly (rC). However, CuSO4 alone binds poly (rI); INH alone does not. In addition to viral DNA synthesis, chick-embryo cell DNA synthesis is inhibited by the INH-copper complex. The extent of inhibition of cellular DNA synthesis is greater than that of cellular RNA and protein synthesis. No selective inhibition of transformation in cells previously infected with Rous sarcoma virus is observed.  相似文献   

14.
15.
16.
17.
The sequence complexity of the 60-70S RNA complex from Moloney murine leukemia virus (M-MuLV) was determined by measuring the annealing rate of radioactively labeled virus-specific DNA with M-MuLV 60-70S RNA in conditions of vast RNA excess. The M-MuLV RNA annealing rate, characterized by the quantity C(r)t((1/2)), was compared with the C(r)t((1/2)) values for annealing of poliovirus 35S RNA (2.6 x 10(6) molecular weight) with poliovirus-specific DNA and Sindbis virus 42S RNA (4.3 x 10(6) molecular weight) with Sindbis-specific DNA. M-MuLV-specific DNA was prepared in vitro by the endogenous DNA polymerase reaction of M-MuLV virions, and poliovirus and Sindbis virus DNAs were prepared by incubation of viral RNA and DNA polymerase purified from avian myeloblastosis virus and an oligo deoxynucleotide primer. The poliovirus and Sindbis virus DNAs were sedimented through alkaline sucrose gradients, and those portions of the DNA with sizes similar to the M-MuLV DNA were selected out for the annealing measurements. M-MuLV was cloned on NIH-3T3 cells because it appeared possible that the standard source of M-MuLV for these experiments was a mixture of viruses. The annealing measurements indicated a sequence complexity of approximately 9 x 10(6) daltons for the cloned M-MuLV 60-70S RNA when standardized to poliovirus and Sindbis virus RNAs. This value supports the hypothesis that each of the 35S RNA subunits of M-MuLV 60-70S RNA has a different base sequence.  相似文献   

18.
19.
DNA polymerases purified by the same procedure from four mammalian RNA viruses, simian sarcoma virus type 1, gibbon ape lymphoma virus, Mason-Pfizer monkey virus, and Rauscher murine leukemia virus are capable of transcribing heteropolymeric regions of viral 70S RNA without any other primer. In this reconstituted system the enzymes from simian sarcoma virus type 1, Mason-Pfizer monkey virus, and Rauscher murine leukemia virus transcribe viral 70S RNA almost as efficiently as the DNA polymerase from the avian myeloblastosis virus, but gibbon ape lymphoma virus DNA polymerase is approximately three-to fivefold less efficient. Although there is a substantial difference among the sizes of these DNA polymerases (160,000 daltons for the avian myeloblastosis virus enzyme, 110,000 daltons for the Mason-Pfizer monkey virus enzyme, and 70,000 daltons for the mammalian type C viral polymerases), the ability to transcribe viral 70S RNA is a characteristic common to these enzymes.  相似文献   

20.
Alphavirus replication complexes that are located in the mitochondrial fraction of infected cells which pellets at 15,000 x g (P15 fraction) were used for the in vitro synthesis of viral 49S genome RNA, subgenomic 26S mRNA, and replicative intermediates (RIs). Comparison of the polymerase activity in P15 fractions from Sindbis virus (SIN)- and Semliki Forest virus (SFV)-infected cells indicated that both had similar kinetics of viral RNA synthesis in vitro but the SFV fraction was twice as active and produced more labeled RIs than SIN. When assayed in vitro under conditions of high specific activity, which limits incorporation into RIs, at least 70% of the polymerase activity was recovered after detergent treatment. Treatment with Triton X-100 or with Triton X-100 plus deoxycholate (DOC) solubilized some prelabeled SFV RIs but little if any SFV or SIN RNA polymerase activity from large structures that also contained cytoskeletal components. Treatment with concentrations of DOC greater than 0.25% or with 1% Triton X-100-0.5% DOC in the presence of 0.5 M NaCl released the polymerase activity in a soluble form, i.e., it no longer pelleted at 15,000 x g. The DOC-solubilized replication complexes, identified by their polymerase activity in vitro and by the presence of prelabeled RI RNA, had a density of 1.25 g/ml, were 20S to 100S in size, and contained viral nsP1, nsP2, phosphorylated nsP3, nsP4, and possibly nsP34 proteins. Immunoprecipitation of the solubilized structures indicated that the nonstructural proteins were complexed together and that a presumed cellular protein of approximately 120 kDa may be part of the complex. Antibodies specific for nsP3, and to a lesser extent antibodies to nsP1, precipitated native replication complexes that retained prelabeled RIs and were active in vitro in viral RNA synthesis. Thus, antibodies to nsP3 bound but did not disrupt or inhibit the polymerase activity of replication complexes in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号