首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
Seeds (caryopses) of North American wild rice (Zizania palustrisvar. interior), a temperate aquatic grass, have been thoughtto require storage at low temperatures and high moisture contentsto preserve viability. The seeds are also deeply dormant atmaturity and require up to 6 months of stratification to breakdormancy. We report here that wild rice seeds can retain viabilityat moisture contents 30% (f. wt. basis) for up to 6 monthsat temperatures as high as 30 °C, and for at least 1 yearat temperatures below 20 °C. Dormancy is not broken at temperaturesabove 10 °C, but subsequent stratification requirementsare unaffected by prior warm storage. Cold storage is thereforenot required to maintain viability of wild rice seeds, but isnecessary to break dormancy. Hydrated wild rice seeds can befrozen to –10 °C without damage, but dormancy is notlost at subfreezing temperatures. These results provide newoptions for long-term storage of wild rice seeds. Zizania palustris var. interior (Fassett) Dore, wild rice, seed, germination, dormancy, storage, moisture content  相似文献   

2.
Serial germination tests were carried out on dormant seeds ofsix rice varieties (four varieties of Oryza sativa L. and twovarieties of O. glaberrima Steud.) stored at several differentconstant temperatures within the range 27° C to 57°C. Probit analyses of the results were carried out to determmethe mean dormancy period for each variety at each temperature.Regression lines fitted to these data showed that there is adirect negative relationship between storage temperature andlog mean dormancy period over the range 27° C to 47°C, thus confirming a previous result obtained on a single variety.At 7° C there were indications of a slight departure fromthis relationship in that the mean dormancy periods at thistemperature were slightly longer than would have been predictedby extrapolation of the regressions calculated from the resultsobtained at lower temperatures. In all cases where the resultswere unambiguous (i.e. in all the sativa varieties and one ofthe glaberrima varieties) a constant Q10 of 3.13 was shown forthe rate of loss of dormancy over the range of storage temperaturesfrom 27° C to 47° C. In the remaining glaberrima variety,where the results were less reliable, a Q10 of 2.54 was found. Germination tests on all varieties were carried out at 32°C, but in the case of one sativa variety germination tests forall storage treatments were also duplicated at 27° C. Thisinvestigation showed that, in contrast to the effect of storagetemperature, the higher temperature during the germination testconsistently resulted in a lower percentage germination. Inaddition the results demonstrated that there is no interactionbetween storage temperature and germination temperature: consequentlythe storage-temperature coefficient has the same value irrespectiveof germination temperature. Some theoretical implications ofthe results are discussed.  相似文献   

3.
Effects of dehydration, storage temperature and humidificationon germination of Salix alba andS. matsudana seeds were studied.Newly released seeds showed 100% germination before and afterdehydration to 11–12% moisture content. Germination ofthe high vigour lot (100% initial normal germination) was notaffected by dehydration to 6.7% moisture content but germinationdecreased with further dehydration to 4.3%. The lower vigourlot (75% initial normal germination) was more susceptible todehydration and germination decreased following dehydrationto 6.7% moisture content. Dry seeds of both species survivedimmersion in liquid nitrogen without loss of viability. Thegermination of seeds stored with 9% moisture content decreasedto 35–40% in 5 months at -20°C or in 2 months at 5°C.However, at 25°C seeds entirely lost viability within 2weeks. Seeds showed improved performance when stored at -70°C> - 20°C > 5°C > 25°C and tolerated dehydrationto a moisture content in equilibrium with 15% relative humidity.Results suggest that they are orthodox in storage behaviouralthough they are short-lived. Humidification treatment of lowvigour seed lots resulted in a remarkable increase in germinationpercentage. Copyright 2000 Annals of Botany Company Salix alba, Salix matsudana, willow, seed storage behaviour, dehydration, humidification, cryopreservation  相似文献   

4.
Techniques are described for the culture of developing barley(Hordeum vulgare L.) caryopses. Over a 7 d period in culturethe dry weights and the amounts of starch and protein increasedby at least twofold. Growth was sustained for at least 20 d.The effects of glutamine and cysteine on the amount and compositionof the hordein storage proteins were also studied. Glutaminestimulated total hordein accumulation but caused a disproportionateincrease in the amount of the S-poor ‘C’ hordeinswhen supplied at 100 mol m–3. Addition of cysteine at1·0 mol m–3 did not increase the amount of Srich‘B’ hordeins. The results suggest that althoughisolated caryopses are able to take up sucrose and glutamineand convert them to starch and protein there is some limitationin their ability to convert externally supplied cysteine intoproteins. Key words: Hordeum vulgare L., Caryopses, Glutamine, Cysteine, Storage proteins  相似文献   

5.
Leymus arenarius is used to stabilize the extensive areas oferoded volcanic sand in Iceland, both inland and on the coast.It has been reported previously to produce seeds of generallylow viability. We investigated the potential for seed dormancyand the responses of germination to temperature, light and salinity,as part of a re-assessment aimed at improving reclamation procedures. Contrary to previous reports, high rates of germination couldbe obtained under certain conditions. All caryopses were soakedin water (24 h) and stratified for 2 weeks (5 °C) beforethe subsequent germination tests. Constant temperatures or exposureto light resulted in very poor germination. Close to 100% germinationcould be obtained within 2 weeks in continuous darkness, underalternating temperatures with an amplitude of 10-20 °C ona 12 h cycle; high day temperatures appear to be important.Diurnal fluctuations in temperature of this order occurred underaverage weather conditions in the black, volcanic sands in Icelandduring the growing season (May-Sep.). The dark requirement isinterpreted as a selective response to the adverse conditionsfor establishment at the surface of the sand; the alternatingtemperature requirement may be a response to ensure dormancyunder deep burial with accreting sand, although it could havea role in gap-sensing under established canopies. Scarification,surface sterilization and treatment with n -butanol or KNO3were all generally ineffective in promoting germination. Nearlyall caryopses that did not germinate, in all treatments, remainedviable. Caryopses of coastal populations of Leymus arenarius showedsignificantly higher total germination and more rapid germinationin 100 mmol l-1 and 300 mmol l-1 NaCl solutions than inlandpopulations. The inhibition of germination by salinity was anosmotically enforced dormancy effect rather than a lethal, toxicone; caryopses that had not germinated in saline solution generallywere able to germinate subsequently, when transferred to non-salineconditions.Copyright 1994, 1999 Academic Press Germination, Leymus arenarius (lymegrass), Triticeae, survival analysis, fluctuating temperature, sand stabilization, salinity tolerance, Iceland  相似文献   

6.
Germination Strategy of a Woodland Grass: Milium effusum L.   总被引:1,自引:0,他引:1  
THOMPSON  P. A. 《Annals of botany》1980,46(5):593-602
Caryopses of Millum effusum L. were collected from wild plantsin south-east England Laboratory tests established that germination immediately followingharvest occurred relatively slowly at a narrow range of temperatures;optima occurred at 16 °C in the first weeks of experimentsand subsequently at 21 °C, at which the highest proportionof germination occurred Levels of germination increased aftercaryopses had been stored at 25 °C over anhydrous calciumchloride, when tests were done at fluctuating temperatures;or after chilling treatments at 2 °C, or high temperature(26 and 31 °C) conditioning treatments of imbibed seed Freshlyharvested caryopses displayed an inverse relationship betweentemperature and time taken to germinate resulting from variationsin the speed at which after-ripening processes were completedat different temperatures These responses were used to construct a model representativeof all populations of M effusum throughout its natural range.The results suggested that a coherent and plausible interpretationof the responses could be arrived at by suggesting that adaptationto local conditions depends largely on phenotypic plasticityarising from interactions between the germination characterand a variety of differing climatic conditions Millum effusum L wood millet, germination, temperature response  相似文献   

7.
Secondary dormancy in Avena fatua: Effect of temperature and after-ripening   总被引:1,自引:0,他引:1  
To evaluate the effect of after-ripening on secondary dormancy induction in pure genetic lines of Avena fatua L., seed samples were periodically removed from standard conditions of storage and the caryopses then subjected to anoxia. Anoxia did not induce secondary dormancy in SH430, a line characterized by no primary dormancy at harvest maturity; secondary dormancy was induced in caryopses of other lines that had been after-ripened to over-come primary dormancy ranging in duration from a few days (CS40, CS166) to several months (AN51, AN127). Germination response to low GA3 concentrations indicated that secondary dormancy in CS40 and CS166 was less intense than in AN51 and AN127. The longer the period of dry after-ripening prior to anoxia treatment, the lower the intensity of secondary dormancy induced. After a period of dry after-ripening, which was characteristic for each line, anoxia became an ineffective dormancy-inducing treatment. Caryopses selected for their response to dormancy induction by anoxia were subjected to temperatures from 5 to 35°C to investigate the effect of low (5 to 18°C) and high (20 to 35°C) temperatures on both thermo- and secondary dormancy induction. SH430 was not responsive to any treatment, while CS40, CS166 and AN51 were induced into a thermo-dormancy at temperatures above 20°C and CS166 and AN51 were induced into secondary dormancy by anoxia at temperatures from 5 to 35°C. The effect of anoxia on secondary dormancy induction in a range of pure genetic lines is discussed with reference to primary dormancy, after-ripening and temperature.  相似文献   

8.
The effects of storage conditions on the germination of developingmuskmelon (Cucumis melo L.) seeds were tested to determine whetherafter-ripening is required to obtain maximum seed vigour. Seedswere harvested at 5 d intervals from 35 (immature) to 60 (fullymature) days after anthesis (DAA), washed, dried, and storedat water contents of 3·3 to 19% (dry weight basis) at6, 20, or 30°C for up to one year. Germination was testedin water and in polyethylene glycol 8000 solutions ( –0·2to –1·2 MPa osmotic potential) at 15, 20, 25 or30°C. Germination percentages and rates (inverse of meantimes to radicle emergence) were compared to those of newlyharvested, washed and dried seeds. For 40 and 60 DAA seeds,one year of storage at 20°C and water contents <6·5%significantly increased germination percentages and rates at20°C, but had little effect on germination at 25 and 30°C.Storage reduced the estimated base temperature (Tb) and meanbase water potential (b) for germination of both 40 and 60 DAAseeds by approximately 5°C and 0·3 MPa, respectively.Immature 35 DAA seeds showed the greatest benefit from storageat 3 to 5% water content and 30°C, as germination percentagesand rates increased at all water potentials (). Storage underthese same conditions had little effect on the germination ofmature seeds in water, but increased germination percentagesand rates at reduced 's. Accelerated ageing for one month at30°C and water contents from 15 to 19° increased germinationrates and percentages of mature seeds at reduced 's, but longerdurations resulted in sharp declines in both parameters. Immatureseeds lost viability within one month under accelerated ageingconditions. An after-ripening period is required at all stagesof muskmelon seed development to expand the temperature andwater potential ranges allowing germination and to achieve maximumgerminability and vigour. Post-harvest dormancy is deepest atthe point of maximum seed dry weight accumulation and declinesthereafter, both in situ within the ripening fruit and duringdry storage. Key words: Muskmelon, Cucumis melo L., seed, development, dormancy, germination, vigour, after-ripening  相似文献   

9.
Knowledge on seed dormancy is crucial for the understanding of plant population dynamics, as it controls seed germination and seed bank formation. Dormant seeds have high potential to establish in soil seed banks, but such information within Cactaceae is scarce, although it is essential for conservation programs. The aim of this study was to determine if seeds of Ferocactus peninsulae showed any kind of dormancy and to test their germination capacity after storage. This was assessed with 15 seed sowing experiments done over 4 years with seeds stored under room conditions (20 ± 2°C). We demonstrated the existence of physiological dormancy in F. peninsulae seeds that is broken with an after-ripening period. Germination was low during the first 3 months of storage (d = 0.206) but increased after 10 months of storage (d = 0.654), and seeds maintained their viability at 48 months (d = 0.707). Also, their speed of germination increased with storage time. Ferocactus peninsulae seeds are positively photoblastic, and the requirement for light for germination persisted over all experiments. The results provide crucial information for propagation and conservation research and may allow us to infer that F. peninsulae seeds are able to form a persistent soil seed bank, as they maintained their viability after dormancy is released.  相似文献   

10.
Stratification of Acer platanoides fruits at 4 °C led toan accumulation of RNA in the embryo axis and to breakage ofseed dormancy. The accumulated RNA was mainly rRNA. Storageof fruits at 17 °C led neither to an accumulation of RNAnor to breakage of dormancy. The proportion of embryo axis mRNA,as measured by poly(A) content, decreased during both fruitstorage and stratification, although levels of poly(A) wereconsistently lower in embryo axes from stored seeds. Isolatedembryos from both stored and stratified fruits were capableof incorporating [3H]uridine into embryo axis RNA. When assayedat 17–20 °C, however, this incorporation was significantlylower in embryos of stored fruits. The distribution of radioactivitybetween the different RNA species was similar in both storedand statified seeds. Acer platanoides, Norway Maple, dormancy, fruit, seed, ribonucleic acid, stratification, nucleic acid metabolism  相似文献   

11.
PETRUZZELLI  L. 《Annals of botany》1986,58(2):259-265
Wheat seeds (Triticum durum) were stored under both hermeticand aerobic conditions at 25 °C with moisture contents from15 to 33 per cent. Under hermetic storage, seeds lost viabilitymore rapidly the higher the moisture content, whereas in aerobicstorage, seed longevity was enhanced as the moisture contentwas increased from 24 to 31 per cent, and over this range ofmoisture content the seeds survived longer under aerobic thanhermetic storage. On the contrary, an apparent reversal of thistrend occurred when moisture content was increased above 31per cent. The possibility that the changes in longevity occurring at highermoisture contents might be due to the activation of seed metabolismwas supported by the enhanced incorporation of [3H]leucine intoTCA insoluble material (indicating increased protein synthesis)and the reduced leakage of glucose (indicating increased membranerestitution) when seeds were allowed to achieve higher moisturecontents during the prehydration period. The highest level ofseed activation was found in seeds preconditioned to about 31per cent moisture content. Moreover, these seeds, when subsequentlystored under aerobic conditions, maintained a higher rate ofprotein synthesis and lower membrane permeability during thestorage period than seeds at lower water contents. It is suggested that seeds stored at a sufficient hydrationlevel in the presence of oxygen can sustain an effective metabolismduring extended storage, thus permitting the repair of cellulardamage. However, it might be possible that at about 33 per centmoisture content seed could suffer from an excessive advancementof metabolism. Triticum durum, seed storage, effects of high moisture content and oxygen  相似文献   

12.
Tomato seeds with a moisture content of 16.4% were stored hermeticallyat one of five constant temperatures (10, 20, 30, 40, 50 °C)or in one of nine alternating temperature (24 h/24 h) regimes(10/30, 10/40, 10/50, 20/30, 20/40, 20/50, 30/40, 30/50, 40/50°C) for up to 224 d. In each regime, seed survival conformedto cumulative negative normal distributions and all 14 survivalcurves could be constrained to a common origin. Estimates ofthe constants CHand CQof the viability equation determined atconstant temperatures were 0.0346 (s.e. 0.0058) and 0.000401(s.e. 0.000096), respectively. The effective temperature forseed survival of each alternating temperature regime was alwaysmuch higher than the mean. Tomato seeds were also stored hermeticallyat 15.9% moisture content at 40 °C for 0, 7, 14, 21 or 28d before transfer to 50 °C. This investigation showed thatthe standard deviation of the subsequent survival curves at50 °C was unaffected by the duration of previous storageat 40 °C. The results of both investigations were consistentwith the hypothesis that loss in probit viability is solelya function of the current storage environment, with no effectof change in temperature per se. The application of the viabilityequation to seed survival in fluctuating environments was validatedagainst independent observations for rice in uncontrolled storageconditions. Copyright 2001 Annals of Botany Company Temperature, seed storage, longevity, moisture content, viability equation, tomato, rice  相似文献   

13.
Changes in germination, seedling growth, respiration, response to applied gibberellic acid, and glucose-U-14C utilization were investigated in partially dormant wheat (Triticum aestivum L., Pa 151 × 107) seeds which were stored under various conditions for periods up to 1 year. Only seeds stored at −20 C and 12.4% moisture maintained partial dormancy, which was overcome by germinating in 10−3m gibberellic acid. Germination and seedling growth of seeds stored at 25 C and 15.1% moisture declined within 12 weeks and the percentage of seeds infected with storage fungi increased. Gibberellic acid produced faster growing seedlings, particularly from those seeds with partial dormancy, but did not overcome growth reduction which was caused by deterioration. Seeds kept under laboratory conditions (B), 25 C and 12.1% moisture (C), and 25 C and 15.1% moisture (D) for 12 weeks utilized 35, 55, and 80% less glucose, respectively, than those stored at −20 C and 12.4% moisture (A). Seeds stored under B and C consistently had higher germination, growth, and respiratory rates than seeds from A and D. The respiratory rate declined as deterioration advanced under D. Respiratory quotients ranged from 1.0 for seeds stored under A to 1.6 for seeds stored under D.  相似文献   

14.
Seeds of Hyptis suaveolens require long illumination periodsto promote full germination, both light and dark germinationbeing controlled by the phytochrome system. Germination in thisspecies is inhibited both by relatively low (up to 20°C)and high temperatures (45°C). Experiments in which seedswere transferred after different periods from sub-optimal orsupra-optimal temperatures to a favourable one, suggest thatboth high and low temperature inhibition may be explained onthe basis of phytochrome action. Thus, a temperature of 20°Cinduces dark dormancy due, probably, to dark reversion of phytochrometo the inactive form; whereas, at 45°C the dominant processseems to be phytochrome decay. No phytochrome loss has beenobserved at 10°C. If, however, phytochrome levels are reducedby a particular treatment, no irreversible alteration is produced;seeds simply require longer illumination periods under diesecircumstances. A low initial concentration of phytochrome couldaccount for the requirement of long illumination periods. Other factors affecting germination in this species, such asalternating temperatures, gibberellic acid and time of storage,are discussed. 1 Present address: Instituto Venezolano de Investigaciones Cientificas,Apartado 1827, Caracas, Venezuela. (Received January 21, 1971; )  相似文献   

15.
Taro seeds maintained under c. 40 per cent r.h. and 22 ±2°C retained higher viability than those stored under otherexperimental conditions. Germination was more than 60 per centon a number of defined and undefined media. Rates above 80 percent were obtained on a greenhouse potting mix or its extractor distilled water with filter paper as a support. When maintainedin the dark, seedlings cultured in vitro on one of several definedmedia etiolated and produced atypical, elongated internodeswhich resemble those of vining aroids. Plantlets which developedat their nodes were removed and raised to maturity. Colocasia esculenta (L.) Schott, taro, seed storage, seed germination, seedling proliferation  相似文献   

16.
Seeds of barley (Hordeum vulgare L.) and mung bean (Vigna radiata(L.) Wilczek), with orthodox seed storage behaviour, were imbibedfor between 8 h and 96 h at 15 °C and 25 °C, respectively,while barley seeds were also maintained in moist aerated storageat 15 °C for 14 d. These seeds and seedlings, together withcontrols, were then dried to various moisture contents between3% and 16% (wet basis) and hermetically stored for six monthsat —20°C, 0°C or 15°C. In both species, neitherdesiccation nor subsequent hermetic storage of the control lotsresulted in loss in viability. The results for barley seedsimbibed for 24 h were similar to the control, but desiccationsensitivity increased progressively with duration of imbibitionbeyond 24 h in barley or 8 h in mung bean; these treatmentsalso reduced the longevity of the surviving seeds in air-drystorage. Loss in viability in barley imbibed for 48 h was mostrapid at the two extreme seed storage moisture contents of 3·6%and 14·3%, and in both these cases was more rapid at15 °C than at cooler temperatures. Similarly, for mung beanimbibed for 8 h, loss in viability was most rapid at the lowest(4·3%) moisture content, but in this case it was morerapid at –20 °C than at warmer temperatures. Thus,these results for the storage of previously imbibed orthodoxseeds conform with the main features of intermediate seed storagebehaviour Key words: Barley, Hordeum vulgare L., mung bean, Vigna radiata (L.) Wilczek, desiccation sensitivity, seed longevity, seed storage behaviour  相似文献   

17.
The effects of temperature on induction and release of high-temperatureinhibition in seed germination of Dioscorea tokoro Makino, amonocotyledonous summer perennial of the temperate zone of EastAsia, were investigated. Germination was increasingly inhibitedwith elevation of temperature over 23°C and lengtheningof its duration. The low temperature limit for germination inhibitiondecreased with lengthening of the duration of high temperature.The most sensitive phase for high temperature was 1–2days after the start of imbibition at 20°C. The germination inhibition by high temperature was reversedby chilling at 5°C, which is the optimum temperature forbreaking the natural dormancy (primary dormancy) of this seed.This showed that the high-temperature inhibition of germinationdoes not cause mortal damage but only secondary dormancy (induceddormancy). Seeds from a cold climate (Miyagi Pref.) responded rather quicklyto both high temperature and chilling compared to seeds froma warm climate (Kagoshima Pref.). The responsiveness to hightemperature and chilling of D. tokoro seed may affect the germinationtime under natural conditions. (Received October 22, 1982; Accepted January 14, 1983)  相似文献   

18.
Patterns of seed after-ripening in Bromus tectorum L   总被引:1,自引:0,他引:1  
For grass seeds that lose dormancy through after ripening indry storage, the probability of germination following a particularwetting event can be predicted only if the relationship betweenstorage temperature and change in after-ripening status is known.This study examined patterns of seed dormancy loss in Bromustectorum L., quantifying changes in germination percentage,speed, and uniformity through time. Seed collections from threesemi-arid habitats were stored at temperatures from 10–40C. At monthly intervals, subsamples were incubated at 5/15,10/20, 15/25, and 20/30 C. For recently harvested seeds, germinationpercentage, mean germination time, and days between 10% and90% of total germination (D90–D10) ranged from 1–75%,10–24 d, and 10–20 d, respectively. Recently harvestedseeds were generally most dormant, slowest to germinate andleast uniform at high incubation temperatures. In contrast,after ripened seeds for all collections had nearly 100% germination,mean germination times <5 d, and D90–D10 values <5d. Three indices were used to characterize after-ripening ratesfor each seedlot at each incubation temperature. The mean dormancyperiod, the mean rate index, and the mean uniformity index definedthe storage period required for seedlots to become half as dormantas at harvest, to progress half-way to the fastest speed, andto progress half-way to the greatest uniformity, respectively.Seeds required longer storage to germinate uniformly than togerminate completely or quickly, because germination time-coursecurves for incompletely after-ripened seeds were positivelyskewed rather than sigmoidal. Mathematically, the three indiceswere described as negative exponential functions of storagetemperature, which suggests that after-ripening is likely completedin late summer or early autumn regardless of summer conditions. Key words: Seed dormancy, germination timing  相似文献   

19.
Data are given for Kochia indica seeds showing retention ofviability after storage for various periods of time open tothe air under laboratory conditions, open at 30° C., openat 38° C., and sealed over CaCl2 at 30° C. Seeds have been stored without deterioration at 30° C. sealedover CaC12 for over 14 months. Rapid deterioration of seed inopen storage at laboratory temperature and at 30° C. showsthat loss of viability is accelerated by moisture more thanby temperature.  相似文献   

20.
Abstract

The germination percentage of Aegilops geniculata Roth caryopses was studied on four Italian populations (Pisa, Manfredonia, Catania and Simbirizzi). Observation of the germination trend was carried out at constant temperatures of 10°, 20° and 30°C, from maturation up to 60 days after harvesting. Spike, spikelet and caryopsis phenotypic characteristics were also studied. The populations of Pisa, Manfredonia and Simbirizzi presented two different types of caryopses: yellow caryopses - larger, heavier and composing roughly 60% of total—and brown caryopses—smaller and lighter in weight. The Catania population formed an exception in that brown caryopses were virtually absent (5%). This Sicilian accession also showed the largest spikelet size.

Yellow caryopses germinated more rapidly than the dark ones, which were shown to be endowed with longer relative dormancy, above all at 10° and 30° C. Such a phenomenon allows the two types of caryopses to have a different germination ecology, thus providing A. geniculata with a broader choice of germination opportunities and consequently favouring spread and survival of the species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号