首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
From cell code to gene code: cytokines and transcription factors   总被引:4,自引:0,他引:4  
  相似文献   

10.
Hepatic expression of the haptoglobin (Hp) gene in mammalian species is stimulated severalfold during an acute-phase reaction. To identify the molecular mechanism responsible for this regulation, the single-copy rat Hp gene has been isolated. The genomic sequences showed a high degree of homology with the primate Hp gene. Activity of the rat Hp gene was increased in cultured liver cells by interleukin-1 (IL-1), IL-6, and glucocorticoids. The genomic Hp gene sequence spanning from -6500 to +6500, when transiently introduced into human hepatoma (HepG2) cells, directed IL-6- and dexamethasone-stimulated expression of rat Hp mRNA and protein. No response to IL-1 was detected, suggesting that the corresponding regulatory element(s) might lie outside of the tested gene sequences. An IL-6- and dexamethasone-responsive element has been localized to the promoter proximal region -146 to -55. Although the nucleotide sequences of this rat Hp gene region showed substantial divergence from that of the human gene, analysis of sequential 5' and 3' deletion constructs indicated an arrangement of functional IL-6 response elements in the rat Hp promoter sequence comparable to that of the human homolog. The magnitude of IL-6 regulation through the rat Hp gene promoter was severalfold lower than that of the human Hp gene. The reduced activity could be ascribed to a single-base difference in an otherwise conserved sequence corresponding to an active element in the human gene. The IL-6 response of the rat Hp element was improved severalfold by substituting that base with the human nucleotide.  相似文献   

11.
12.
Morphine upregulates mu opioid receptors of human and monkey lymphocytes   总被引:5,自引:0,他引:5  
Opioid receptors of subtypes delta, kappa, and mu similar to those found in brain cells have been identified in immune cells. The current study demonstrates by competitive polymerase chain reaction the treatment of human lymphocytic cells with morphine resulting in an increased amount of gene expression of mu opioid receptors. Antibodies against the MOR-1, the neuronal mu opioid receptor, were used in Western blot analysis of mu proteins and the results revealed a single band of approximately 50 kDa, the intensity of which was increased by morphine treatment. Similar results of mu opioid receptor activation were observed when monkey lymphocytes were treated with morphine. These studies suggest that in addition to causing an immune effect through communication with the neuroendocrine system, the psychoactive drug morphine may modulate immune functions by acting directly on the mu opioid receptors expressed on lymphocytes.  相似文献   

13.
14.
15.
Chen LE  Gao C  Chen J  Xu XJ  Zhou DH  Chi ZQ 《Life sciences》2003,73(1):115-128
Internalization and recycling of G protein-coupled receptors (GPCRs), such as the mu-opioid receptor, largely depend on agonist stimulation. Agonist-promoted internalization of some GPCRs has been shown to mediate receptor desensitization, resensitization, and down-regulation. In this study, we investigated whether different mu opioid agonists displayed different effects in receptor internalization and recycling, the potential mechanisms involved in ohmefentanyl-induced internalization process. In transfected Sf9 insect cells expressing 6His-tagged wild type mu opioid receptor, exposure to 100 nM ohmefentanyl caused a maximum internalization of the receptor at 30 min and receptors seemed to reappear at the cell membrane after 60 min as determined by radioligand binding assay. Ohmefentanyl-induced human mu opioid receptor internalization was concentration-dependent, with about 40% of the receptors internalized following a 30-min exposure to 1 microM ohmefentanyl. 10 microM morphine and 1 microM DAMGO could also induce about 40% internalization. The antagonist naloxone and pretreatment with pertussis toxin both blocked ohmefentanyl-induced internalization without affecting internalization themselves. Incubation with sucrose 0.45 M significantly inhibited ohmefentanyl-induced internalization of the mu receptor. The removal of agonists ohmefentanyl and morphine resulted in the receptors gradually returning to the cell surface over a 60 min period, while the removal of agonist DAMGO only partly resulted in the receptor recycling. The results of this study suggest that ohmefentanyl-induced internalization of human mu opioid receptor in Sf9 insect cells occurs via Gi/o protein-dependent process that likely involves clathrin-coated pits. In addition, the recycling process displays the differential modes of action of different agonists.  相似文献   

16.
17.
The most prevalent single-nucleotide polymorphism (SNP) A118G in the human mu-opioid receptor gene predicts an amino acid change from an asparagine residue to an aspartatic residue in amino acid position 40. This N40D mutation, which has been implicated in the development of opioid addiction, was previously reported to result in an increased beta-endorphin binding affinity and a decreased potency of morphine-6-glucuronide. Therefore, in the present study we have investigated whether this mutation might affect the binding affinity, potency, and/or the agonist-induced desensitization, internalization and resensitization of the human mu-opioid receptor stably expressed in human embryonic kidney 293 cells. With the exception of a reduced expression level of N40D compared to human mu-opioid receptor (hMOR) in HEK293 cells, our analyses revealed no marked functional differences between N40D and wild-type receptor. Morphine, morphine-6-glucuronide and beta-endorphin revealed similar binding affinities and potencies for both receptors. Both the N40D-variant receptor and hMOR exhibited robust receptor internalization in the presence of the opioid peptide [d-Ala(2),N-MePhe(4),Glyol(5)]enkephalin (DAMGO) and beta-endorphin but not in response to morphine or morphine-6-glucuronide. After prolonged treatment with morphine, morphine-6-glucuronide or beta-endorphin both receptors showed similiar desensitization time courses. In addition, the receptor resensitization rates were nearly identical for both receptor types.  相似文献   

18.
19.
20.
Opioid receptors have been reported on immune cells of several species and shown to subserve effector functions of these cell types. Mu-selective opioid agonists such as morphine are immunosuppressive, whereas certain delta-opioid receptor-selective agonists have been associated with immunopotentiation. We have previously shown that intracerebroventricular administration of the non-peptidic delta-opioid receptor agonists did not alter certain parameters of immunocompetence. In this study, we evaluated the in vitro effects of the novel non-peptidic opioid 4-tyrosylamido-6-benzyl-1,2,3,4 tetrahydroquinoline (CGPM-9) on lymphocyte and macrophage functions. We demonstrated that CGPM-9 enhanced rat thymic lymphocyte proliferative response to concanavalin A (2.85- to 5.5-fold increases), and suppressed LPS-induced nitric oxide (67 to 72 percent reduction) and TNF-alpha production (46 percent reduction) by peritoneal macrophages, compared with untreated control. The mu-opioid receptor selective antagonist CTOP used at equimolar doses, significantly suppressed the effect of CGPM-9 on lymphocyte and macrophage functions (CTOP alone did not show any effect on lymphocyte or macrophage functions). In summary, CGPM-9 activated thymic lymphocyte proliferation and suppressed macrophage functions by acting at mu-opioid receptors. This suggests that opioid receptors on immunocytes may be coupled to different signaling pathways depending on the cell type and effector function being analyzed. The mechanism (s) associated with the differential effect of CGPM-9 on these immune cells remains to be elucidated. The pharmacotherapeutic potential for compounds such as CGPM-9 which potentiate T lymphocyte proliferation and suppress production of macrophage-derived inflammatory cytokines is substantial in research and clinical medicine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号