首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have reconstituted salt-treated SV40 minichromosomes with differentially phosphorylated forms of histone H1 extracted from either G0-, S- or M-phase cells. Sedimentation studies revealed a clear difference between minichromosomes reconstituted with S-phase histone H1 compared with histone H1 from G0- or M-phase cells, indicating that the phosphorylation state of histone H1 has a direct effect on chromatin structure. Using reconstituted minichromosomes as substrate in the SV40 in vitro replication system, we measured a higher replication efficiency for SV40 minichromosomes reconstituted with S-phase histone H1 compared with G0- or M-phase histone H1. These data indicate that the chromatin structure induced by the phosphorylation of histone H1 influences the replication efficiency of SV40 minichromosomes in vitro.  相似文献   

2.
We determined the effects of chromatin structure on template accessibility to replication factors and used three different templates as substrates for simian virus 40 (SV40) DNA replication in vitro: native and salt-treated SV40 minichromosomes and protein-free SV40 DNA. Native minichromosomes contain histone H1 and numerous nonhistone proteins in addition to the core histones, whereas salt-treated minichromosomes carry essentially only core histones. We reasoned that the less densely packed salt-treated minichromosomes should be more effective replication templates due to their more extended configuration. However, contrary to this expectation, we found that native minichromosomes replicated with significantly higher efficiency than salt-treated minichromosomes, while protein-free DNA was most active as a replication template. The higher replication efficiency of native minichromosomes was due to two activities bound to the chromatin, which were identified as DNA topoisomerases I and II. By using chromatin substrates of different general configurations, we also showed that the overall chromatin structure determines accessibility to topoisomerases I and II and thereby the efficiency of replicative chain elongation.  相似文献   

3.
We operationally define two forms of SV40 minichromosomes, a 75S-form, prepared at low salt concentration, referred to as native minichromosomes, and a 50S-form, obtained after treatment with 0.5M potassium acetate, the salt-treated minichromosomes. Both preparations of minichromosomes serve well as templates for replication in vitro. Their respective replication products are strikingly different: replicated native minichromosomes contain a densely packed array of the maximal number of nucleosomes whereas replicated salt-treated minichromosomes carry, on average, half of the maximal number. We conclude that in both cases parental nucleosomes are transferred to progeny DNA, and, in addition, that an assembly of new nucleosomes occurs during the replication of native minichromosomes. This is apparently due to the presence of a nucleosome assembly factor as a constituent of native minichromosomes that dissociates upon treatment with salt. We further show that preparations of minichromosomes usually contain significant amounts of copurifying hnRNP particles and SV40 virion precursor particles. However, these structures do not detectably affect the replication and the chromatin assembly reactions.  相似文献   

4.
Isolated SV40 minichromosomes [1-3] were treated with different single-cut restriction endonucleases to probe the arrangement of nucleosomes in relation to the SV70 DNA sequence. While Eco RI and Bam HI each cut 22-27% of the SV40 minichromosomes under limit-digest conditions, Bgl I, which cuts SV40 DNA at or very near the origin of replication [4,5], cleaves 90-95% of the minichromosomes in a preparation. Similar results were obtained with minichromosomes which had been fixed with formaldehyde before endonuclease treatment. One possible interpretation of these findings is that the arrangement of nucleosomes in the compact SV40 minichromosomes is nonrandom at least with regard to sequences near the origin of DNA replication.  相似文献   

5.
6.
In productively infected cells, a fraction of large-tumor antigen (T antigen) is tightly bound to replicating simian virus 40 (SV40) minichromosomes and does not dissociate at salt concentrations of greater than 1 M NaCl. We present electronmicrograms demonstrating the presence of T antigen on the replicated sections of replicating SV40 minichromosomes. We also show that the fraction of tightly bound T antigen is recognized by antibodies from mouse tumor serum and, more specifically, by a particular T-antigen-specific monoclonal antibody, PAb 1630. A second T-antigen-specific monoclonal antibody, PAb 101, does not react with the T-antigen fraction remaining on replicating SV40 chromatin at high salt concentrations. We used an in vitro replication system which allows, via semiconservative DNA replication, the completion of in vivo-initiated replicative intermediate DNA molecules. We show that monoclonal antibody PAb 1630, but not monoclonal antibody PAb 101, inhibits viral DNA replication. We discuss the possibility that SV40 T antigen may play a role in chain elongation during SV40 chromatin replication.  相似文献   

7.
The nuclear matrix plays an important role in simian virus 40 (SV40) DNA replication in vivo, since functional replication complexes containing large T and replicating SV40 minichromosomes are anchored to this structure (R. Schirmbeck and W. Deppert, J. Virol. 65:2578-2588, 1991). In the present study, we have analyzed the course of events leading from nuclear matrix-associated replicating SV40 minichromosomes to fully replicated minichromosomes and, further, to their encapsidation into mature SV40 virions. Pulse-chase experiments revealed that newly replicated SV40 minichromosomes accumulated at the nuclear matrix and were directly encapsidated into DNase-resistant SV40 virions at this nuclear structure. Alternatively, a small fraction of newly replicated minichromosomes left the nuclear matrix to associate with the cellular chromatin. During the course of infection, progeny virions continuously were released from the nuclear matrix to the cellular chromatin and into the cytoplasm-nucleoplasm. The bulk of SV40 progeny virions, however, remained at the nuclear matrix until virus-induced cell lysis.  相似文献   

8.
C Crémisi  A Chestier  M Yaniv 《Cell》1977,12(4):947-951
The assembly of newly synthesized histones into nucleosomes during replication of SV40 minichromosomes in vivo was studied. Infected cells were labeled with 35S-methionine for a time shorter than that required to complete a round of viral DNA replication. Mature and replicating SV40 minichromosomes were extracted and separated by zonal sedimentation, and their histone content was analyzed by polyacrylamide gel electrophoresis (SDS and acidic urea). We show that the pulse-labeled histones associate preferentially with the replicating DNA.  相似文献   

9.
The structure of replicating simian virus 40 (SV40) minichromosomes was studied by DNA crosslinking with trimethyl-psoralen. The procedure was used both in vitro with extracted SV40 minichromosomes as well as in vivo with SV40-infected cells. Both procedures gave essentially the same results. Mature SV40 minichromosomes are estimated to contain about 27 nucleosomes (error +/- 2), except for those molecules with a nucleosome-free gap, which are interpreted to contain 25 nucleosomes (error +/- 2). In replicative intermediates, nucleosomes are present in the unreplicated parental stem with the replication fork possibly penetrating into the nucleosomal DNA before the histone octamer is removed. Nucleosomes reassociate on the newly replicated DNA branches at distances from the branch point of 225 ( +/- 145) nucleotides on the leading strand and of 285( +/- 120) nucleotides on the lagging strand. In the presence of cycloheximide, daughter duplexes contained unequal numbers of nucleosomes, supporting dispersive and random segregation of parental nucleosomes. These were arranged in clusters with normal nucleosome spacing. We detected a novel type of interlocked dimer comprising two fully replicated molecules connected by a single-stranded DNA bridge. We cannot decide whether these dimers represent hemicatenanes or whether the two circles are joined by a Holliday-type structure. The joining site maps within the replication terminus. We propose that these dimers represent molecules engaged in strand segregation.  相似文献   

10.
T Krude  A Winter    R Knippers 《Nucleic acids research》1994,22(24):5265-5270
The template activities of protein-free SV40 DNA and SV40 minichromosomes for DNA re-replication are compared in in vitro replication assays. Density substitution experiments and two-dimensional gel electrophoresis show that protein-free DNA can replicate for at least two cycles whereas salt-treated minichromosomes replicate only once. Re-replication of minichromosomes is blocked at the stage of replicative chain elongation suggesting that replicatively assembled chromatin has structural features that prevent a second round of replication.  相似文献   

11.
We have examined the influence of VM26 (teniposide), a specific inhibitor of mammalian type II DNA topoisomerase, on the replication of SV40 minichromosomes in vitro. The replication system we used consists of replicative intermediate SV40 chromatin as substrate which is converted to mature SV40 chromatin in the presence of ATP, deoxynucleotides and a protein extract from uninfected cells. The addition of 100 microM VM26 to this system reduces DNA synthesis to 70 to 80 percent of the control and leads to an accumulation of 'late replicative intermediates'. The VM26 induced block of replication was not released by the addition of large quantities of type I DNA topoisomerase. We conclude, that type II DNA topoisomerase is essential for the final replication steps leading from late Cairns structures of replicative intermediates to monomeric minichromosomes. It appears that type I DNA topoisomerase can function as a swivelase during most of the replicative elongation phase, but must later be replaced by type II DNA topoisomerase.  相似文献   

12.
Simian Virus 40 (SV40) DNA replication is a useful model to study eukaryotic cell DNA replication because it encodes only one replication protein and its genome has a nucleoprotein structure ('minichromosome') indistinguishable from cellular chromatin. Late after infection SV40 replicating DNA molecules represent about 5% of total viral minichromosomes. Since gene 32 protein (P32) from bacteriophage T4 interacts with single-stranded DNA and SV40 replication complexes are expected to contain single-stranded regions at the replication forks, we asked whether P32 might be used to isolate replicating SV40 minichromosomes. When nuclear extracts from SV40 infected cells were treated sequentially with P32 and anti-P32 antibodies, pulse-labeled minichromosomes were selectively immunoprecipitated. Agarose gel electrophoresis analysis confirmed that immunoprecipitated material corresponded to SV40 replicative intermediates. Protein analysis of the pelleted material revealed several proteins of viral and cellular origin. Among them, T antigen and histones were found to be complexed with at least other three proteins from cellular origin, to the replicative complexes. Additionally, anti-P32 antibodies were able to detect three cellular proteins of approximately 70, 32 and 13 kDa in western blots. These proteins could correspond to those found as part of an eukaryotic multisubunit single-stranded DNA binding protein. The use of P32 and anti-P32 antibodies thus allows the separation of replicating from mature SV40 minichromosomes and can constitute a novel method to enrich and to study replicative active chromatin.  相似文献   

13.
When compact simian virus 40 (SV40) minichromosomes are treated with staphylococcal nuclease at 0 °C under limit-digest conditions, about one-third of the minichromosomes remain resistant to nuclease, a third of them are nicked, while the remaining third suffer one and only one double-stranded cut. Results show that each cleaved minichromosome is cut only once and afterwards becomes resistant to further fragmentation. This is in marked contrast to the action of staphylococcal nuclease at 37 °C, which leads to a rapid fragmentation of all minichromosomes to oligo- and mononucleosomes.The SV40 linear DNA III produced by low-temperature nuclease digestion of minichromosomes was redigested with single-cut restriction endonucleases. By this mapping procedure it was determined that the location of the staphylococcal nuclease cut is neither unique nor random; it occurs at a number of discrete sites on the DNA, half of all cuts being concentrated at the origin of replication and nearby in the “late” portion of the SV40 genome. Control experiments have shown that when staphylococcal nuclease digests naked SV40 DNA at 0 °C it does not “hesitate” after the first cut. Although initial cuts in the purified DNA are non-random in location, their distribution is quite different from that generated by a low-temperature nuclease digestion of compact SV40 minichromosomes. Possible interpretations of these results are discussed in view of the recent finding that a specific region of the SV40 genome is uniquely exposed in the minichromosome (Varshavsky et al., 1978, 1979; Scott &; Wigmore, 1978).  相似文献   

14.
A J Varshavsky  O Sundin  M Bohn 《Cell》1979,16(2):453-466
Examination of DNA fragments produced from either formaldehyde-fixed or unfixed SV40 minichromosomes by multiple-cut restriction endonucleases has led to the following major results: Exhaustive digestion of unfixed minichromosomes with Hae III generated all ten major limit-digest DNA fragments as well as partial cleavage products. In striking contrast to this result, Hae III acted on formaldehyde-fixed minichromosomes to yield only one of the limit-digest fragments, F, which is located in the immediate vicinity of the origin of replication, spanning nucleotides 5169 and 250 on the DNA sequence map of Reddy et al. (1978). This 300 base pair (bp) fragment was released as naked DNA from formaldehyde-fixed, Hae III-digested minichromosomes following treatment either by pronase-SDS or by SDS alone. In the latter case, the remainder of the minichromosome retained its compact configuration as assayed by both sedimentational and electrophoretic methods. In minichromosomes, the F fragment is therefore not only accessible to Hae III at its ends, but is also neither formaldehyde cross-linked into any SDS-resistant nucleoprotein structure nor topologically "locked" within the compact minichromosomal particle. This same fragment was preferentially produced during the early stages of digestion of unfixed minichromosomes with Hae III, and its final yield in the exhaustive Hae III digest was significantly higher than that of other limit-digest fragments. Similar results were obtained upon digestion of either unfixed or formaldehyde-fixed minichromosomes with Alu I. In particular, of approximately twenty major limit-digest DNA fragments, only two fragments (F and P, encompassing nucleotides 5146 to 190, and 190 to 325, respectively) were produced by Alu I from the formaldehyde-fixed minichromosomes. All other restriction endonucleases tested (Mbo I, Mbo II, Hind III, Hin II+III and Hinf I), for which there are no closely spaced recognition sequences in the above mentioned regions of the SV40 genome, did not produce any significant amount of limit-digest DNA fragments from formaldehyde-fixed minichromosomes. These findings, taken together with our earlier data on the preferential exposure of the origin of replication in SV40 minichromosomes (Varshavsky, Sundin and Bohn, 1978), strongly suggest that a specific region of the "late" SV40 DNA approximately 400 bp long is uniquely exposed in the compact minichromosome. It is of interest that, in addition to the origin of replication, this region contains binding sites for T antigen (Tjian, 1977), specific tandem repeated sequences and apparently also the promoters for synthesis of late SV40 mRNAs (Fiers et al., 1978; Reddy et al., 1978).  相似文献   

15.
Transfer of nucleosomes from parental to replicated chromatin.   总被引:1,自引:0,他引:1       下载免费PDF全文
Simian virus 40 (SV40) minichromosomes were used as the substrate for in vitro replication. Protein-free SV40 DNA or plasmids, carrying the SV40 origin of replication, served as controls. Replicated minichromosomal DNA possessed constrained negative superhelicity indicative of the presence of nucleosomes. The topological state of replicated minichromosomal DNA was precisely determined by two-dimensional gel electrophoresis. We show that most or all nucleosomes, present on the replicated minichromosomal DNA, were derived from the parental minichromosome substrate. The mode and the rate of nucleosome transfer from parental to minichromosomal daughter DNA were not influenced by high concentrations of competing replicating and nonreplicating protein-free DNA, indicating that nucleosomes remain associated with DNA during the replication process. The data also show that parental nucleosomes were segregated to the replicated daughter DNA strands in a dispersive manner.  相似文献   

16.
Hypoxia interrupts the initiation of simian virus 40 (SV40) replication in vivo at a stage situated before unwinding of the origin region. After re-oxygenation, unwinding followed by a synchronous round of viral replication takes place. To further characterize the hypoxia-induced inhibition of unwinding, we analysed the binding of several replication proteins to the viral minichromosome before and after re-oxygenation. T antigen, the 34-kDa subunit of replication protein A (RPA), topoisomerase I, the 48-kDa subunit of primase, the 125-kDa subunit of polymerase delta, and the 37-kDa subunit of replication factor C (RFC) were present at the viral chromatin already under hypoxia. The 70-kDa subunit of RPA, the 180-kDa subunit of polymerase alpha, and proliferating cell nuclear antigen (PCNA) were barely detectable at the SV40 chromatin under hypoxia and significantly increased after re-oxygenation. Immunoprecipitation of minichromosomes with T antigen-specific antibody and subsequent digestion with micrococcus nuclease revealed that most of the minichromosome-bound T antigen was associated with the viral origin in hypoxic and in re-oxygenated cells. T antigen-catalysed unwinding of the SV40 origin occurred, however, only after re-oxygenation as indicated by (a) increased sensitivity of re-oxygenated minichromosomes against digestion with single-stranded DNA-specific nuclease P1; (b) stabilization of RPA-34 binding at the SV40 minichromosome; and (c) additional phosphorylations of RPA-34 after re-oxygenation, probably catalysed by DNA-dependent protein kinase. The results presented suggest that the subunits of the proteins necessary for unwinding, primer synthesis and primer elongation first assemble at the SV40 origin in form of stable, active complexes directly before they start to work.  相似文献   

17.
F Azorin  A Rich 《Cell》1985,41(2):365-374
Proteins dissociated from SV40 minichromosomes by increasing NaCl concentration were tested for their binding to Z-DNA [Br-poly(dG-dC)] and B-DNA [poly (dG-dC)]. Z-DNA binding proteins are largely released in 0.2 M NaCl whereas most B-DNA binding proteins are not released until 0.6 M NaCl. Incubation of SV40 minichromosomes with Z-DNA-Sephadex in low salt solution results in proteins with Z-DNA binding activity (PZ proteins). These proteins bind to negatively supercoiled DNAs containing left-handed Z-DNA but not to relaxed DNAs. They compete with anti-Z-DNA antibodies in binding to negatively supercoiled DNAs. The binding is tighter to negatively supercoiled SV40 DNA than to other plasmids, suggesting sequence-specific Z-DNA binding. PZ proteins binding to negatively supercoiled SV40 DNA interfere with cleavage at the Sph I sites, within the 72 bp repeat sequences of the viral control region, but not with cleavage at the Bgl I site, at the origin of replication. Removal of PZ proteins also exposes the Sph I sites in the SV40 minichromosomes while addition of PZ proteins makes the sites inaccessible.  相似文献   

18.
19.
Sundin and Varshavsky (J. Mol. Biol. 132:535-546, 1979) found that nearly two-thirds of simian virus 40 (SV40) minichromosomes obtained from nuclei of SV40-infected cells become singly nicked or cleaved across both strands after digestion with staphylococcal nuclease at 0 degrees C. The same treatment of SV40 DNA causes complete digestion rather than the limited cleavages produced in minichromosomal DNA. We have explored this novel behavior of the minichromosome and found that the nuclease sensitivity is dependent upon the topology of the DNA. Thus, if minichromosomes are pretreated with wheat germ DNA topoisomerase I, the minichromosomal DNA is completely resistant to subsequent digestion with staphylococcal nuclease at 0 degrees C. If the minichromosome-associated topoisomerase is removed, virtually all of the minichromosomes are cleaved to nicked or linear structures by the nuclease treatment. The cleavage sites are nonrandomly located; instead they occur at discrete loci throughout the SV40 genome. SV40 minichromosomal DNA is also cleaved to nicked circles and full-length linear fragments after treatment with the single strand-specific endonuclease S1; this cleavage is also inhibited by pretreatment with topoisomerase I. Thus, it may be that the nuclease sensitivity of minichromosomes is due to the transient or permanent unwinding of discrete regions of their DNA. Direct comparisons of the extent of negative supercoiling of native and topoisomerase-treated SV40 minichromosomes revealed that approximately two superhelical turns were removed by the topoisomerase treatment. The loss of these extra negative supercoils from the DNA probably accounts for the resistance of the topoisomerase-treated minichromosomes to the staphylococcal and S1 nucleases. These findings suggest that the DNA in SV40 intranuclear minichromosomes is torsionally strained. The functional significance of this finding is discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号