共查询到20条相似文献,搜索用时 0 毫秒
1.
R R de Moraes J E Maruniak J E Funderburk 《Applied and environmental microbiology》1999,65(6):2307-2311
Two methods, phenol-ether and magnetic capture-hybridization (MCH), were developed and compared with regard to their sensitivities and abilities to extract the DNA of the insect baculovirus Anticarsia gemmatalis nucleopolyhedrovirus (AgMNPV) from soil and to produce DNA amplifiable by PCR. Laboratory experiments were performed with 0. 25 g of autoclaved soil inoculated with different viral concentrations to optimize both methods of baculovirus DNA extraction and to determine their sensitivities. Both procedures produced amplifiable DNA; however, the MCH method was 100-fold more sensitive than the phenol-ether procedure. The removal of PCR inhibitors from the soil appeared to be complete when MCH was used as the viral DNA isolation method, because undiluted aliquots of the DNA preparations could be amplified by PCR. The phenol-ether procedure probably did not completely remove PCR inhibitors from the soil, since PCR products were observed only when the AgMNPV DNA preparations were diluted 10- or 100-fold. AgMNPV DNA was detected in field-collected soil samples from 15 to 180 days after virus application when the MCH procedure to isolate DNA was coupled with PCR amplification of the polyhedrin region. 相似文献
2.
Measurements of multiplication in liquid culture indicated that fast-growing Lotus rhizobia (Rhizobium loti) were tolerant of acidity and aluminium (at least 50 μM A1 at pH 4.5). Slow-growing Lotus rhizobia (Bradyrhizobium sp. (Lotus)) were less tolerant of acidity but equally tolerant of A1. Both genera were able to nodulateLotus pedunculatus in an acid soil (pH 4.1 in 0.01M CaCl2) and the slow-growing strains were more effective than the fast-growing strains in this soil over 30 days. 相似文献
3.
Increasing legume cultivation and yields on smallholder farms is challenged by low soil rhizobia bacteria populations and limited access to rhizobia inoculants. However, by understanding the environmental drivers of rhizobia diversity in un-inoculated soils to improve nodulation success for smallholder farmers. Soils were collected from 39 smallholder farms in the Ekwendeni region of northern Malawi. Soils were categorized by cropping history and analyzed for Mehlich-3 phosphorus, calcium, magnesium, potassium, iron, particle size distribution, organic matter (OM) content and pH. Rhizobia bacteria were isolated using Tropical Glycine cross (TGx) soybean (Glycine max) variety 1740-2F as a trap crop. Genomic fingerprints of extracted rhizobia were created using rep-PCR with the BOX A1R primer and diversity indexes calculated from resulting fingerprints. Genomic fingerprinting of rhizobia resulted in 32 clusters with 70 % fingerprint similarity. Soil OM and carbon strongly influenced the presence of 6 clusters, Ca of 4 clusters, pH of 3 clusters, and Mg, K, Clay of three clusters each. Recent soybean production resulted in a greater number of nodules (16) than other histories (10), and uncultivated soils had a different rhizobia community structure than cultivated soils. Soil rhizobia are subject to a complex ecology in which plant communities as well as OM, clay, and nutrient (Mg, K, Fe and P) content select for community structure. Identifying the drivers and preferred environments of high performing rhizobia strains could improve nodulation in low-input agriculture environments. 相似文献
4.
Genetic diversity of soybean-nodulating rhizobia in Nepal in relation to climate and soil properties
Dinesh Adhikari Masakazu Kaneto Kazuhito Itoh Kousuke Suyama Bhanu B. Pokharel Yam K. Gaihre 《Plant and Soil》2012,357(1-2):131-145
Backgroud and aims
This study was conducted to reveal the genetic diversity of soybean-nodulating rhizobia in Nepal in relation to climate and soil properties.Method
A total of 102 bradyrhizobial strains were isolated from the root nodules of soybeans cultivated in 12 locations in Nepal varying in climate and soil properties, and their genetic diversity was examined based on 16S rDNA, ITS regions of 16S–23S rDNA, nodC and nifH. In vitro growth properties of some representative strains were examined to elucidate their characteristic distribution in Nepal.Results
Four species of the genus Bradyrhizobium were isolated, and B. japonicum dominated at temperate locations, while in subtropical locations, B. elkanii, B. yuanmingense, and B. liaoningense dominated at acidic, moderately acidic, and slightly alkaline soils, respectively. The relative nodule occupancies could not be fully explained by their in vitro growth properties. Similar nodC and nifH genes among the strains suggested co-evolution of these genes also in Nepal, probably through horizontal gene transfer.Conclusions
The influence of climate and soil pH on diversity at the sub-species level was revealed. It is concluded that the highly diverse climate and soils in Nepal might be conducive for the existence of diverse soybean rhizobial strains. 相似文献5.
Ludwig Wolfgang Amann Rudolf Martinez-Romero Esperanza Schönhuber Wilhelm Bauer Stephan Neef Alexander Schleifer Karl-Heinz 《Plant and Soil》1998,204(1):1-19
Ribosomal ribonucleic acids are excellent marker molecules for the elucidation of bacterial phylogeny; they also provide useful target sites for identification and detection with nucleic acid probes. Based on the currently available 16S rRNA sequence data, bacteria of the rhizobial phenotype (plant nodulation, nitrogen fixation) are members of three moderately related phylogenetic sub-groups of the -subclass of the Proteobacteria: i.e. the rhizobia group, the bradyrhizobia group, and the azorhizobia group. All rhizobia, azo-, brady-, meso- and sinorhizobia are closely related to and in some cases phylogenetically intermixed with, non-symbiotic and/or non-nitrogen-fixing bacteria. Especially in the case of Bradyrhizobium japonicum strains, the 16S rRNA sequence data indicate substantial heterogeneity. Specific probe design and evaluation are discussed. A multiprobe concept for resolving specificity problems with group specific probes is presented. In situ identification with group specific probes of rhizobia in cultures as well as rhizobia and cyanobacteria within plant material is shown. 相似文献
6.
根瘤菌对土壤铜、锌和镉形态分配的影响 总被引:13,自引:0,他引:13
以湖南郴州红壤和河北巩义褐土为供试土壤。制备Cu、Zn、Cd污染土壤。接种大豆根瘤菌(Rhi-zobium fredii)HN01,用连续提取法浸提土壤中不同形态的重金属.结果表明。褐土接种根瘤菌后固相结合态Zn总量降低10%。专性吸附态、氧化锰结合态和有机结合态Zn减少达9%~26%.红壤中结合态Zn的总量变化不显著,但专性吸附态和氧化锰结合态Zn含量显著减少。交换态Zn含量显著增加.褐土中接种根瘤菌抑制了Cu向土壤溶液的释放,固相结合态Cu总量增加18%,可交换态、专性吸附态、氧化锰结合态和有机结合态的Cu增加20%~54%.接种根瘤菌对土壤中Cd的溶解没有明显的抑制或促进作用,但改变了红壤中各形态Cd的含量高低顺序.Cd污染红壤中可交换态和有机结合态Cd含量分别增加22%和11%,专性吸附态和氧化锰结合态Cd分别减少14%和29%.根瘤菌对不同类型重金属及不同土壤中重金属形态影响的差异主要与土壤pH降低有关. 相似文献
7.
转基因大豆是全球种植最广泛的转基因作物,抗除草剂是其最主要的转基因特性.微生物群落是土壤质量的监测指标之一,抗草甘膦转基因大豆及配施草甘膦是否影响大豆根际土壤细菌及根瘤菌群落尚不清楚.本研究基于大田试验,以非转基因亲本大豆‘中豆32’为对照(CK),分析转G10-epsps基因耐除草剂大豆SHZD32-01(GR)及配施草甘膦(GR+G)在大豆各生育时期对根际土壤细菌和根瘤菌的影响.结果表明: 与CK相比,GR、GR+G处理对苗期和成熟期根际土壤pH、总有机碳(TOC)、总氮(TN)、NH4+-N含量等产生影响;GR处理显著增加结荚期根际土壤细菌群落丰度及多样性,GR+G处理显著增加结荚期根际土壤细菌群落多样性,但显著降低苗期和结荚期根际土壤细菌群落丰度;GR、GR+G处理改变了部分优势细菌类群的相对丰度,但不同生育期根际土壤优势细菌类群均为变形菌门、酸杆菌门、拟杆菌门、绿弯菌门、浮霉菌门和放线菌门;GR、GR+G处理改变了根瘤菌类群的相对丰度,但未影响慢生根瘤菌和中华根瘤菌两种主要大豆根瘤菌的相对丰度,且GR+G处理结荚期根际土壤根瘤菌相对丰度显著降低.环境因子分析显示,根际土壤放线菌和根瘤菌群落丰度主要受土壤pH影响.抗草甘膦转基因大豆或配施草甘膦显著影响结荚期根际土壤细菌和根瘤菌,但其影响随大豆的生长而消失. 相似文献
8.
9.
10.
Native rhizobia from Zn mining soil promote the growth of Leucaena leucocephala on contaminated soil 总被引:1,自引:0,他引:1
Wesley M. Rangel Sofie Thijs Jolien Janssen Silvia M. Oliveira Longatti Daiane S. Bonaldi Paula R. A Ribeiro 《International journal of phytoremediation》2017,19(2):142-156
Plants on contaminated mining soils often show a reduced growth due to nutrient depletion as well as trace elements (TEs) toxicity. Since those conditions threat plant's survival, plant growth-promoting rhizobacteria (PGPRs), such as rhizobia, might be of crucial importance for plant colonization on TE-contaminated soils. Native rhizobia from mining soils are promising candidates for bioaugmented phytoremediation of those soils as they are adapted to the specific conditions. In this work, rhizobia from Zn- and Cd-contaminated mining soils were in vitro screened for their PGP features [organic acids, indole-3-acetic acid (IAA), and siderophore (SID) production; 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity; and Ca3(PO4)2 solubilization] and Zn and Cd tolerance. In addition, some type and reference rhizobia strains were included in the study as well. The in vitro screening indicated that rhizobia and other native genera have great potential for phytoremediation purposes, by exerting, besides biological N2 fixation, other plant growth-promoting traits. Leucaena leucocephala–Mesorhizobium sp. (UFLA 01-765) showed multielement tolerance and an efficient symbiosis on contaminated soil, decreasing the activities of antioxidative enzymes in shoots. This symbiosis is a promising combination for phytostabilization. 相似文献
11.
A method was developed for the fast screening and selection of high-temperature tolerant rhizobial strains from root nodules of Prosopis juliflora growing in alkaline soils. The high-temperature tolerant rhizobia were selected from 2,500 Rhizobium isolates with similar growth patterns on yeast mannitol agar plates after 72 h incubation at 30 and 45 degrees C, followed by a second screening at 47.5 degrees C. Seventeen high-temperature tolerant rhizobial strains having distinguishable protein band patterns were finally selected for further screening by subjecting them to temperature stress up to 60 degrees C in yeast mannitol broth for 6 h. The high-temperature tolerant strains were NBRI12, NBRI329, NBRI330, NBRI332, and NBRI133. Using this procedure, a large number of rhizobia from root nodules of P. juliflora were screened for high-temperature tolerance. The assimilation of several carbon sources, tolerance to high pH and salt stress, and ability to nodulate P. juliflora growing in a glasshouse and nursery of the strains were studied. All five isolates had higher plant dry weight in the range of 29.9 to 88.6% in comparison with uninoculated nursery-grown plants. It was demonstrated that it is possible to screen in nature for superior rhizobia exemplified by the isolation of temperature-tolerant strains, which established effective symbiosis with nursery-grown P. juliflora. These findings indicate a correlation between strain performance under in vitro stress in pure culture and strain behavior under symbiotic conditions. Pure culture evaluation may be a useful tool in search for Rhizobium strains better suited for soil environments where high temperature, pH, and salt stress constitutes a limitation for symbiotic biological nitrogen fixation. 相似文献
12.
13.
长期施肥对黑土大豆根瘤菌群体结构和多样性的影响 总被引:1,自引:0,他引:1
为揭示长期施肥对黑土大豆根瘤菌群体结构和多样性的影响,采用BOX-PCR、IGS-PCR-RFLP和16S r DNA基因序列分析法,对分离自黑龙江省7种长期不同施肥处理的254株大豆根瘤菌进行了遗传多样性和系统发育分析,结合土壤理化性质分析了大豆根瘤菌群体结构和多样性与土壤因子间的关系。7种处理分别为不施肥(CK)、有机肥(OM)、单施氮肥(N1)、单施2倍氮肥(N2)、氮肥+有机肥(N1+OM)、氮肥磷肥混施(N1P1)和2倍氮肥磷肥混施(N2P2)。系统发育分析结果表明,所有供试菌株均为慢生根瘤菌属(Bradyrhizobium),其中大部分菌株与日本慢生大豆根瘤菌(Bradyrhizobium japonicum)相似性最高,少部分菌株与辽宁慢生大豆根瘤菌(Bradyrhizobium liaoningense)相似性最高。BOX-PCR聚类分析结果表明,供试菌株在70%相似性水平上分为15个群,在与施肥处理相关性分析中分为3个群体,分别对应于不施化肥处理(CK和OM)、化学氮肥处理(N1、N2、N1+OM)、氮肥磷肥处理(N1P1和N2P2)。典范对应分析结果表明,土壤p H、速效氮和速效磷与根瘤菌群体结构相关性极显著(P=0.002,0.004,0.002)。不同施肥措施下大豆根瘤菌的多样性有明显差异:N2P2处理的丰富度指数和Shannon-Wiener指数显著高于其他处理;OM处理的Simpson指数最高;N1和N2处理的3种多样性指数都显著低于其他处理。通径分析结果表明,p H、速效磷对多样性指数有较高的直接正效应;速效氮通过p H的间接负效应影响多样性指数。本研究表明,长期施用化肥改变了根瘤菌群体结构,单施氮肥减少大豆根瘤菌多样性,而氮肥磷肥混施则有助于提高大豆根瘤菌多样性。 相似文献
14.
15.
Drought is an important environmental factor that can affect rhizobial competition and N2 fixation. Three alfalfa (Medicago sativa L. and M. falcata L.) accessions were grown in pots containing soil from an irrigated (Soil 1) and a dryland (Soil 2) alfalfa field in northern
Utah, USA. Mutants of three strains of Rhizobium meliloti Dang. from Pakistan (UL 136, UL 210, and UL 222) and a commercial rhizobial strain 102F51a were developed with various levels
of resistance to streptomycin. Seeds inoculated with these individual streptomycin-resistant mutants were sown in the two
soils containing naturalized rhizobial populations. Soils in the pots were maintained at −0.03, −0.5, and −1.0 MPa. After
10 weeks, plants were harvested and nodule isolates were cultured on agar medium with and without streptomycin to determine
nodule occupancy (proportion of the nodules occupied by introduced rhizobial strains). Number of nodules, nodule occupancy,
total plant dry weight, and shoot N were higher for Soil 1 than Soil 2. Number of nodules, plant dry weight, and shoot N decreased
as drought increased from −0.03 to −1.0 MPa in the three alfalfa accessions. Rhizobial strains UL 136 and UL 222 were competitive
with naturalized alfalfa rhizobia and were effective at symbiotic N2 fixation under drought. These results suggest that nodulation, growth, and N2 fixation in alfalfa can be improved by inoculation with competitive and drought-tolerant rhizobia and may be one economically
feasible way to increase alfalfa production in water-limited environments.
Joint contribution from USDA-ARS and the Utah Agric. Exp. Sta., Utah State Univ., Logan, UT 84322-4810, USA. Journal Paper
No. 4931.
Joint contribution from USDA-ARS and the Utah Agric. Exp. Sta., Utah State Univ., Logan, UT 84322-4810, USA. Journal Paper
No. 4931. 相似文献
16.
The aim of this study was to assess the impact of inoculation of Phaseolus vulgaris with two indigenous rhizobia strains on plant growth promotion, nitrogen turnover processes, richness and structure of the Rhizobiaceae and total bacterial communities in the bulk soil. Both strains used induced a significant increase in nodulation and grain yield. Analysis of bulk soil fertility showed positive, negative and strain-dependent effects of inoculation on nitrate, phosphorus and ammonium, respectively. Terminal-restriction fragment length polymorphism profiling demonstrated that inoculation significantly increased the phylotype richness of the bacterial communities. No significant difference in richness between the strains used and no additive effect of co-inoculation were observed. However, differences between both inoculants and a clear additive effect of co-inoculation on heterogeneity were found. This work gives original insights into the effect of rhizobial inoculation outside the restricted rhizospheric area. Effects on bacterial structure and diversity are clearly sensed in the neighbourhood of 25 cm and in a limited time course. Both Alpha- and Gammaproteobacteria, together with Firmicutes and Actinobacteria, were enhanced by inoculation, No evidence of terminal-restriction fragment inhibition was found. However, it remains to be answered how the impact on taxonomic groups can be related to effects on functional capabilities of soil microbial communities. 相似文献
17.
xylE基因用于监测根瘤菌在土壤中存活的研究 总被引:3,自引:5,他引:3
通过细菌接合将质粒pLV1016(含xvlE基因)转移至RhizobiumfrediiQB1130和Rhizobiumleguminosarumbv.viciaeB40,xylE基因在根瘤菌内表达活性较高.质粒pLV1016携带的XylE基因用于监测根瘤菌在灭菌和未灭菌土壤中的存活,结果表明,在灭菌土壤中含质粒与不含质粒菌株存活菌数量之间无显著差异(P<0.05),大接种量有利于细菌的生长与繁殖,B40(pLV1016)质粒丢失比例很低.以低于106CFU·g-1干土浓度接种时,QB1130(pLV1016)质粒丢失率随接种浓度的降低而增大.未灭菌土壤中生物因素抑制了释放菌株的生长,大接种量有利于细菌存活.以低浓度(106CFU·g-1干土)接种时,QB1130(pLV1016)质粒丢失比例高于B40(pLV1016). 相似文献
18.
Manipulation of rhizobia microflora for improving legume productivity and soil fertility: A critical assessment 总被引:11,自引:0,他引:11
Inputs of biologically fixed nitrogen derived from the symbiotic relationship between legumes and their root-nodule bacteria into terrestrial ecosystems amount to at least 70 million metric tons per year. It is obvious that this enormous quantity will need to be augmented as the world's population increases and as the natural resources that supply fertilizer nitrogen diminish. This objective will be achieved through the development of superior legume varieties, improvement in agronomic practice, and increased efficiency of the nitrogen fixation process itself by better management of the symbiotic relationship between plant and bacteria. This paper considers ways and means by which populations of root-nodule bacteria, established and introduced, can be manipulated ecologically, agronomically, edaphically and genetically to improve legume productivity and, as a consequence, soil fertility. 相似文献
19.
Badri Y Zribi K Badri M Huguet T van Berkum P Aouani ME 《Canadian journal of microbiology》2007,53(2):277-283
The rhizobia present in a single arid region Tunisian soil that nodulate Medicago laciniata and Medicago truncatula were compared. All isolates, 40 from each host, were Sinorhizobium meliloti based on 16S rRNA polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) patterns and subsequent confirmation by sequence analysis of the 16S rRNA genes in four representatives from each host species. There was no apparent relationship between Medicago host species of isolation and the nodulating rhizobial genome as determined by repetitive extragenic palandromic PCR. The isolates of M. laciniata were distinguished from those of M. truncatula present in the same soil by variation in PCR-RFLP of nifDK, indicating that this dissimilarity is originally genetic and not geographic. While forming effective symbioses with their own respective isolates, both M. laciniata and M. truncatula formed ineffective true nodules, nodule-like structures, or no nodules at all in cross-inoculation tests, as confirmed by the histological observations. 相似文献
20.
Rhizobia are soil bacteria with the capacity to induce nitrogen-fixing nodules on the roots or stems of legume plants. A total of 40 bacterial isolates from the root nodules of Caragana microphylla growing in desert soil in Ningxia, China, were analyzed for genetic diversity and phylogenetic position. These isolates were classified into 7 types of 16S ribosomal DNA (rDNA) using polymerase chain reaction-restriction fragment length polymorphism analysis. They were grouped into 4 clades, Rhizobium-Agrobacterium, Sinorhizobium, Phyllobacterium, and Bradyrhizobium, when the phylogenies of 16S rDNA, recA, and atpD genes were applied. Phylogenetic analysis showed that the tree generated from the 16S rDNA sequencing agreed with that produced from the recA and atpD genes. By analyzing phylogenetic relationship using the 3 loci, the isolates in the branches of Phyllobacterium and Sinorhizobium could be identified as P. brassicacearum and S. meliloti. The isolates in the branch of Rhizobium-Agrobacterium were the most abundant microsymbiont of C. microphylla and were designated R. leguminosarum, R. galegae, R. alamii, and A. tumefaciens. Two isolates with low sequence similarity to the known species of Bradyrhizobium might be novel species in this genus. 相似文献