首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reactive oxygen species (ROS) play critical roles in cell death, diseases, and normal cellular processes. TRPM2 is a member of transient receptor potential (TRP) protein superfamily and forms a Ca2+-permeable nonselective cation channel activated by ROS, specifically by hydrogen peroxide (H2O2), and at least in part via second-messenger mechanisms. Accumulating evidence has indicated that TRPM2 mediates multiple cellular responses, after our finding that Ca2+ influx via TRPM2 regulates H2O2-induced cell death. Recently, we have demonstrated that Ca2+ influx through TRPM2 induces chemokine production in monocytes and macrophages, which aggravates inflammatory neutrophil infiltration in mice. However, understanding is still limited for in vivo physiological or pathophysiological significance of ROS-induced TRPM2 activation. In this review, we summarize mechanisms underlying activation of TRPM2 channels by oxidative stress and downstream biological responses, and discuss the biological importance of oxidative stress-activated TRP channels.  相似文献   

2.
The Role of TRP Channels in Oxidative Stress-induced Cell Death   总被引:9,自引:0,他引:9  
The transient receptor potential (TRP) protein superfamily is a diverse group of voltage-independent calcium-permeable cation channels expressed in mammalian cells. These channels have been divided into six subfamilies, and two of them, TRPC and TRPM, have members that are widely expressed and activated by oxidative stress. TRPC3 and TRPC4 are activated by oxidants, which induce Na+ and Ca2+ entry into cells through mechanisms that are dependent on phospholipase C. TRPM2 is activated by oxidative stress or TNFα, and the mechanism involves production of ADP-ribose, which binds to an ADP-ribose binding cleft in the TRPM2 C-terminus. Treatment of HEK 293T cells expressing TRPM2 with H2O2 resulted in Ca2+ influx and increased susceptibility to cell death, whereas coexpression of the dominant negative isoform TRPM2-S suppressed H2O2-induced Ca2+ influx, the increase in [Ca2+]i, and onset of apoptosis. U937-ecoR monocytic cells expressing increased levels of TRPM2 also exhibited significantly increased [Ca2+]i and increased apoptosis after treatment with H2O2 or TNFα. A dramatic increase in caspase 8, 9, 3, 7, and PARP cleavage was observed in TRPM2-expressing cells, demonstrating a downstream mechanism through which cell death is mediated. Inhibition of endogenous TRPM2 function through three approaches, depletion of TRPM2 by RNA interference, blockade of the increase in [Ca2+]i through TRPM2 by calcium chelation, or expression of the dominant negative splice variant TRPM2-S protected cell viability. H2O2 and amyloid β-peptide also induced cell death in primary cultures of rat striatal cells, which endogenously express TRPM2. TRPM7 is activated by reactive oxygen species/nitrogen species, resulting in cation conductance and anoxic neuronal cell death, which is rescued by suppression of TRPM7 expression. TRPM2 and TRPM7 channels are physiologically important in oxidative stress-induced cell death.  相似文献   

3.
Melastatin-related TRPM ion channels have emerged as novel therapeutic targets due to their potential ability to modulate the function and fate of immune cells during inflammation, innate, and adaptive immunity. Four family members, TRPM1, TRPM2, TRPM4 and TRPM7 have a strong presence in the immune system. TRPM channels regulate ion-homeostasis by sensing cellular redox status and cytoplasmic calcium levels. TRPM2 for example, is highly expressed in phagocytes. This channel is activated by intracellular ADP-ribose upon exposure to oxidative stress and induces cell death. Here we will review the functional links between TRPM-mediated ion conductance, chemotaxis, apoptosis, and innate immunity.  相似文献   

4.
Transient Receptor Potential (TRP) channels are mostly Ca2+ permeable cation channels. Transient Receptor Potential Melastatin-like 2 (TRPM2) is expressed in neurological tissues such as brain, dorsal root ganglia (DRG) neurons, hippocampus and also liver, heart and kidney. The SH-SY5Y cells are mostly used as a cellular model of neurodegenerative diseases, Alzheimer's and Parkinson's diseases. Curcumin, shows phenolic structure, synthesized by Curcuma longa L. (turmeric), has powerful non-enzymatically antioxidant effects compared with Vitamin E. Hence, we aimed to investigate that effects of curcumin on TRPM2 cation channel currents using the whole-cell Patch-Clamp method, Ca2+ signaling, apoptosis and cell viability (MTT) assays, reactive oxygen species (ROS) production, mitochondrial membrane potential levels, caspase 3 and caspase 9 activities in TRPM2 transfected SH-SY5Y neuroblastoma cells. For this aim, we designed four experimental groups named; control, curcumin, transfected and transfected?+?curcumin groups. Cytosolic free calcium concentrations were higher in transfected group compared with curcumin and transfected?+?curcumin group. Moreover, these data examined with whole-cell Patch-Clamp recordings of single cells in all groups. ROS levels were significantly higher in transfected group than in transfected?+?curcumin group. Apoptosis levels in transfected?+?curcumin group were lower than in transfected group. Procaspase 9 and procaspase 3 levels measured by western blotting and caspase 3 and caspase 9 levels by spectrophotometric methods show that TRPM2 transfected cells are more tended to apoptosis. In conclusion, curcumin strongly induces modulator effects on TRPM2-mediated Ca2+ influx caused by ROS and caspase 3 and 9 processes in SH-SY5Y neuroblastoma cells.  相似文献   

5.
Cognitive impairment and emotional disturbances in Alzheimer's disease (AD) result from the degeneration of synapses and neuronal death in the limbic system and associated regions of the cerebral cortex. An alteration in the proteolytic processing of the amyloid precursor protein (APP) results in increased production and accumulation of amyloid beta-peptide (Abeta) in the brain. Abeta can render neurons vulnerable to excitotoxicity and apoptosis by disruption of cellular Ca(2+) homeostasis and neurotoxic factors including reactive oxygen species (ROS), nitric oxide (NO), and cytokines. Many lines of evidence have suggested that transient receptor potential (TRP) channels consisting of six main subfamilies termed the TRPC (canonical), TRPV (vanilloid), TRPM (melastatin), TRPP (polycystin), TRPML (mucolipin), and TRPA (ankyrin) are involved in Ca(2+) homeostasis disruption. Thus, emerging evidence of the pathophysiological role of TRP channels has yielded promising candidates for molecular entities mediating Ca(2+) homeostasis disruption in AD. In this review, we focus on the TRP channels in AD and highlight some TRP "suspects" for which a role in AD can be anticipated. An understanding of the involvement of TRP channels in AD may lead to the development of new target therapies.  相似文献   

6.
Background: Catalase catalyzes the reduction of H2O2 to water and it can also remove organic hydroperoxides. Nervous system in body is especially sensitive to free radical damage due to rich content of easily oxidizible fatty acids and relatively low content of antioxidants including catalase. Recent studies indicate that reactive oxygen species actually target active channel function, in particular TRP channels. I review the effects of catalase on Ca2+ signaling and on TRP channel activation in neuroglial cells such as microglia and substantia nigra.

Materials: Review of the relevant literature and results from recent our basic studies, as well as critical analyses of published systematic reviews were obtained from the pubmed and the Science Citation Index.

Results: It was observed that oxidative stress-induced activations of TRPM2, TRPC3, TRPC5 and TRPV1 cation channels in neuronal cells are modulated by catalase, suggesting antioxidant-dependent activation/inhibition of the channels. I provide also, a general overview of the most important oxidative stress-associated changes in neuronal mitochondrial Ca2+ homeostasis due to oxidative stress-induced channel neuropathies. Catalase incubation induces protective effects on rat brain mitochondrial function and neuronal survival. A decrease in catalase activity through oxidative stress may have an important role in etiology of Parkinson’s disease and sensory pain.

Conclusion: The TRP channels can be activated by oxidative stress products, opening of nonspecific cation channels would result in Ca2+ influx, and then elevation of cytoplasmic free Ca2+ could stimulate mitochondrial Ca2+ uptake. Catalase modulates oxidative stress-induced Ca2+ influx and some TRP channels activity in neuronal cells.  相似文献   

7.
A TRP channel that senses cold stimuli and menthol   总被引:48,自引:0,他引:48  
A distinct subset of sensory neurons are thought to directly sense changes in thermal energy through their termini in the skin. Very little is known about the molecules that mediate thermoreception by these neurons. Vanilloid Receptor 1 (VR1), a member of the TRP family of channels, is activated by noxious heat. Here we describe the cloning and characterization of TRPM8, a distant relative of VR1. TRPM8 is specifically expressed in a subset of pain- and temperature-sensing neurons. Cells overexpressing the TRPM8 channel can be activated by cold temperatures and by a cooling agent, menthol. Our identification of a cold-sensing TRP channel in a distinct subpopulation of sensory neurons implicates an expanded role for this family of ion channels in somatic sensory detection.  相似文献   

8.
瞬时受体电位通道研究进展   总被引:5,自引:0,他引:5  
瞬时受体电位通道(TRP channels)是位于细胞膜上的一类重要的阳离子通道超家族.根据氨基酸序列的同源性,将已发现的28种哺乳动物,TRP通道分为:TRPC、TRPV、TRPM、TRPA、TRPP和TRPML 6个亚家族.所有的TRP通道都具有6次跨膜结构域.不同的TRP通道对钙离子和钠离子选择性不同.TRP通道分布广泛,调节机制各异,通过感受细胞内外环境的各种刺激,参与痛温觉、机械感觉、味觉的发生和维持细胞内外环境的离子稳态等众多生命活动.  相似文献   

9.
Reactive oxygen species (ROS) have been commonly accepted as inducers of autophagy, and autophagy in turn is activated to relieve oxidative stress. Yet, whether and how oxidative stress, generated in various human pathologies, regulates autophagy remains unknown. Here, we mechanistically studied the role of TRPM2 (transient receptor potential cation channel subfamily M member 2)-mediated Ca2+ influx in oxidative stress-mediated autophagy regulation. On the one hand, we demonstrated that oxidative stress triggered TRPM2-dependent Ca2+ influx to inhibit the induction of early autophagy, which renders cells more susceptible to death. On the other hand, oxidative stress induced autophagy (and not cell death) in the absence of the TRPM2-mediated Ca2+ influx. Moreover, in response to oxidative stress, TRPM2-mediated Ca2+ influx activated CAMK2 (calcium/calmodulin dependent protein kinase II) at levels of both phosphorylation and oxidation, and the activated CAMK2 subsequently phosphorylated BECN1/Beclin 1 on Ser295. Ser295 phosphorylation of BECN1 in turn decreased the association between BECN1 and PIK3C3/VPS34, but induced binding between BECN1 and BCL2. Clinically, acetaminophen (APAP) overdose is the most common cause of acute liver failure worldwide. We demonstrated that APAP overdose also activated ROS-TRPM2-CAMK2-BECN1 signaling to suppress autophagy, thereby causing primary hepatocytes to be more vulnerable to death. Inhibiting the TRPM2-Ca2+-CAMK2 cascade significantly mitigated APAP-induced liver injury. In summary, our data clearly demonstrate that oxidative stress activates the TRPM2-Ca2+-CAMK2 cascade to phosphorylate BECN1 resulting in autophagy inhibition.  相似文献   

10.
TRP proteins form ion channels which are activated following receptor stimulation. In T-cell lines, expression data of TRP proteins have been published. However, almost no data about TRP expression is available in primary human T-cells. Using RT-PCR and quantitative RT-PCR, we compare the expression of TRP mRNA in 1) human peripheral blood lymphocytes, which are a mix of mostly mono-nuclear blood lymphocytes but contain other leucocytes, 2) a pure human CD4+ T-helper cell population in the resting (= naïve) and activated (= effector) state, and 3) two commonly used CD4+ Jurkat T-cell lines, E6-1 and parental. To mimic physiological cell stimulation, we analyzed TRP expression in primary human cells in a quantitative way over several days following formation of an immunological synapse through stimulation with antibody-coated beads. The TRP expression profile of primary human T-cells was significantly different from Jurkat T-cells. Among the TRP mRNAs of the TRPC, TRPM, and TRPV family, we found consistent expression of TRPC1, TRPC3, TRPV1, TRPM2, and TRPM7 in primary human CD4+ T-cells of all analyzed blood donors. Among these, TRPC3 and TRPM2 were strongly up-regulated following stimulation, but with different kinetics. We found that TRPC3 modulates Ca2+-dependent proliferation of primary CD4+ T-cells indicating that TRPC3 may be involved in Ca2+ homeostasis in T-cells besides the well-established STIM and ORAI proteins which are responsible for store-operated Ca2+ entry.  相似文献   

11.
Chuang HH  Neuhausser WM  Julius D 《Neuron》2004,43(6):859-869
TRPM8, a member of the transient receptor potential family of ion channels, depolarizes somatosensory neurons in response to cold. TRPM8 is also activated by the cooling agents menthol and icilin. When exposed to menthol or cold, TRPM8 behaves like many ligand-gated channels, exhibiting rapid activation followed by moderate Ca(2+)-dependent adaptation. In contrast, icilin activates TRPM8 with extremely variable latency followed by extensive desensitization, provided that calcium is present. Here, we show that, to achieve full efficacy, icilin requires simultaneous elevation of cytosolic Ca2+, either via permeation through TRPM8 channels or by release from intracellular stores. Thus, two stimuli must be paired to elicit full channel activation, illustrating the potential for coincidence detection by TRP channels. Determinants of icilin sensitivity map to a region of TRPM8 that corresponds to the capsaicin binding site on the noxious heat receptor TRPV1, suggesting a conserved molecular logic for gating of these thermosensitive channels by chemical agonists.  相似文献   

12.
There are eight thermosensitive TRP (transient receptor potential) channels in mammals, and there might be other TRP channels sensitive to temperature stimuli. Here, we demonstrate that TRPM2 can be activated by exposure to warm temperatures (>35 degrees C) apparently via direct heat-evoked channel gating. beta-NAD(+)- or ADP-ribose-evoked TRPM2 activity is robustly potentiated at elevated temperatures. We also show that, even though cyclic ADP-ribose (cADPR) does not activate TRPM2 at 25 degrees C, co-application of heat and intracellular cADPR dramatically potentiates TRPM2 activity. Heat and cADPR evoke similar responses in rat insulinoma RIN-5F cells, which express TRPM2 endogenously. In pancreatic islets, TRPM2 is coexpressed with insulin, and mild heating of these cells evokes increases in both cytosolic Ca(2+) and insulin release, which is K(ATP) channel-independent and protein kinase A-mediated. Heat-evoked responses in both RIN-5F cells and pancreatic islets are significantly diminished by treatment with TRPM2-specific siRNA. These results identify TRPM2 as a potential molecular target for cADPR, and suggest that TRPM2 regulates Ca(2+) entry into pancreatic beta-cells at body temperature depending on the production of cADPR-related molecules, thereby regulating insulin secretion.  相似文献   

13.
低氧是一种典型的应激环境,细胞在低氧条件下能量和氧化代谢发生改变,其中线粒体产生的大量活性氧严重威胁细胞的存活.线粒体自噬是近年来被发现的细胞适应低氧的一种适应性代谢反应.细胞在低氧条件下能通过上调低氧诱导因 子1(HIF-1),激活BNIP3/BNIP3L及Beclin-1介导的通路诱导线粒体自噬,最终减少ROS的产生,促进细胞的存活,使机体产生低氧适应.综述了线粒体自噬在低氧适应中的作用及其机制.  相似文献   

14.
The transient receptor potential (TRP) superfamily is subdivided into several subfamilies on the basis of sequence similarity, which is highly heterogeneous but shows a molecular architecture that resembles the one present in members of the Kv channel superfamily. Because of this diversity, they produce a large variety of channels with different gating and permeability properties. Elucidation of these particular features necessarily requires comparative studies based on structural and functional data. The present study aims to compilate, analyze, and determine, in a coherent way, the relationship between intrinsic side‐chain flexibility and the allosteric coupling in members of the TRPV, TRPM, and TRPC families. Based on the recently determined structures of TRPV1 and TRPV2, we have generated protein models for single subunits of TRPV5, TRPM8, and TRPC5 channels. With these models, we focused our attention on the apparently crucial role of the GP dipeptide at the center of the S4‐S5 linker and discussed its role in the interaction with the TRP domain, specifically with the highly‐conserved Trp during this coupling. Our analysis suggests an important role of the S4‐S5L flexibility in the thermosensitivity, where heat‐activated channels possess rigid S4‐S5 linkers, whereas cold‐activated channels have flexible ones. Finally, we also present evidence of the key interaction between the conserved Trp residue of the TRP box and of several residues in the S4‐S5L, importantly the central Pro. Proteins 2017; 85:630–646. © 2016 Wiley Periodicals, Inc.  相似文献   

15.
Reactive oxygen species (ROS) and nitric oxide (NO) have a role in the development of pulmonary fibrosis after bleomycin administration. The ROS production induces an antioxidant response, involving superoxide dismutases (SODs), catalase, and glutathione peroxidases. We compared in situ oxidative burden and antioxidant enzyme activity in bleomycin-injured rat lungs and normal controls. ROS expression and catalase, glucose-6-phosphate-dehydrogenase (G6PHD), and NOS/NADPH-diaphorase activity were investigated by using histochemical reactions. Nitric oxide synthase (e-NOS and i-NOS) and SOD (MnSOD, Cu/ZnSOD, ECSOD) expression was investigated immunohistochemically. After treatment ROS production was enhanced in both phagocytes and in type II alveolar epithelial cells. Mn, Cu/Zn, and ECSOD were overexpressed in parenchymal cells, whereas interstitium expressed ECSOD. Catalase and G6PHD activity was moderately increased in parenchymal and inflammatory cells. NOS/NADPH-d activity and i-NOS expression increased in alveolar and bronchiolar epithelia and in inflammatory cells. It can be suggested that the concomitant activation of antioxidant enzymes is not adequate to scavenge the oxidant burden induced by bleomycin lung damage. Inflammatory cells and also epithelial cells are responsible of ROS and NO production. This oxidative and nitrosative stress may be a substantial trigger in TGF-β1 overexpression by activated type II pneumocytes, leading to fibrotic lesions.  相似文献   

16.
Pannexins, which contain three subtypes: pannexin‐1, ‐2, and ‐3, are vertebrate glycoproteins that form non‐junctional plasma membrane intracellular hemichannels via oligomerization. Oxidative stress refers to an imbalance of the generation and elimination of reactive oxygen species (ROS). Studies have shown that elevated ROS levels are pivotal in the development of a variety of diseases. Recent studies indicate that the occurrence of these oxidative stress related diseases is associated with pannexin hemichannels. It is also reported that pannexins regulate the production of ROS which in turn may increase the opening of pannexin hemichannels. In this paper, we review recent researches about the important role of pannexin hemichannels in oxidative stress related diseases. Thus, pannexin hemichannels, novel therapeutic targets, hold promise in managing oxidative stress related diseases such as the tumor, inflammatory bowel diseases (IBD), pulmonary fibrosis, chronic obstructive pulmonary disease (COPD), cardiovascular disease, insulin resistance (IR), and neural degeneration diseases.
  相似文献   

17.
TRPM1 is the founding member of the melastatin subgroup of transient receptor potential (TRP) proteins, but it has not yet been firmly established that TRPM1 proteins form ion channels. Consequently, the biophysical and pharmacological properties of these proteins are largely unknown. Here we show that heterologous expression of TRPM1 proteins induces ionic conductances that can be activated by extracellular steroid application. However the current amplitudes observed were too small to enable a reliable biophysical characterization. We overcame this limitation by modifying TRPM1 channels in several independent ways that increased the similarity to the closely related TRPM3 channels. The resulting constructs produced considerably larger currents after overexpression. We also demonstrate that unmodified TRPM1 and TRPM3 proteins form functional heteromultimeric channels. With these approaches, we measured the divalent permeability profile and found that channels containing the pore of TRPM1 are inhibited by extracellular zinc ions at physiological concentrations, in contrast to channels containing only the pore of TRPM3. Applying these findings to pancreatic β cells, we found that TRPM1 proteins do not play a major role in steroid-activated currents of these cells. The inhibition of TRPM1 by zinc ions is primarily due to a short stretch of seven amino acids present only in the pore region of TRPM1 but not of TRPM3. Combined, our data demonstrate that TRPM1 proteins are bona fide ion-conducting plasma membrane channels. Their distinct biophysical properties allow a reliable identification of endogenous TRPM1-mediated currents.  相似文献   

18.
19.
Transient receptor potential, TRP channels are a new superfamily of functionally versatile non-selective cation channels present from yeast to mammals. On the basis of their structural homology, TRP channels are subdivided in 7 groups : TRPC 1-7 Canonical, TRPV 1-6 Vanilloid, TRPM 1-8 Melastatin, TRPP 1-3 Polycystin, TRPML Mucolipin, TRPA Ankyrin and TRPN (NO mechanotransducer potential C), the latter not expressed in mammals. Their cloning and heterologous expression allowed to demonstrating that these channels are generally weakly voltage-dependent. They are activated by various ligands involving a signal transduction cascade as well as directly by multiple compounds, heat and pH. TRP channels are found in a broad range of cell types. TRP channels are essential in allowing animals to sense the outside world and cells to sense their local environment. Following mutations or anomalous behaviour, these channels have a major role in several human diseases.  相似文献   

20.
Reactive oxygen species (ROS) encompass a variety of diverse chemical species including superoxide anions, hydrogen peroxide, hydroxyl radicals and peroxynitrite, which are mainly produced via mitochondrial oxidative metabolism, enzymatic reactions, and light-initiated lipid peroxidation. Over-production of ROS and/or decrease in the antioxidant capacity cause cells to undergo oxidative stress that damages cellular macromolecules such as proteins, lipids, and DNA. Oxidative stress is associated with ageing and the development of age-related diseases such as cancer and age-related macular degeneration. ROS activate signaling pathways that promote cell survival or lead to cell death, depending on the source and site of ROS production, the specific ROS generated, the concentration and kinetics of ROS generation, and the cell types being challenged. However, how the nature and compartmentalization of ROS contribute to the pathogenesis of individual diseases is poorly understood. Consequently, it is crucial to gain a comprehensive understanding of the molecular bases of cell oxidative stress signaling, which will then provide novel therapeutic opportunities to interfere with disease progression via targeting specific signaling pathways. Currently, Dr. Qin's work is focused on inflammatory and oxidative stress responses using the retinal pigment epithelial (RPE) cells as a model. The study of RPE cell inflammatory and oxidative stress responses has successfully led to a better understanding of RPE cell biology and identification of potential therapeutic targets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号