共查询到20条相似文献,搜索用时 15 毫秒
1.
Peter Mason 《European biophysics journal : EBJ》1978,4(1):15-25
Small sinusoidal vibrations at 300 Hz were applied to frog sartorius muscle to measure the dynamic stiffness (Young's modulus) throughout the course of tetanus. For a peak-to-peak amplitude of 0.4% the dynamic Young's modulus increased from 1.5×105 Nm–2 in the resting state to 2×107 Nm–2 in tetanus. After correction for the external connective tissue, the dynamic Young's modulus of the muscle was almost directly proportional to the tension throughout the development of tetanus. The ratio of dynamic Young's modulus to tensile stress thus remained constant (with a value at 300 Hz of approximately 100), consistently with Huxley and Simmons' identification of the crossbridges as the source of both tension and stiffness.For a single crossbridge the ratio of stiffness to tension was 8.2×107 m–1 at 300 Hz; it is deduced from literature data that the limiting value at high frequencies is about 1.6×108 m–1. This ratio is interpreted on Harrington's (1971) model to show that crossbridge action can be explained by a helix-coil transition of about 80 out of the 260 residues in each S-2 myosin strand. It is also shown that a helix-coil model can account for the observed rapid relaxation of muscle without invoking any complex behaviour of the crossbridge head. 相似文献
2.
Barclay CJ 《International journal of biological macromolecules》2003,32(3-5):139-147
Contractile filaments in skeletal muscle are moved by less than 2 nm for each ATP used. If just one cross-bridge is attached to each thin filament at any instant then this distance represents the fundamental myosin cross-bridge step size (i.e. the distance one cross-bridge moves a thin filament in one ATP-splitting cycle). However, most contraction models assume many cross-bridges are attached at any instant along each thin filament. The purpose of this study was to establish whether the net filament sliding per ATP used could be explained quantitatively in terms of a cross-bridge model in which multiple cross-bridges are attached along each thin filament. It was found that the relationship between net filament sliding per ATP split and the load against which the muscle shortens is compatible with such a model and furthermore predicts that the cross-bridge step size is between 7.5 and 12.5 nm over most of the range of loads. These values were similar for different muscle fibre types. 相似文献
3.
Based on previous experimental results of independence on starting length of the tension gradient in constant-velocity stretches of active skeletal muscle at muscle lengths including the ascending limb and the plateau of the tension-length relation, a possible physiological mechanism determining the tension increase in lengthening active muscle is discussed. Considering the sliding filament theory, it is suggested that the tension-length relation of a half-sarcomere in lengthening contractions is different from that in isometric contractions. The assumed mechanism predicts, among others, that the thick filament retains its shortened length in lengthening contractions starting from a half-sarcomere length where this filament is compressed. An example model is implemented and checked with simulations. 相似文献
4.
Kay Ohlendieck 《Biochimica et Biophysica Acta - Proteins and Proteomics》2010,1804(11):2089-2101
Glycolysis represents one of the best-understood and most ancient metabolic pathways. In skeletal muscle fibres, energy for contraction is supplied by adenosine triphosphate via anaerobic glycolysis, the phosphocreatine shuttle and oxidative phosphorylation. In this respect, the anaerobic glycolytic pathway supports short duration performances of contractile tissues of high intensity. The catalytic elements associated with glycolysis are altered during development, muscle differentiation, physiological adaptations and many pathological mechanisms, such as muscular dystrophy, diabetes mellitus and age-related muscle weakness. Although gel electrophoresis-based proteomics is afflicted with various biological and technical problems, it is an ideal analytical tool for studying the abundant and mostly soluble enzymes that constitute the glycolytic system. This review critically examines the proteomic findings of recent large-scale studies of glycolytic enzymes and associated components in normal, transforming and degenerating muscle tissues. In the long term, proteins belonging to the glycolytic pathway may be useful as biomarkers of muscle adaptations and pathophysiological mechanisms and can be employed to improve diagnostics and in the identification of novel therapeutic targets in neuromuscular disorders. 相似文献
5.
We studied the effect of deuterium oxide (D2O) on contraction characteristics and ATPase activity of single glycerinated muscle fibers of rabbit psoas. D2O increased the maximum isometric force P0 by about 20%, while the force versus stiffness relation did not change appreciably. The maximum shortening velocity under zero load Vmax did not change appreciably in D2O, so that the force-velocity (P-V) curve was scaled depending on the value of P0. The Mg-ATPase activity of the fibers during generation of steady isometric force P0 was reduced by about 50% in D2O. Based on the Huxley contraction model, these results can be accounted for in terms of D2O-induced changes in the rate constants f1 and g1 for making and breaking actin-myosin linkages in the isometric condition, in such a way that f1/(f1+g1) increases by about 20%, while (f1+g1) remains unchanged. The D2O effect at the molecular level is discussed in connection with biochemical studies on actomyosin ATPase. 相似文献
6.
Goto K Kojima A Morioka S Naito T Akema T Matsuba Y Fujiya H Sugiura T Ohira Y Yoshioka T 《Biochemical and biophysical research communications》2007,358(1):331-335
Effects of an antiulcer drug, geranylgeranylaceton (GGA), and/or heat-stress on 72 kDa heat shock protein (HSP72) expression and protein content in cultured skeletal muscle cells were studied. Mouse skeletal muscle cells (C(2)C(12)) were subjected to either 1) control (cultured at 37 degrees C without GGA), 2) GGA administration (10(-11) - 10(-8) M), 3) heat-stress at 41 degrees C for 60 min, or 4) GGA administration combined with heat-stress. Expression of HSP72 was up-regulated by GGA administration. Heat-stress further enhanced the GGA-related up-regulation of HSP72. Administration of GGA caused an increase of muscular protein content as a dose-dependent manner. Protein synthesis was also stimulated by heat-stress alone in myotubes. It was suggested that GGA stimulates the differentiation of myoblasts and protein synthesis. These observations may also suggest that the administration of GGA could be one of the useful tools to gain muscular mass not only in athletes, but also in patients during rehabilitation. 相似文献
7.
Chad D. Touchberry Anisha A. Gupte Gregory L. Bomhoff Zachary A. Graham Paige C. Geiger Philip M. Gallagher 《Cell stress & chaperones》2012,17(6):693-705
Heat shock proteins (HSPs) are chaperones that are known to have important roles in facilitating protein synthesis, protein assembly and cellular protection. While HSPs are known to be induced by damaging exercise, little is known about how HSPs actually mediate skeletal muscle adaption to exercise. The purpose of this study was to determine the effects of a heat shock pretreatment and the ensuing increase in HSP expression on early remodeling and signaling (2 and 48 h) events of the soleus (Sol) muscle following a bout of downhill running. Male Wistar rats (10 weeks old) were randomly assigned to control, eccentric exercise (EE; downhill running) or heat shock + eccentric exercise (HS; 41°C for 20 min, 48 h prior to exercise) groups. Markers of muscle damage, muscle regeneration and intracellular signaling were assessed. The phosphorylation (p) of HSP25, Akt, p70s6k, ERK1/2 and JNK proteins was also performed. As expected, following exercise the EE group had increased creatine kinase (CK; 2 h) and mononuclear cell infiltration (48 h) compared to controls. The EE group had an increase in p-HSP25, but there was no change in HSP72 expression, total protein concentration, or neonatal MHC content. Additionally, the EE group had increased p-p70s6k, p-ERK1/2, and p-JNK (2 h) compared to controls; however no changes in p-Akt were seen. In contrast, the HS group had reduced CK (2 h) and mononuclear cell infiltration (48 h) compared to EE. Moreover, the HS group had increased HSP72 content (2 and 48 h), total protein concentration (48 h), neonatal MHC content (2 and 48 h), p-HSP25 and p-p70s6k (2 h). Lastly, the HS group had reduced p-Akt (48 h) and p-ERK1/2 (2 h). These data suggest that heat shock pretreatment and/or the ensuing HSP72 response may protect against muscle damage, and enhance increases in total protein and neonatal MHC content following exercise. These changes appear to be independent of Akt and MAPK signaling pathways. 相似文献
8.
Autophagy in skeletal muscle 总被引:1,自引:0,他引:1
Marco Sandri 《FEBS letters》2010,584(7):1411-1416
Muscle mass represents 40-50% of the human body and, in mammals, is one of the most important sites for the control of metabolism. Moreover, during catabolic conditions, muscle proteins are mobilized to sustain gluconeogenesis in the liver and to provide alternative energy substrates for organs. However, excessive protein degradation in the skeletal muscle is detrimental for the economy of the body and it can lead to death. The ubiquitin-proteasome and autophagy-lysosome systems are the major proteolytic pathways of the cell and are coordinately activated in atrophying muscles. However, the role and regulation of the autophagic pathway in skeletal muscle is still largely unknown. This review will focus on autophagy and discuss its beneficial or detrimental role for the maintenance of muscle mass. 相似文献
9.
Summary Under conditions of overloading, muscle fibres have been reported to undergo a process of longitudinal division. It has been claimed that this process leads to an increase in cross-sectional area and therefore contributes to the force of contraction. Recent work, however has demonstrated that the division is of limited extent and apparently pathological in origin. Examination of material taken from the immediate vicinity of a crush lesion has shown that a similar picture is reproduced by gross trauma. An electronmicroscopic study of dividing fibres in both overloaded and traumatized muscles has confirmed their similarity and revealed that atrophic changes are present. This evidence is sufficient to suggest that the longitudinal division of fibres seen in overloaded muscles and possibly in dystrophic muscles follows damage to the fibre and that division in this manner may allow the rejection from it of degenerated portions.We wish to thank Professor J. Z. Young, F.R.S. for his advice and encouragement and Mr. A. Aldrich and Mr. D. Gunn for their assistance with the illustrations. 相似文献
10.
A. Y. Belanger A. J. McComas 《European journal of applied physiology and occupational physiology》1989,58(6):563-567
Using a combination of single maximal stimuli and maximum voluntary contractions, a comparison has been made of muscle properties in pre- and post-pubertal male subjects. In the dorsiflexor and plantarflexor muscles of the ankle, the twitch and maximum voluntary torques were approximately twice as large in the older subjects; the mean height and mean weight increased by factors of 1.20 and 1.86 respectively. The only other muscle parameter that changed, as a function of age, was the contraction time of the ankle dorsiflexors; the mean value was significantly longer in the older subjects. In the younger subjects, there were already clear differences between the dorsiflexor and plantarflexor muscles, the former developing smaller torques and having shorter contraction and half-relaxation times, greater post-activation potentiation and more susceptibility to fatigue. Even in the youngest subject, motor unit activation was complete in the ankle dorsiflexors; although this was not always true of the plantarflexors, the difference between the two subject groups was not significant. 相似文献
11.
Robert S. Staron Robert S. Hikida Thomas F. Murray Marcia M. Nelson Peter Johnson Fredrick Hagerman 《European journal of applied physiology and occupational physiology》1992,65(3):258-264
The effects of repeated biopsy sampling on muscle morphology was qualitatively and quantitatively assessed in strength-trained and untrained men and women. College-age men (13) and women (8) resistance trained twice a week for 8 weeks. A progressive resistance-training program was performed consisting of squats, leg presses, and leg extensions. Nontraining men (7) and women (5) served as controls. Muscle biopsy specimens and fasting bloods were obtained at the beginning and every 2 weeks and histochemical, biochemical, and ultrastructural methods were employed to assess the type and amount of damage. Except for a few scattered atrophic fibers in 2 of the 33 biopsy samples, all initial specimens were normal. In contrast, many of the subsequent biopsy samples from both untrained and resistance-trained men and women contained evidence of damage. Ultrastructural analysis confirmed that degenerative-regenerative processes were occurring in both groups. However, training subjects had a four-fold greater number of damaged fibers than nontraining subjects (8.53% vs 2.08%). In addition, only biopsy samples from training individuals contained fibers with internal disorganization (e.g., Z-line streaming, myofibrillar disruption). Calpain II levels in the biopsy samples and serum creatine kinase activity were not significantly affected supporting the light and electron microscopic observations that most of the damaged fibers were normal in appearance except for their small diameter. In summary, focal damage induced by the biopsy procedure is not completely repaired after 2 weeks and could affect the results, particularly cross-sectional area measurements. Moreover, resistance training appears to cause additional damage to the muscle and may delay repair of the biopsied region. 相似文献
12.
Kazuo Inoue Sho Yamasaki Tohru Fushiki Yoshimune Okada Etsuro Sugimoto 《European journal of applied physiology and occupational physiology》1994,69(1):88-91
The physiological importance of the increase in androgen receptors in exercise-induced muscle hypertrophy was investigated in rats. Together with training rat gastrocnemius muscles by electrical stimulation every other day for 2 weeks, male rats were administered the androgen receptor antagonist, oxendolone. The androgen receptor antagonist effectively decreased the wet mass of the prostate, an androgen target organ, and did not significantly affect body mass. The increase in muscle mass induced by electrical stimulation was effectively suppressed by the androgen receptor blockade. The mean degree of muscle hypertrophy in the antagonist-treated group was significantly lower than that in the control group (102.30% vs 107.41%, respectively;P=0.006). This result suggests that the androgen pathway has a significant effect in exercise-induced muscle hypertrophy and emphasizes the importance of the increase in the number of androgen receptors in exercised muscle. 相似文献
13.
Temperature adaptation and the contractile properties of live muscle fibres from teleost fish 总被引:2,自引:0,他引:2
T. P. Johnson I. A. Johnston 《Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology》1991,161(1):27-36
Summary The contractile properties of swimming muscles have been investigated in marine teleosts from Antarctic (Trematomus lepidorhinus, Pseudochaenichthys georgianus), temperate (Pollachius virens, Limanda limanda, Agonis cataphractus, Callionymus lyra), and tropical (Abudefduf abdominalis, Thalassoma duperreyi) latitudes. Small bundles of fast twitch fibres were isolated from anterior myotomes and/or the pectoral fin adductor profundis muscle (m. add. p). Live fibre preparations were viable for several days at in vivo temperatures, but became progressively inexcitable at higher or lower temperatures. The stimulation frequency required to produce fused isometric tetani increased from 50 Hz in Antarctic species at 0°C to around 400 Hz in tropical species at 25°C. Maximum isometric tension (Po) was produced at the normal body temperature (NBT) of each species (Antarctic, 0–2°C; North Sea and Atlantic, 8–10°C; Indo-West Pacific, 23–25°C). P0 values at physiological temperatures (200–300 kN·m–2) were similar for Antarctic, temperate, and tropical species. A temperature induced tension hysteresis was observed in muscle fibres from some species. Exposure to <0°C in Antarctic and <2°C in temperate fish resulted in the temporary depression of tension over the whole experimental range, an effect reversed by incubation at higher temperatures. At normal body temperatures the half-times for activation and relaxation of twitch and tetanic tension increased in the order Antarctic>temperate>tropical species. Relaxation was generally much slower at temperatures <10°C in fibres from tropical than temperate fish. Q10 values for these parameters at NBTs were 1.3 2.1 for tropical species, 1.7–2.6 for temperate species, and 1.6–3.5 for Antarctic species. The forcevelocity (P-V) relationship was studied in selected species using iso-velocity releases and the data below 0.8 P0 iteratively fitted to Hill's equation. The P-V relation at NBT was found to be significantly less curved in Antarctic than temperate species. The unloaded contraction velocity (Vmax) of fibres was positively correlated with NBT increasing from about 1 muscle fibre length·s–;1 in an Antarctic fish (Trematomus lepidorhinus) at 1°C to around 16 muscle fibre lengths·s–1 in a tropical species (Thalassoma duperreyi) at 24°C. It is concluded that although muscle contraction in Antarctic fish shows adaptations for low temperature function, the degree of compensation achieved in shortening speed and twitch kinetics is relatively modest.Abbreviations
ET
environmental temperature
-
m. add. p
major adductor profundis
-
m. add. s.
major adductor superficialis
-
NBT
normal body temperature
-
P
0
maximum isometric tension
-
P-V
force velocity
-
SR
sarcoplasmic reticulum
-
T 1/2 a
half activation time
-
T 1/2 r
half relaxation time
-
V
max
unloaded contraction 相似文献
14.
Brian R. MacIntosh Walter Herzog Esther Suter J. Preston Wiley Jason Sokolosky 《European journal of applied physiology and occupational physiology》1993,67(6):499-506
It has been reported that there is a relationship between power output and fibre type distribution in mixed muscle. The strength of this relationship is greater in the range of 3–8 rad · s–1 during knee extension compared to slower or faster angular knee extensor speeds. A mathematical model of the force: velocity properties of muscle with various combinations of fast- and slow-twitch fibres may provide insight into why specific velocities may give better predictions of fibre type distribution. In this paper, a mathematical model of the force: velocity relationship for mixed muscle is presented. This model demonstrates that peak power and optimal velocity should be predictive of fibre distribution and that the greatest fibre type discrimination in human knee extensor muscles should occur with measurement of power output at an angular velocity just greater than 7 rad · s–1. Measurements of torque: angular velocity relationships for knee extension on an isokinetic dynamometer and fibre type distribution in biopsies of vastus lateralis muscles were made on 31 subjects. Peak power and optimal velocity were determined in three ways: (1) direct measurement, (2) linear regression, and (3) fitting to the Hill equation. Estimation of peak power and optimal velocity using the Hill equation gave the best correlation with fibre type distribution (r > 0.5 for peak power or optimal velocity and percentage of fast-twitch fibres). The results of this study confirm that prediction of fibre type distribution is facilitated by measurement of peak power at optimal velocity and that fitting of the data to the Hill equation is a suitable method for evaluation of these parameters. 相似文献
15.
Shih-fang Fan M. M. Dewey B. Gaylinn B. Chu 《Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology》1992,162(6):508-512
Summary In dynamic light scattering, measurements of the intensity-intensity time correlation function from a suspension of rod-like particles of length L could reveal dynamical information related to translational and internal motions of those particles. For a suspension of thick filaments isolated from the myosin-regulated, striated muscles of Limulus at KL>1 (where K is the scattering vector), the average characteristic linewidth (
) increased with the addition of Ca2+ or with the depletion of ATP. The increase in the
with the addition of Ca2+ could be due to the presence of energy-requiring, high-frequency motions of the crossbridges activated by Ca2+. The increase in
which occurred with the depletion of ATP was assumed to be mainly due to the thermal motions of the crossbridges after they had moved radially away from the filament backbone. The percentage increase in
following the addition of Ca2+ was found to be seasonal, i.e., values of
obtained from thick filaments isolated between the middle of June and the middle of September were smaller than those obtained during the rest of the year. The effect of temperature on the percentage increase in
was also different. The increase showed a maximum at about 35°C during the summer and at about 25°C at other times. However, the percentage increase in
developed under ATP-depleted conditions showed no temperature-related maximum. The number of bound Ca2+ per myosin molecule was 1 during the summer and 2 at other times.Abbreviations DLS
dynamic light scattering
- L
length
- K
scattering vector
- SDS-PAGE
sodium dodecyl sulfate polyacrylamide gel electrophoresis
-
average characteristic line width
Deceased 相似文献
16.
In response to skeletal muscle injury, distinct cellular pathways are activated to repair the damaged tissue. Activation and restriction of these pathways must be temporally coordinated in a precise sequence as regeneration progresses if muscle integrity and homeostasis are to be restored. However, if tissue injury persists, as in severe muscular dystrophies, the repair process becomes uncontrolled leading to the substitution of myofibers by a non-functional mass of fibrotic tissue. In this review, we provide an overview of how muscle responds to damage and aging, with special emphasis on the cellular effectors and the regulatory and inflammatory pathways that can shift normal muscle repair to fibrosis development. 相似文献
17.
Evan J. H. Lewis Andrew H. Ramsook Marius Locke Catherine E. Amara 《Cell stress & chaperones》2013,18(5):667-673
The loss of muscle mass with age or sarcopenia contributes to increased morbidity and mortality. Thus, preventing muscle loss with age is important for maintaining health. Hsp72, the inducible member of the Hsp70 family, is known to provide protection to skeletal muscle and can be increased by exercise. However, ability to increase Hsp72 by exercise is intensity-dependent and appears to diminish with advanced age. Thus, other exercise modalities capable of increasing HSP content and potentially preventing the age related loss of muscle need to be explored. The purpose of this study was to determine if the stress from one bout of mild eccentric exercise was sufficient to elicit an increase in Hsp72 content in the vastus intermedius (VI) and white gastrocnemius (WG) muscles, and if the Hsp72 response differed between adult and late middle-aged rats. To do this, 30 adult (6 months) and late middle-aged (24 months) F344BN rats were randomly divided into three groups (n = 6/group): control (C), level exercise (16 m.min−1) and eccentric exercise (16 m.min−1, 16 degree decline). Exercised animals were sacrificed immediately post-exercise or after 48 hours. Hematoxylin and Eosin staining was used to assess muscle damage, while Western Blotting was used to measure muscle Hsp72 content. A nested ANOVA with Tukey post hoc analysis was performed to determine significant difference (p < 0.05) between groups. Hsp72 content was increased in the VI for both adult and late middle-aged rats 48 hours after eccentric exercise when compared to level and control groups but no differences between age groups was observed. Hsp72 was not detected in the WG following any type of exercise. In conclusion, mild eccentric exercise can increase Hsp72 content in the rat VI muscle and this response is maintained into late middle-age. 相似文献
18.
目的:观察低剂量创伤弧菌感染小鼠心肌、骨骼肌的超微结构变化,比较创伤弧菌引起的特征性病变下肢水肿骨骼肌病变与心脏病变出现的次序,探讨下肢水肿是否存在与心肌病变有关.方法:16只6~8周ICR(清洁级)小鼠.实验组12只腹腔注射<LD50(1.34×107个/ml)的菌量(4.45×105个/ml)0.2ml,4只注射生理盐水0.2 ml作为菌液对照.分别取1 h、3 h、6 h、12 h小鼠心肌、后肢骨骼肌肌肉组织0.1cm×0.1 cm×0.1 cm置电镜固定液,超薄切片观察超微结构.结果:引起的动物模型实验组小鼠主要的实质性病变在心肌.实验组3 h就发现肌原纤维间隙扩大,肌丝断裂,肌膜下水肿较明显.6 h肌丝排列紊乱,疏松,局灶性肌丝断裂溶解.12 h核固缩水肿,间隙水肿,肌丝断裂,线粒体肿胀.而骨骼肌肌肉超微结构变化不明显,3 h、6 h和12 h实验组未死亡小鼠只表现肌组织间质变化,肌浆网扩张,组织间质水肿,胶原纤维排列稀疏、溶解.结论:本实验心肌、骨骼肌水肿与临床下肢水肿的症状相吻合,并提示心肌的实质病变明显早于骨骼肌,比较而言创伤弧菌所致病变是以重要脏器心脏的损伤为主,早期创伤弧菌对骨骼肌肌肉的实质性损伤并不明显.由创伤弧菌所致的原发性败血症表现双下肢出血性水肿可能不是创伤弧菌初始病变. 相似文献
19.
Camilla Reina Maroni Michael A. Friedman Yue Zhang Michael J. McClure Stefania Fulle Charles R. Farber Henry J. Donahue 《Journal of musculoskeletal & neuronal interactions》2021,21(3):387
Objective:To examine whether genetic variability plays a role in skeletal muscle response to disuse.Methods:We examined skeletal muscle response to disuse in five different strains of mice: CAST/EiJ, NOD/ShiLtJ, NZO/HILtJ, 129S1/SvImJ and A/J. Mice had one limb immobilized by a cast for three weeks.Results:Response to immobilization was dependent on the strain of mice. Skeletal muscle mass/body weight was decreased by immobilization in all strains except 1291/SvImJ. Immobilization decreased absolute skeletal muscle mass in quadriceps and gastrocnemius in NOD/ShiltJ and NZO/HILtJ mice. Three weeks of immobilization resulted in an increase in quadriceps levels of atrogenes in CAST/EiJ. Immobilization resulted in an increase in quadriceps and gastrocnemius levels of Myh4 in CAST/EiJ. A similar trend was observed for Myh7 in gastrocnemius muscle. Immobilization resulted in a decrease of the p-p70S6K1/total p706SK1 ratio in quadriceps of NOD/ShiLtJ mice and the gastrocnemius of A/J mice. Immobilization did not affect the p-4EBP1/total 4EBP1 ratio in quadriceps of any of the strains examined. However, the p-4EBP1/total 4EBP1 ratio in gastrocnemius was greater in immobilized, relative to control, limbs in CAST/EiJ mice.Conclusion:Genetic variability affects the response of skeletal muscle to disuse. 相似文献
20.
R.C. Woledge C.J. Barclay N.A. Curtin 《Proceedings. Biological sciences / The Royal Society》2009,276(1668):2685-2695
Following the ideas introduced by Huxley (Huxley 1957, Prog. Biophys. Biophys. Chem. 7, 255–318), it is generally supposed that muscle contraction is produced by temporary links, called crossbridges, between myosin and actin filaments, which form and break in a cyclic process driven by ATP splitting. Here we consider the interaction of the energy in the crossbridge, in its various states, and the force exerted. We discuss experiments in which the mechanical state of the crossbridge is changed by imposed movement and the energetic consequence observed as heat output and the converse experiments in which the energy content is changed by altering temperature and the mechanical consequences are observed. The thermodynamic relationship between the experiments is explained and, at the first sight, the relationship between the results of these two types of experiment appears paradoxical. However, we describe here how both of them can be explained by a model in which mechanical and energetic changes in the crossbridges occur in separate steps in a branching cycle. 相似文献