首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
用不同浓度的PEG6000及NaCl对5个小麦品种的成熟胚组织培养物进行处理,研究在渗透胁迫条件下基因型和激素对成熟胚愈伤组织的诱导及分化的影响。结果表明,小麦整株水平与细胞水平的抗性存在一定相关,不同基因型对干旱与盐胁迫的敏感程度不同,成熟胚愈伤组织的诱导率和植株再生率表现出明显的差异。初步得到了晋麦47、长武134、红芒麦的耐旱愈伤组织以及晋麦47、长武134的耐盐愈伤组织,并获得了晋麦47和长武134具有一定抗性的再生芽。  相似文献   

2.
陆地棉中棉所24胚性愈伤组织的诱导及植株再生   总被引:16,自引:2,他引:14  
以陆地棉“中棉所24”为材料进行了全固体体细胞培养,获得了愈伤组织和再生植株。愈伤组织诱导阶段采用0.01IAA 0.01KT 0.012,4-D的培养基效果好,继代时间多为30~50d;激素由高到低的继代可明显提高胚性愈伤分化率,IAA和KT含量均较低,IAA/KT比例为1:1~1:6,胚性愈伤最高分化率为50.22%。  相似文献   

3.
The plant regeneration ability of zygotic embryo-derived callus cultures was studied for 12 A. cepa varieties and accessions, two A. fistulosum varieties, one A. fistulosum x A. cepa interspecific hybrid and two A. porrum varieties. Compact embryogenic callus was induced on Murashige and Skoog (MS) medium supplemented with 2,4-dichlorophenoxyacetic acid. The embryogenic calluses of all three Allium species were similar in appearance. For all accessions tested plants could be regenerated at a high frequency from this compact callus through somatic embryogenesis, when using kinetin supplemented MS medium (regeneration medium). Addition of abscisic acid to the regeneration medium stimulated the formation of both somatic embryos and shoots for a number of varieties. Concerning shoot regeneration from callus cultures, significant differences existed between genotypes of all accessions except one.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - VDH Van Der Have Seed company  相似文献   

4.
杯山药零余子愈伤组织诱导及植株再生的研究   总被引:12,自引:0,他引:12  
对怀山药(Dioscorea opposita)零余子愈伤组织的诱导、分化、再生苗的生根和移栽进行了研究。结果表明:⑴在不同激素组合的培养基上怀山药零余子均能产生愈作组织,而且具有一次成苗的能力。BA2mg/L+NAA2mg/L的培养基对诱导愈伤组织最有利,其出愈率达100%;⑵在愈伤组织的分化中,BA1mg/L+NAA1mg/L的激素组合是最佳的,其分化率为63.6%,且多形成丛生芽;⑶再生植株  相似文献   

5.
以水稻成熟胚为材料诱导愈伤组织,统计在不同基本培养基上的愈伤诱导率以及绿苗分化率,分析不同基本培养基及外源激素的含量和比例对愈伤组织生长及分化的影响。结果表明,试验材料对基本培养基具有选择性,MS培养基对籼稻种胚愈伤的诱导培养效果较好,NB培养基则更适合粳稻种胚愈伤的诱导培养;诱导继代培养基中加入多种氨基酸组合可有效提高出愈率和分化率,特别是粳稻的愈伤组织的诱导和分化需要多种氨基酸的共同作用;不同基因型水稻材料对激素和氨基酸组合的需求不同。  相似文献   

6.
Machii  H.  Mizuno  H.  Hirabayashi  T.  Li  H.  Hagio  T. 《Plant Cell, Tissue and Organ Culture》1998,53(1):67-74
Plant regeneration via tissue culture varies with the genotype and is an important factor in establishing cell selection and genetic transformation systems. To select genotypes – especially Japanese ones – with a high regeneration capability, we screened 107 wheat genotypes (78 domestic, 29 foreign) for callus induction and regeneration capability from anther and immature embryo cultures. For anther culture, 83 of 107 genotypes tested induced calli and 45 regenerated plants. Only 9 genotypes, however, produced green plants, 25 produced only albino plants, and 11 produced both green and albino plants. Glennson 81 was the highest in callus induction, followed by Orofen, Danchi–komugi and Chris. The genotypes with a relatively high regeneration capability were Framala 80 at 24% and Glennson 81 at 19%, these two genotypes produced only green plants. For immature embryo culture, 97 genotypes showed a 90% callus induction rate and 74 genotypes regenerated plants. Very few genotypes produced albino plants. The genotypes with a high regeneration capability were Genaro 81 at 90%, Chinese Spring at 80%, and Norin 75 at 75%. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

7.
W. Tang  F. Ouyang  Z. Guo 《Plant cell reports》1998,17(6-7):557-560
Mature zygotic embryos from three seed sources of loblolly pine were cultured on callus induction medium containing 10 mg l–1 α-naphthaleneacetic acid, 4 mg l–1 benzyladenine (BA), 400 mg l–1 casein hydrolysate, and 400 mg l–1 glutamine for 6 weeks. Light-yellow, loose, glossy, globular callus was formed, and the highest frequency was 35.7%. The highest differentiation frequency of callus on adventitious bud induction medium was 62.1%. After culture of calli with adventitious buds on elongation medium for 6 weeks, adventitious shoots more than 1.0 cm in height were selected for rooting. On rooting medium supplemented with 0.1 mg l–1 indole-3-butyric acid, 1 mg l–1 BA, and 0.5 mg l–1 gibberellic acid, the highest rooting frequency of adventitious shoots was 46% in a culture period of 6 weeks. Established plants survived following transfer to soil at a frequency of 71%. Received: 14 May 1997 / Revision received: 25 September 1997 / Accepted: 11 October 1997  相似文献   

8.
Plant regeneration from shoot tips and callus of papaya   总被引:8,自引:0,他引:8  
Summary Two methods of in vitro culture were employed to regenerate papaya plants. One involved regeneration of plants from callus and the other, production of multiple plants from single shoot-tip explants. Callus was induced from stem sections of papaya seedlings in a medium containing 1 mg per 1 NAA and 0.1 mg per 1 kinetin. The callus regenerated shoots and/or embryoids when transferred to a medium of lower auxin, 0 to 0.05 mg per 1 IAA, and higher cytokinin, 1 to 2 mg per 1 kinetin Multiple shoots were produced when the excised shoot-tip explants were cultured in a medium supplemented with 0.05 mg per 1 IAA and either 5 mg per 1 kinetin or 0.5 to 1.0 mg per 1 benzyladenine. Root formation of the shoots or embryoids that derived from callus or shoot tips occurred in a medium containing 5 mg per 1 IAA and in a light intensity of 3000 to 4000 Ix. The rooted plants could be established in soil and under standard greenhouse conditions after they had been acclimated by initially growing them in moist vermiculite contained in polyethylene-covered pots. This research was supported by the National Science Council, Republic of China.  相似文献   

9.
Nodular callus was induced at a high frequency on young purple red, 5–15 mm long laminae taken from in vitro grown plants of mangosteen. The optimal medium was composed of Murashige and Skoog (MS) nutrients supplemented with 2.22 μM benzyladenine (BA), 2.25 μM thidiazuron (TDZ), 500 mg l-1 polyvinylpyrrolidone (PVP 360 000) and 3% sucrose. A multiplication rate of two–three was obtained by subculture of the nodular callus at 3–4-week intervals. Plantlet regeneration from the nodules was achieved by transfer to woody plant medium (WPM) with 500 mg l-1 PVP, 0.4 μM BA and 3% sucrose and overlaying with half strength liquid MS containing 0.32 μM naphthaleneacetic acid (NAA), 0.13 μM BA and 3% sucrose. Elongated shoots were rooted to 100% when wounded at the base of shoot, dipped in 4.4 mM indolebutyric acid (IBA) solution in the dark for 15 min and cultured on WPM supplemented with 1.11 μM BA, 0.25% activated charcoal, 34.5 μM phloroglucinol (PG) and 3% sucrose. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
Summary A system for the regeneration of spinach (Spinacia oleracea L.) from mature dry seed explants has been established. The response of two commercial spinach cultivars, ‘Grandstand’ and ‘Baker’, was examined. Callus proliferation was most prominent on MS medium supplemented with 9.3 μM of 6-furfurylaminopurine (kinetin) and 3.39 μM 2,4-dichlorophenoxyacetic acid (2,4-D). Adventitious shoot formation was observed within 8 wk after callus was transferred onto regeneration medium. Shoot regeneration was best from callus induced on 9.3 μM kinetin and 4.56 μM 2,4-D. The regeneration medium contained 9.3 μM kinetin, 0.045 μM 2,4-D, and 2.89 μM gibberellic acid (GA3). Shoots were rooted on hormone-free medium, and plants grown in a greenhouse showed normal phenotype. This system is beneficial in rapid propagation of spinach plants, particularly when only a limited number of seeds are available.  相似文献   

11.
Callus induction and plant regeneration from mature embryos of sunflower   总被引:1,自引:0,他引:1  
Callus development and efficient shoot and root organogenesis were obtained from five different sunflower (Helianthus annuus L.) genotypes: Trakya 80, Trakya 129, Trakya 259, Trakya 2098, and Viniimk 8931, which are commercially important for Turkey. Plant tissue culture systems were established on Murashige and Skoog (MS) media supplemented with various plant growth regulators using mature embryos of sunflower. For callus induction MS + 1 mg/l 2,4-D, for shoot regeneration MS + 1 mg/l benzyladenine and 0.5 mg/l α-naphthaleneacetic acid were used. Callus induction ratios were around 80–92% in all tested genotypes. The Trakya 259 genotype gave the best shoot regeneration response (44%). All regenerated shoots were rooted on MS medium supplemented with 1 mg/l indolyl-3-butyric acid and on MS medium without any hormones. Mature embryos could be an alternative source for indirect plant regeneration and gene transfer systems for different sunflower genotypes. Published in Russian in Fiziologiya Rastenii, 2006, Vol. 53, No. 4, pp. 621–624. The text was submitted by the authors in English.  相似文献   

12.
Plant regeneration from callus culture of a Paphiopedilum hybrid   总被引:4,自引:0,他引:4  
Totipotent calli of a Paphiopedilum hybrid (Paphiopedilum callosum ‘Oakhi’ × Paph. lawrenceanum ‘Tradition’) were induced from seed-derived protocorms on a 1/2 strength Murashige–Skoog medium plus 1–10 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D) and 0.1–1 mg l−1 1-phenyl-3-(1.2.3-thiadiazol-5-yl)urea (TDZ). These calli grew well when subcultured on the same medium, but proliferated more on 1/2 MS medium plus 5 mg l−1 2,4-D and 1 mg l−1 TDZ. Calli developed further along a route of production of protocorm-like bodies and eventually formed plantlets that could be transplanted to pots and grew well. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
大果良种沙棘愈伤组织诱导及植株再生的研究   总被引:17,自引:1,他引:17  
李师翁  卢东平等 《西北植物学报》2001,21(2):262-266,T002
大果良种沙棘的幼嫩茎尖,茎段外植体接种在MS,1/2MS附加不同浓度配比的IAA,IBA,BA,NAA培养基上可诱导茎尖及腋芽生长,将诱导产生的无性系芽接种在MS或1/2MS附加BA0.3-0.5mg/L,NAA0.05mg/L的培养基上可形成丛生芽,同时在小叶片和嫩茎上诱导产生愈伤组织,继续培养愈伤组织表面形成大量的绿色突起,进一步分化成不定芽,在相同培养基上,不定芽上可直接产生不定芽,从而形成多达数百个的不定芽族,不定芽长至3cm时切下转至1/2MS附加IAA或IBA 0.2mg/L的培养基上可生根而形成完整 的再生植株。  相似文献   

14.
An efficient method for in vitro micro propagation and genetic transformation of plants are crucial for both basic and applied research. Maize is one of the most important cereal crops around the world. Regeneration from immature embryo is hampered due to its unavailability round the year. On the contrary mature embryo especially tropical maize is recalcitrant toward tissue culture. Here we report a highly efficient regeneration (90%) system for maize by using 2 different approaches i.e., embryogenic and organogenic callus cultures. Seeds were germinated on MS medium supplemented with 5 mg/l 2,4-D and 3 mg/l BAP. Nodal regions of 2 wks old seedlings were longitudinally split upon isolation and subsequently placed on callus initiation medium. The maximum frequency of embryogenic callus formation (90%) was obtained on MS medium supplemented with 2 mg/l 2,4-D and 1 mg/l BAP in the dark conditions. The compact granular organogenic callus formation (85% frequency) was obtained on MS medium supplemented with 2.5 mg/l 2,4-D and 1.5 mg/l BAP at light conditions. MS medium supplemented with 2 mg/l BAP, 1 mg/l Kinetin and 0.5 mg/l NAA promoted the highest frequency of shoot induction. The highest frequency of root formation was observed when shoots were grown on MS medium. The regenerated plants were successfully hardened in earthen pots after adequate acclimatization. The important advantage of this improved method is shortening of regeneration time by providing an efficient and rapid regeneration tool for obtaining more stable transformants from mature seeds of Indian tropical maize cultivar (HQPM-1).  相似文献   

15.
Summary Mature zygotic embryos of eight (open-pollinated) families of loblolly pine (Pinus taeda L.) were cultured on eight different basal salt formulations, each supplemented with 36.2 μM 2,4-dichlorophenoxyacetic acid, 17.8 μM 6-benzyladenine, 18.6 μM kinetin, 500 mg l−1 casein hydrolysate, and 500 mg l−1 l-glutamine for 9 wk; embryogenic tissue was formed on cotyledons, hypocotyls, and radieles of mature zygotic embryos. Callus was subcultured on the callus proliferation medium, the same as the induction medium but with one-fifth concentration of auxin and cytokinin for 9 wk. On this medium a white to translucent, glossy, mucilaginous embryogenic callus containing embryogenic suspensor masses (ESMs) was obtained. The highest frequency of explants forming embryogenic tissue, 17%, occurred on a modified Murashige and Skoog salts basal medium containing the concentration of KNO3, Ca(NO3)2·4H2O, NH4NO3, KCl, ZnSO4·7H2O, and MnSO4·H2O, 720, 1900, 400, 250, 25.8, and 25.35 mg l−1, respectively. Embryogenic suspension cultures were established by culturing embryogenic callus in liquid callus proliferation medium. Liquid cultures containing ESMs were transferred to medium containing abscisic acid, polyethylene glycols, and activated charcoal for stimulating the production of cotyledonary somatic embryos. Mature somatic embryos germinated for 4–12 wk on medium containing indole-butyric acid, gibberellic acid, 6-benzyladenine, activated charcoal, and reduced sucrose concentration (15 g l−1). Two hundred and ninety-one regenerated plantlets were transferred to a perlite:peatmoss:vermiculite (1∶1∶1) mixture, then the plants were transplanted to soil in the earth, and 73 plantlets survived in the field.  相似文献   

16.
以Reid、唐四平头和其它种质等3个杂种优势类群共19份玉米自交系为试验材料,以玉米幼胚作为外植体,研究了基因型、培养基和激素对玉米幼胚愈伤组织的诱导及植株再生的影响,结果表明供试材料均能进行愈伤组织的诱导,但是仅有12个自交系能再生植株。N6和改良N6培养基有助于提高愈伤组织的质量及其生长速度,2,4-D在愈伤组织的诱导中起着关键性作用。在诱导培养基中添加0.2mg/L的6-BA或KT会使胚性愈伤组织的诱导频率下降以及降低愈伤组织的质量。在胚状体诱导培养基中添加1mg/L的KT能促进绿苗的分化,但是浓度过高会使丛生苗分化过多。此外,通过对不同杂种优势类群自交系玉米幼胚培养特性的分析,发现在唐四平头类群的4个自交系中,黄早四的绿苗分化率仅为0.5%,其它3个自交系不能再生植株。但是,从Reid和其它种质类群的供试自交系中筛选出了胚性愈伤组织的诱导频率和绿苗分化率均较高的、适合于遗传转化的受体材料,如3189/4380、4380/陕综5、8103、先早17、18-599红、18-599白、501、178和冀53。  相似文献   

17.
Summary Genetic engineering of cereals currently depends on the use of tissue culture and plant regeneration systems. In wheat (Triticum aestivum L.), immature embryos are the most widely used explant to initiate cultures, but they are inconvenient due to their temporal availability and production requirements. Mature embryos are easily stored and are readily available as mature seeds. However, plant regeneration frequencies from cultures derived from mature embryos are generally low. This research was undertaken to improve callus induction and plant regeneration from wheat mature embryos of cultivar ‘Bobwhite’. The effects of four auxins [2,4-dichlorophenoxyacetic acid (2,4-D): 3,6-dichloro-o-anisic acid (dicamba); 4-amino-3,5,6-trichloropicolinic acid (picloram): and 2-(2-methyl-4-chlorophenoxy) propionic acid (2-MCPP)], and the effect of maltose vs. sucrose under filter sterilized and autoclaved conditions were evaluated. All auxin treatments resulted in callus induction except 2 MCPP. A highly significant effect of auxin type on both callus and plantlet production was detected, though interactions were observed. The effect of sugar type was dependent on the type of auxin used. Substitution of sucrose by maltose enhanced the regenration ability of callus from embryos cultured on media containing 2,4-D and picloram, but caused an opposite effect on media containing dicamba. Picloram significantly enhanced callus growth, however, embryogenic response and plant regenerability were low. Relative to 2.4-D, dicamba (18μM) resulted in a twofold increase in the number of plants regenerated per embryo and reduced the amount of time required for plant regeneration by 3–4 wk. Mention of a trademark or proprietary product does not constitute a guarantce or warranty by the University of Wisconsin and does not imply its approval to the exclusion of other products that may be suitable.  相似文献   

18.
海甘蓝愈伤组织再生植株的研究   总被引:3,自引:0,他引:3  
高宏波  王幼平  罗鹏   《广西植物》1998,18(1):58-61
海甘蓝种子在附加有2~5mg/L6-BA+01mg/LNAA的MS培养基上,幼苗生长健壮。幼苗的下胚轴和子叶柄在MS+1mg/L2,4-D+05mg/L6-BA的培养基上可以获得较好的愈伤组织。将来源于下胚轴的愈伤组织培养于含有05mg/LNAA,2mg/L6-BA的MS培养基上分化出的丛生芽状态最好。最佳生根培养基为1/2MS+05mg/LBA。  相似文献   

19.
以梨蒴珠藓无菌藓株为外植体诱导愈伤组织和配子体再生,接种于含不同激素组合的MS和Knop固体培养基上,分别进行愈伤组织和不定芽的分化,并探讨愈伤组织诱导和配子体再生的适宜培养条件.结果显示,愈伤组织诱导的最佳培养基是MS+0.5 mg/L BA+0.1 mg/L 2,4-D,愈伤组织诱导率为33.3%;不定芽诱导的最佳...  相似文献   

20.
白花天目地黄是天目地黄的一个优良变型,其资源稀少。本研究以白花天目地黄幼嫩叶片为外植体,探讨不同生长调节物质对其愈伤组织诱导及植株再生的影响。结果表明:MS+BA1.5mg·L-1+IBA0.5mg·L-1是诱导叶片愈伤组织最佳的培养基;MS+BA2.0mg·L-1+NAA0.1mg·L-1培养基对不定芽分化的效果最好;不定芽增殖最适宜的培养基为MS+BA2.0mg·L-1+IBA0.2mg·L-1;其不定芽的最佳生根培养基为1/2MS+NAA0.05mg·L-1;试管苗移栽成活率达到96.7%。同时,在此基础上探讨了白花天目地黄的园林绿化及对地黄属药用方面的利用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号