首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The first set of nuclear simple sequence repeat (SSR) loci for Brachiaria brizantha (Hochst. ex A. Rich.) Stap is described. A microsatellite-enriched library was constructed and 19 loci were characterized. About 13 SSR loci were found to be polymorphic and across-taxa amplification tests showed that six of them can be transferred to four other species of Brachiaria. This new SSR resource will be a powerful tool for population genetic studies of B. brizantha, for interspecific genetic studies within the genus Brachiaria, for mapping and for marker assisted selection in breeding.  相似文献   

2.
Meiotic behavior was analyzed in 6 progenies from 3 artificially induced tetraploid (2n = 4x = 36) sexual genotypes (C31, C41, and C48) of the normally apomicticBrachiaria brizantha (Hochst. ex A. Rich.) Stapf., syn.Urochloa brizantha (Hochst. ex A. Rich.) R. Webster. These are key plants to allow intraspecific hybridization of this important forage species, widely used for pastures in the tropics. The percentage of abnormal cells among the plants ranged from 39.8% to 63.2%. In the single plant derived from C48, only the common meiotic abnormalities typical of polyploids were observed, while in plants derived from C31 and C41, a distinct behavior was found. In the majority of cells of those plants, the chromosomes remained scattered in the cytoplasm in the first division, without forming a metaphase plate. This abnormality blocked chromosome movements at anaphase I. Several micronuclei of various sizes were formed and, after the occurrence of an irregular first cytokinesis, the meiocytes progressed normally to the second division, generating polyads with unbalanced microspores. Pollen viability was not correlated with meiotic abnormalities. The importance of these findings to theBrachiaria breeding program is discussed. The sexual progeny of C48 seems most suitable as female parents to be used in intra-and interspecific hybridization.  相似文献   

3.
The genetic diversity of cowpea (Vigna unguiculata L. Walp.) in Ethiopia was analyzed using 19 uniform accessions, 62 variable accessions (yielding 185 sub-types), and two mungbean (Vigna radiata) accessions (four subtypes) as outgroup. A set of 23 polymorphic simple sequence repeat (SSR) markers was identified, and polymorphism in the various accessions was scored by determining amplicon variability. Allele frequency, genetic diversity, and polymorphism information content (PIC) were determined for each SSR marker, and a neighbor joining dendrogram was generated to show the genetic relationship among the individual accessions. A total of 75 allelic variants was defined, with the average number of alleles per locus calculated to be three. The average genetic diversity (D) was 0.47, and PIC was 0.4. Three main clusters were identified by phylogenetic analysis, and the clusters and sub-grouping were supported by STRUCTURE and principal component analysis. This grouping had a moderate fixation index value of 0.075 and gene flow (Nm) of 3.176, indicating that the accessions possess wide diversity within individuals and populations. The accessions showed no clustering by geographical origins. Three well-characterized molecular markers (SSR1, C42-2B, and 61RM2) for race specific resistance to Striga gesnerioides in the cowpea cultivar B301 were used to evaluate the accessions for their potential for use in genetic improvement against this pest. Based on this analysis, only two accessions, 222890–2 from Gambela and 286–2 from the Southern Nations, Nationalities, and Peoples (SNNP) region, were found to cluster with B301 and contain the SSR1 resistance allele. These findings will assist in germplasm conservation efforts by the Institute of Biodiversity and Conservation of Ethiopia, and contribute to future studies aimed at the genetic improvement of local germplasm for improved overall agronomic performance as well as Striga resistance in particular.  相似文献   

4.
Stylosanthes species are important forage legumes in tropical and subtropical areas. S. macrocephala and S. capitata germplasm collections that consist of 134 and 192 accessions, respectively, are maintained at the Brazilian Agricultural Research Corporation Cerrados (Embrapa-Cerrados). Polymorphic microsatellite markers were used to assess genetic diversity and population structure with the aim to assemble a core collection. The mean values of HO and HE for S. macrocephala were 0.08 and 0.36, respectively, whereas the means for S. capitata were 0.48 and 0.50, respectively. Roger’s genetic distance varied from 0 to 0.83 for S. macrocephala and from 0 to 0.85 for S. capitata. Analysis with STRUCTURE software distinguished five groups among the S. macrocephala accessions and four groups among those of S. capitata. Nei’s genetic diversity was 27% in S. macrocephala and 11% in S. capitata. Core collections were assembled for both species. For S. macrocephala, all of the allelic diversity was represented by 23 accessions, whereas only 13 accessions were necessary to represent all allelic diversity for S. capitata. The data presented herein evidence the population structure present in the Embrapa-Cerrados germplasm collections of S. macrocephala and S. capitata, which may be useful for breeding programs and germplasm conservation.  相似文献   

5.
Most studies on the genetic diversity of common bean (Phaseolus vulgaris L.) have focussed on accessions from the Mesoamerican gene pool compared to the Andean gene pool. A deeper knowledge of the genetic structure of Argentinian germplasm would enable researchers to determine how the Andean domestication event affected patterns of genetic diversity in domesticated beans and to identify candidates for genes targeted by selection during the evolution of the cultivated common bean. A collection of 116 wild and domesticated accessions representing the diversity of the Andean bean in Argentina was genotyped by means of 114 simple sequence repeat (SSR) markers. Forty-seven Mesoamerican bean accessions and 16 Andean bean accessions representing the diversity of Andean landraces and wild accessions were also included. Using the Bayesian algorithm implemented in the software STRUCTURE we identified five major groups that correspond to Mesoamerican and Argentinian wild accessions and landraces and a group that corresponds to accessions from different Andean and Mesoamerican countries. The neighbour-joining algorithm and principal coordinate clustering analysis confirmed the genetic relationships among accessions observed with the STRUCTURE analysis. Argentinian accessions showed a substantial genetic variation with a considerable number of unique haplotypes and private alleles, suggesting that they may have played an important role in the evolution of the species. The results of statistical analyses aimed at identifying genomic regions with consistent patterns of variation were significant for 35 loci (~20 % of the SSRs used in the Argentinian accessions). One of these loci mapped in or near the genomic region of the glutamate decarboxylase gene. Our data characterize the population structure of the Argentinian germplasm. This information on its diversity will be very valuable for use in introgressing Argentinian genes into commercial varieties because the majority of present-day common bean varieties are of Andean origin.  相似文献   

6.
Simple sequence repeats (SSRs) were used to assess genetic diversity and study genetic relatedness in a large collection of Malus germplasm. A total of 164 accessions from the Malus core collection, maintained at the University of Illinois, were genotyped using apple SSR markers. Each of the accessions was genotyped using a single robust SSR marker from each of the 17 different linkage groups in Malus. Data were subjected to principal component analysis, and a dendrogram was constructed to establish genetic relatedness. As expected, this diverse core collection showed high allelic diversity; moreover, this allelic diversity was higher than that previously reported. Cluster analysis revealed the presence of four distinct clusters of accessions in this collection.  相似文献   

7.
Silicon (Si) accumulation in organs and cells is one of the most prominent characteristics of plants of the family Poaceae. Many species from this family are used as forage plants for animal feeding. The present study investigates in Brachiaria brizantha (Hochst. ex A. Rich.) Stapf. cv. Marandu: (1) the dry matter production and Si content in shoot due to soil Si fertilizations; (2) the Si distribution among shoot parts; and (3) the silica deposition and localization in leaves. Plants of B. brizantha cv. Marandu were grown under contrasting Si supplies in soil and nutrient solution. Silica deposition and distribution in grass leaf blades were observed using light microscope and scanning electron microscope equipped with an energy dispersive X-ray spectrometer (SEM-EDXS). Silicon concentration in the B. brizantha shoot increased according to the Si supply. Silicon in grass leaves decreased following the order: mature leaf blades > recently expanded leaf blades > non-expanded leaf blades. Silicon accumulates mainly on the upper (adaxial) epidermis of the grass leaf blades and, especially, on the bulliform cells. The Si distribution on adaxial leaf blade surface is non uniform and reflects a silica deposition exclusively on the cell wall of bulliform cells.  相似文献   

8.

Key message

Genetic diversity and population structure in the US Upland cotton was established and core sets of allelic richness were identified for developing association mapping populations in cotton.

Abstract

Elite plant breeding programs could likely benefit from the unexploited standing genetic variation of obsolete cultivars without the yield drag typically associated with wild accessions. A set of 381 accessions comprising 378 Upland (Gossypium hirsutum L.) and 3 G. barbadense L. accessions of the United States cotton belt were genotyped using 120 genome-wide SSR markers to establish the genetic diversity and population structure in tetraploid cotton. These accessions represent more than 100 years of Upland cotton breeding in the United States. Genetic diversity analysis identified a total of 546 alleles across 141 marker loci. Twenty-two percent of the alleles in Upland accessions were unique, specific to a single accession. Population structure analysis revealed extensive admixture and identified five subgroups corresponding to Southeastern, Midsouth, Southwest, and Western zones of cotton growing areas in the United States, with the three accessions of G. barbadense forming a separate cluster. Phylogenetic analysis supported the subgroups identified by STRUCTURE. Average genetic distance between G. hirsutum accessions was 0.195 indicating low levels of genetic diversity in Upland cotton germplasm pool. The results from both population structure and phylogenetic analysis were in agreement with pedigree information, although there were a few exceptions. Further, core sets of different sizes representing different levels of allelic richness in Upland cotton were identified. Establishment of genetic diversity, population structure, and identification of core sets from this study could be useful for genetic and genomic analysis and systematic utilization of the standing genetic variation in Upland cotton.  相似文献   

9.
Zombi pea (Vigna vexillata (L.) A. Rich) is an underutilized legume species and a useful gene source for resistance to biotic and abiotic stresses, although there is little understanding on its genetic diversity and structure. In this study, 422 (408 wild and 14 cultivated) accessions of zombi pea from diverse origins (201 from Africa, 126 from America, 85 from Australia, 5 from Asia and 5 from unknown origin) were analyzed with 20 simple sequence repeat (SSR) markers to determine its genetic diversity and genetic structure. The SSR markers detected 273 alleles in total with a mean of 13.6 alleles per locus. Polymorphism information content values of the markers varied from 0.58 to 0.90 with an average of 0.76. Overall gene diversity was 0.715. Gene diversity and average allelic richness was highest in Africa (0.749 and 8.08, respectively) and lowest in America (0.435 and 4.10, respectively). Nei’s genetic distance analysis revealed that the highest distance was between wild Australia and cultivated Africa (0.559), followed by wild West Africa and wild Australia (0.415). STRUCTURE, neighbor-joining (NJ), and principal coordinate analyses consistently showed that these zombi pea accessions were clustered into three major groups, viz. America, Africa and Asia, and Australia. NJ tree also suggested that American and Australian accessions are originated from East African zombi peas, and that the cultivated accessions from Africa and Asia were genetically distinct, while those from America were clustered with some cultivated accessions from Africa. These results suggest that Africa is the center of origin and diversity of zombi pea, and that domestication of this pea took place more than once in different regions.  相似文献   

10.
Kenaf (Hibiscus cannabinus L.) and roselle (H. sabdariffa L.) are valuable fibre crop species with diverse end use. Phylogenetic relationship of 73 accessions of kenaf, roselle and their wild relatives from 15 countries was assessed using 44 inter-simple sequence repeat (ISSR) and jute (Corchorus olitorius L.) specific simple sequence repeats (SSR) markers. A total of 113 alleles were identified of which 61.95 % were polymorphic. Jute specific SSR markers exhibited high polymorphism and resolving power in kenaf, although ISSR markers exhibited higher resolving power than SSR markers. Number of polymorphic alleles varied from 1 to 5 for ISSR and 1 to 6 for SSR markers. Cultivated species exhibited higher allele polymorphism (57 %) than the wild species (35 %), but the improved cultivars exhibited lower genetic diversity compared to germplasm accessions. Accessions with common genetic lineage and geographical distribution clustered together. Indian kenaf varieties were distinct from cultivars bred in other countries and shared more genetic homology with African accessions. High genetic diversity was observed in the Indian (J = 0.35–0.74) and exotic kenaf germplasm collections (J = 0.38–0.79), suggesting kenaf might have been introduced in India from Africa through Central Asia during early domestication. Genetic similarity-based cluster analysis was in close accordance with taxonomic classification of Hibiscus.  相似文献   

11.

Background

Urochloa humidicola is a forage grass that grows in tropical regions and is recognized for its tolerance to seasonal flooding. It is a polyploid and apomictic species with high phenotypic plasticity. As molecular tools are important in facilitating the development of new cultivars and in the classification of related species, the objectives of this study were to develop new polymorphic microsatellite markers from an enriched library constructed from U. humidicola and to evaluate their transferability to other Urochloa species.

Findings

Microsatellite sequences were identified from a previously constructed enriched library, and specific primers were designed for 40 loci. Isolated di-nucleotide repeat motifs were the most abundant followed by tetra-nucleotide repeats. Of the tested loci, 38 displayed polymorphism when screened across 34 polyploid Urochloa sp. genotypes, including 20 accessions and six hybrids of U. humidicola and two accessions each from U. brizantha, U. dictyoneura, U. decumbens and U. ruziziensis. The number of bands per Simple Sequence Repeat (SSR) locus ranged from one to 29 with a mean of 11.5 bands per locus. The mean Polymorphism Information Content (PIC) of all loci was 0.7136, and the mean Discrimination Power (DP) was 0.7873. Six loci amplified in all species tested. STRUCTURE analysis revealed six different allelic pools, and the genetic similarity values analyzed using Jaccard's coefficient ranged from 0.000 to 0.913.

Conclusions

This work reports new polymorphic microsatellite markers that will be useful for breeding programs for Urochloa humidicola and other Urochloa species as well as for genetic map development, germplasm characterization, evolutionary and taxonomic studies and marker-assisted trait selection.
  相似文献   

12.
Common bean diversity within and between Mesoamerican and Andean gene pools was compared in 89 landraces from America and 256 landraces from Europe, to elucidate the effects of bottleneck of introduction and selection for adaptation during the expansion of common bean (Phaseolus vulgaris L.) in Europe. Thirteen highly polymorphic nuclear microsatellite markers (nuSSRs) were used to complement chloroplast microsatellite (cpSSRs) and nuclear markers (phaseolin and Pv-shatterproof1) data from previous studies. To verify the extent of the introduction bottleneck, inter-gene pool hybrids were distinguished from “pure” accessions. Hybrids were identified on the basis of recombination of gene pool specific cpSSR, phaseolin and Pv-shatterproof1 markers with a Bayesian assignments based on nuSSRs, and with STRUCTURE admixture analysis. More hybrids were detected than previously, and their frequency was almost four times larger in Europe (40.2%) than in America (12.3%). The genetic bottleneck following the introduction into Europe was not evidenced in the analysis including all the accessions, but it was significant when estimated only with “pure” accessions, and five times larger for Mesoamerican than for Andean germplasm. The extensive inter-gene pool hybridization generated a large amount of genotypic diversity that mitigated the effects of the bottleneck that occurred when common bean was introduced in Europe. The implication for evolution and the advantages for common bean breeding are discussed.  相似文献   

13.
Development of genomic resources in any crop is the pre-requisite for the construction of linkage map and implementation of molecular breeding strategies to develop superior cultivars. Large number of molecular markers are required to enrich the scanty information available in horsegram (Macrotyloma uniflorum).We employed the next-generation Illumina sequencing platform to develop a large number of microsatellite markers in this species. Of the total 23,305 potential SSRs motifs, 5755 primers were designed. Of these, 1425, 1310, 856, 1276, and 888 were of di-, tri-, tetra-, penta-, and hexa-nucleotide repeats respectively. Thirty polymorphic SSR primers and 24 morphological traits were used in 360 horsegram accessions to detect the genetic diversity and population structure. Thirty primers amplified 170 polymorphic alleles with an average of 5.6 alleles per primer having size 80 to 380 bp. The polymorphism information content (PIC) ranged from 0.15 to 0.76 with an average of 0.50, suggesting that SSR markers used in the study were polymorphic and suitable for characterization of horsegram germplasm. Dendrogram-based on Jaccard’s similarity coefficient and neighbor-joining tree grouped the horsegram accessions into two major clusters. Similarly, STRUCTURE analysis assigned genotypes into two gene pools namely Himalayan origin and Southern India. Diversity analysis based on 24 agro-morphological traits also suggested the presence of high level of diversity among the accessions.  相似文献   

14.
15.
North eastern (NE) India harbours a precious germplasm repository of Capsicum in the form of various landraces. The present study was undertaken to characterise the extent of genetic variation present in different Capsicum landraces from north eastern India. A set of 171 Capsicum accessions were characterised using three-endonuclease amplified fragment length polymorphism (AFLP) markers. Out of 416 bands obtained from six primer combinations, 254 (61 %) were polymorphic. The pairwise genetic dissimilarity among accessions ranged from 0.03 to 0.97. Cluster analysis based on neighbour joining showed two major clusters. Cluster I contained most of the bhut jolokia accessions whereas cluster II contained all of the Capsicum annuum genotypes. Similar grouping was observed with population STRUCTURE analysis as well as principle coordinate analysis. Analysis of molecular variance (AMOVA) revealed 45 and 54 % variation among and within populations, respectively. This information on population structure analysis and molecular characterisation will be helpful for effective utilisation of this germplasm in Capsicum improvement programs.  相似文献   

16.
17.
Development of a robust set of 18 genomic microsatellite markers from turmeric (Curcuma longa L.) and its effective utilization in estimating the genetic diversity of 20 turmeric accessions are described. A total of 103 alleles were detected with an average of 5.7 alleles per locus. These markers displayed varied levels of polymorphism as evident from its discriminating power ranging from 0.19 to 0.70. The UPGMA cluster analysis of genetic distance values resolved the 20 turmeric accessions into five main groups. Three sets of genetically identical accessions were detected within the analyzed accessions, suggesting a revisit of the germplasm collection strategy based on vernacular identity. The entire grouping pattern of the entities was loose and independent of their geographical origins. These polymorphic SSR markers would be useful for the population genetic studies and germplasm management of turmeric.  相似文献   

18.
Because of the rich diversity among rice accessions grown around the world in distinct environments, traditional methods using morphology, cross compatibility and geography for classifying rice accessions according to different sub-populations have given way to use of molecular markers. Having a few robust markers that can quickly assign population structure to germplasm will facilitate making more informed choices about genetic diversity within seedbanks and breeding genepools. WHICHLOCI is a computer program that selects the best combination of loci for population assignment through empirical analysis of molecular marker data. This program has been used in surveys of plant species, for fish population assignment, and in human ancestry analysis. Using WHICHLOCI, we ranked the discriminatory power of 72 DNA markers used to genotype 1,604 accessions of the USDA rice core collection, and developed panels with a minimum number of markers for population assignment with 99% or higher accuracy. A total of 14 markers with high discriminatory power, genetic diversity, allelic frequency, and polymorphic information content were identified. A panel of just four markers, RM551, RM11, RM224 and RM44, was effective in assigning germplasm accessions to any of five sub-populations with 99.4% accuracy. Panels using only three markers were effective for assignment of rice germplasm to specific sub-populations, tropical japonica, temperate japonica, indica, aus, and aromatic. Assignment to tropical japonica, temperate japonica, or indica sub-populations was highly reliable using 3–4 markers, demonstrated by the high correlation with assignment using 72 markers. However, population assignment to aus and aromatic groups was less reliable, possibly due to the smaller representation of this material in the USDA core collection. More reference cultivars may be needed to improve population assignment to these two groups. This study demonstrated that a small number of DNA markers is effective for classification of germplasm into five sub-populations in rice. This will facilitate rapid screening of large rice germplasm banks for population assignment at a modest cost. The resulting information will be valuable to researchers to verify population classification of germplasm prior to initiating genetic studies, maximizing genetic diversity between sub-populations, or minimizing cross incompatibility while maximizing allelic diversity within specific sub-populations.  相似文献   

19.
Characterization of apple germplasm is important for conservation management and breeding strategies. A set of 448 Malus domestica accessions, primarily of local Danish origin, were genotyped using 15 microsatellite markers. Ploidy levels were determined by flow cytometry. Special emphasis was given to pedigree reconstruction, cultivar fingerprinting and genetic clustering. A reference set of cultivars, mostly from other European countries, together with a private nursery collection and a small set of Malus sieversii, Malus sylvestris and small-fruited, ornamental Malus cultivars, was also included. The microsatellite markers amplified 17–30 alleles per loci with an average degree of heterozygosity at 0.78. We identified 104 (23%) duplicate genotypes including colour sports. We could infer first-degree relationships for many cultivars with previously unknown parentages. STRUCTURE analysis provided no evidence for a genetic structure but allowed us to present a putative genetic assembly that was consistent with both PCA analysis and parental affiliation. The Danish cultivar collection contains 10% duplicate genotypes including colour sports and 22% triploids. Many unique accessions and considerable genetic diversity make the collection a valuable resource within the European apple germplasm. The findings presented shed new light on the origin of Danish apple cultivars. The fingerprints can be used for cultivar identification and future management of apple genetic resources. In addition, future genome-wide association studies and breeding programmes may benefit from the findings concerning genetic clustering and diversity of cultivars.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号